Fisheries Management Plan for Black Hills Streams 2015 – 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spawning and Early Life History of Mountain Whitefish in The
SPAWNING AND EARLY LIFE HISTORY OF MOUNTAIN WHITEFISH IN THE MADISON RIVER, MONTANA by Jan Katherine Boyer A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Fish and Wildlife Management MONTANA STATE UNIVERSITY Bozeman, Montana January 2016 © COPYRIGHT by Jan Katherine Boyer 2016 All Rights Reserved ii ACKNOWLEDGMENTS First, I thank my advisor, Dr. Christopher Guy, for challenging me and providing advice throughout every stage of this project. I also thank my committee members, Dr. Molly Webb and Dr. Tom McMahon, for guidance and suggestions which greatly improved this research. My field technicians Jordan Rowe, Greg Hill, and Patrick Luckenbill worked hard through fair weather and snowstorms to help me collect the data presented here. I also thank Travis Horton, Pat Clancey, Travis Lohrenz, Tim Weiss, Kevin Hughes, Rick Smaniatto, and Nick Pederson of Montana Fish, Wildlife and Parks for field assistance and advice. Mariah Talbott, Leif Halvorson, and Eli Cureton of the U. S. Fish and Wildlife Service assisted with field and lab work. Richard Lessner and Dave Brickner at the Madison River Foundation helped to secure funding for this project and conduct outreach in the Madison Valley. The Channels Ranch, Valley Garden Ranch, Sun West Ranch, and Galloup’s Slide Inn provided crucial land and river access. I also thank my fellow graduate students both for advice on project and class work and for being excellent people to spend time with. Ann Marie Reinhold, Mariah Mayfield, David Ritter, and Peter Brown were especially helpful during the early stages of this project. -
The Vermont Management Plan for Brook, Brown and Rainbow Trout Vermont Fish and Wildlife Department January 2018
The Vermont Management Plan for Brook, Brown and Rainbow Trout Vermont Fish and Wildlife Department January 2018 Prepared by: Rich Kirn, Fisheries Program Manager Reviewed by: Brian Chipman, Will Eldridge, Jud Kratzer, Bret Ladago, Chet MacKenzie, Adam Miller, Pete McHugh, Lee Simard, Monty Walker, Lael Will ACKNOWLEDGMENT: This project was made possible by fishing license sales and matching Dingell- Johnson/Wallop-Breaux funds available through the Federal Sportfish Restoration Act. Table of Contents I. Introduction ......................................................................................... 1 II. Life History and Ecology ................................................................... 2 III. Management History ......................................................................... 7 IV. Status of Existing Fisheries ............................................................. 13 V. Management of Trout Habitat .......................................................... 17 VI. Management of Wild Trout............................................................. 34 VII. Management of Cultured Trout ..................................................... 37 VIII. Management of Angler Harvest ................................................... 66 IX. Trout Management Plan Goals, Objectives and Strategies .............. 82 X. Summary of Laws and Regulations .................................................. 87 XI. Literature Cited ............................................................................... 92 I. Introduction -
321 Cmr: Division of Fisheries and Wildlife
321 CMR: DIVISION OF FISHERIES AND WILDLIFE 321 CMR 5.00: COLDWATER FISH RESOURCES Section 5.01: Introduction and Purpose 5.02: Definitions 5.03: Criteria and Procedure for Designating Coldwater Fish Resources 5.04: Requests that the Division Evaluate the CFR Status of a Waterbody 5.01: Introduction and Purpose Certain species of fish are sensitive to increases in temperature and require coldwater to fulfill one or more of their life stage requirements. Since the 1940's, the Division has documented the presence of coldwater fish resources (CFRs) in the Commonwealth where these fish occur. In the 1990's, the Division established a list of CFRs to facilitate the tracking and effective monitoring, management and protection of these resources by the Division, other state agencies, and local regulatory authorities, including conservation commissions and planning boards. Under the Department of Environmental Protection's Water Management Act regulations at 310 CMR 36.00: Massachusetts Water Resources Management Program, an applicant proposing a water withdrawal that may affect a CFR designated by the Division pursuant to 321 CMR 5.00 will be required to minimize any impact on the CFR. The Division has not assessed all of the waterbodies in the Commonwealth to determine their status as a CFR. 321 CMR 5.00 codifies the criteria, procedures and related definitions used by the Division to designate waterbodies as CFRs. 321 CMR 5.00 also provides notice of where the Division's current list of CFRs is available for review by regulatory authorities -
The Fish Communities of the Toronto Waterfront: Summary and Assessment 1989 - 2005
THE FISH COMMUNITIES OF THE TORONTO WATERFRONT: SUMMARY AND ASSESSMENT 1989 - 2005 SEPTEMBER 2008 ACKNOWLEDGMENTS The authors wish to thank the many technical staff, past and present, of the Toronto and Region Conservation Authority and Ministry of Natural Resources who diligently collected electrofishing data for the past 16 years. The completion of this report was aided by the Canada Ontario Agreement (COA). 1 Jason P. Dietrich, 1 Allison M. Hennyey, 1 Rick Portiss, 1 Gord MacPherson, 1 Kelly Montgomery and 2 Bruce J. Morrison 1 Toronto and Region Conservation Authority, 5 Shoreham Drive, Downsview, ON, M3N 1S4, Canada 2 Ontario Ministry of Natural Resources, Lake Ontario Fisheries Management Unit, Glenora Fisheries Station, Picton, ON, K0K 2T0, Canada © Toronto and Region Conservation 2008 ABSTRACT Fish community metrics collected for 16 years (1989 — 2005), using standardized electrofishing methods, throughout the greater Toronto region waterfront, were analyzed to ascertain the current state of the fish community with respect to past conditions. Results that continue to indicate a degraded or further degrading environment include an overall reduction in fish abundance, a high composition of benthivores, an increase in invasive species, an increase in generalist species biomass, yet a decrease in specialist species biomass, and a decrease in cool water Electrofishing in the Toronto Harbour thermal guild species biomass in embayments. Results that may indicate a change in a positive community health direction include no significant changes to species richness, a marked increase in diversity in embayments, a decline in non-native species in embayments and open coasts (despite the invasion of round goby), a recent increase in native species biomass, fluctuating native piscivore dynamics, increased walleye abundance, and a reduction in the proportion of degradation tolerant species. -
Coldwater Fish: Whitefish and Smelt - Anthony J
FISHERIES AND AQUACULTURE – Vol. III – Coldwater Fish: Whitefish and Smelt - Anthony J. Novotny COLDWATER FISH: WHITEFISH AND SMELT Anthony J. Novotny Fisheries Research Biologist, Marinka International, 1919 E. Calhoun, Seattle, WA 98112-2644,USA Keywords: aquaculture, brackish waters, cages, capture fisheries, coregonids, floating net pens, fresh water, gill-netting, hatchery, lakes, net value, non-inland waters, osmerids, ponds, pond culture, pumped water, rivers, seining, smelts, traps, whitefish. Contents 1. Introduction 2. World Production of Smelt in Fresh and Brackish Waters by Capture 2.1. World Smelt Production by Capture in Inland Fresh Waters - 1984-1997 2.2. World Freshwater Smelt Production by Capture in Fresh and Brackish Waters, other than Inland Waters - 1984-1997 3. World Production of the Whitefish (whitefish) in Fresh and Brackish Waters by Capture and Aquaculture 3.1. World Production of Wild Whitefish (whitefish) in Fresh and Brackish Waters by Capture: 1984-1997 3.2. World Aquaculture Production of the Whitefish (whitefish) 3.2.1. Whitefish Aquaculture Technology 3.2.2. Production of the Cultured Whitefish 3.2.3. Value of Farmed Whitefish Appendix Glossary Bibliography Biographical sketch Summary The production of fresh and brackish water whitefish and smelts by either capture or culture between 1984 and 1997, represents an average of less than 0.5% of all world wide freshwater fish production. While the total world freshwater fish production has increased each year during this period, the production of whitefish and smelt has declined.WhitefishUNESCO and smelt are products – of EOLSSnorthern hemisphere cold and temperate climate countries. Production of smelt is by capture fisheries, and the production of whitefish is by SAMPLEcapture fisheries and aquaculture. -
Coldwater Fishery Resources
Coldwater Fishery Resources Todd Richards ([email protected]) Eastern Brook Trout • Life Cycle • Biology • Conservation Brook Trout Life Cycle Winter Spring Fall Summer Brook Trout “Habitat” Cycle Spring Summer Fall Winter 2010 2011 Hamant Brook 20°C January July January July January Coldwater Fisheries Resources (CFRs) Fish Sampling Fish Community Surveys • Division samples fish communities as part of the statewide survey and inventory project. • To date we have more than 5,000 fish community samples and more than half a million individual fish records Part of !( !( NORTH C OASTAL !( !(!( !(!( !( !( !( !( !(!(!( !(!(!( !(!( !( !(!( !( !(!( !( !( !( !( !( !( !( !( !( !( !( Part of !( !( !( !(!( !( !( !(!( !(!(!( !( !( !( !( CONNECTICUT Part of !( !( !( !( !( !( !(!( !( !( !( !( !(!( !( !(!( !( !( !(!( !(!( PARKER!(!( !( !( !(!( !( !(!(!(!(!( !(!( !(!( !( !( !(!(!( !(!( !(!(!(!(!( !( MERRIMACK !( !( !( !( !(!( !( !( !(!(!(!( !( !( !(!( !(!( !(!(!( !( !(!( !( !( !( !(!(!( !( !( !( !(!(!( !( !( !(!( !( !( !( !( !(!( !( !( !( !( !(!( !( !(!(!( !(!( !( !( !( !( !(!( !( !( !( !(!(!(!(!( !(!( !( !( !( !( !( !( !( !( !(!( !(!( !( !( !(!( !( !( !(!( !( !(!(!( !( !( !( !(!(!( !( !( !(!(!(!( !(!( !( !( !( !(!( !( !( !(!( !( !( !( !( !( !( !( !( !(!(!( !(!(!( !( !( !( !(HUDSON!( !( !(!(!( !( !( !( !( !(!(!(!(!(!( !( !(!(!(!( !( !( !( !( !(!( !( !( !( !( !( !( !( !( !( !( !( !( !( MERRIMACK!( !( !( !(!( !(!( !(!( !(!( !(!( !(!( !(!( !( !( !( !(!( !(!( !(!(!( !( !( !( !( !( !( !( !(!( !(!( !(!(!( !( !( !( !( !( !( !( !(!( !( !(!( !( !( !(!( -
Fish Assemblages in European Lakes - Comparison of Sampling Methods and Analysis of Size Structure
Fish assemblages in European lakes - Comparison of sampling methods and analysis of size structure DISSERTATION zur Erlangung des akademischen Grades Doctor rerum agriculturarum (Dr. rer. agr.) Eingereicht an der Landwirtschaftlich-Gärtnerischen Fakultät der Humboldt-Universität zu Berlin von Dipl. Biol. MATTHIAS EMMRICH Präsident/Präsidentin der Humboldt-Universität zu Berlin: Prof. Dr. Jan-Hendrik Olbertz Dekan/Dekanin der Landwirtschaftlich-Gärtnerischen Fakultät: Prof. Dr. Dr. h. c. Frank Ellmer Gutachter/Gutachterinnen: 1. Prof. Dr. Robert Arlinghaus 2. PD Dr. Thomas Mehner 3. Prof. Dr. Reiner Eckmann Tag der mündlichen Prüfung: 05.02.2013 Contents page List of papers V Author contributions VI Abstract (English) 1 Abstract (German) 2 1 Introduction 3 1.1 Sampling fish in lakes 4 1.1.1 Recreati onal angling 5 1.1.2 Scientific fish sampling 6 1.2 Size structure of lake fish assemblages 9 1.2.1 Anthropogenic influences of the size structure of lake fish assemblages 12 1.2.2 The role of spatial scale 13 2 Objectives 14 3 Methods and datasets 15 3.1 Sampling fish in lakes 16 3.1.1 Recreati onal angling 16 3.1.2 Scientific fish sampling 16 3.1.2.1 Multi -mesh gillnets 16 3.1 .2 .2 Trawling 18 3. 1. 2.3 Hydroacoustics 19 3.2 Size structure of lake fish assemblages 19 4 Main results 22 4.1 Sampling fish in lakes 22 4.2 Size structure of lake fish assemblages 24 5 Discussion 25 5.1 Sampling fish in lakes 25 5.2 Size structure of lake fish assemblages 29 6 Conclusions 31 Acknowledgement 32 References 34 Declaration of authorship 50 Appendix 51 Paper I 51 Paper II 67 Paper III 84 Paper IV 95 Paper V 115 List of papers This thesis is based on five papers, which are referred to in the text by their Roman numerals (I-V). -
Black Hills Resilient Landscapes Project Final Environmental Impact Statement
United States Department of Black Hills Resilient Landscapes Project Agriculture Forest Service Final Environmental Impact Statement April 2018 USDA Forest Service Black Hills National Forest Commonly Used Acronyms AMZ Aquatic management zone NEPA National Environmental Policy Act BE Biological evaluation NFMA National Forest Management Act BHNF Black Hills National Forest NFS National Forest System BHRL Black Hills Resilient Landscapes Project NHPA National Historic Preservation Act BMP Best management practice NLEB Northern long-eared bat CDA Connected disturbed area NRHP National Register of Historic Places CMAI Culmination of mean annual increment OHV Off-highway vehicle CTA Commercial treatment area PA Programmatic agreement CWPP Community wildfire protection plan POL Products other than logs DEIS Draft environmental impact statement ROD Record of decision EPA Environmental Protection Agency ROS Recreation opportunity spectrum ESA Endangered Species Act SDGFP SD Department of Game, Fish and Parks FEIS Final environmental impact statement SHPO State Historic Preservation Officer FRCC Fire regime condition class SIO Scenic integrity objective FSH Forest Service handbook SOLC Species of local concern FSM Forest Service manual SS Structural stage GIS Geographic information system USFWS US Fish and Wildlife Service HFRA Healthy Forest Restoration Act WCPH Watershed Conservation Practices hdbk. HUC Hydrologic unit code WUI Wildland-urban interface MA Management area MIS Management indicator species MVUM Motor vehicle use map In accordance -
Piscine Mycobacteriosis
Piscine Importance The genus Mycobacterium contains more than 150 species, including the obligate Mycobacteriosis pathogens that cause tuberculosis in mammals as well as environmental saprophytes that occasionally cause opportunistic infections. At least 20 species are known to Fish Tuberculosis, cause mycobacteriosis in fish. They include Mycobacterium marinum, some of its close relatives (e.g., M. shottsii, M. pseudoshottsii), common environmental Piscine Tuberculosis, organisms such as M. fortuitum, M. chelonae, M. abscessus and M. gordonae, and Swimming Pool Granuloma, less well characterized species such as M. salmoniphilum and M. haemophilum, Fish Tank Granuloma, among others. Piscine mycobacteriosis, which has a range of outcomes from Fish Handler’s Disease, subclinical infection to death, affects a wide variety of freshwater and marine fish. It Fish Handler’s Nodules has often been reported from aquariums, research laboratories and fish farms, but outbreaks also occur in free-living fish. The same organisms sometimes affect other vertebrates including people. Human infections acquired from fish are most often Last Updated: November 2020 characterized by skin lesions of varying severity, which occasionally spread to underlying joints and tendons. Some lesions may be difficult to cure, especially in those who are immunocompromised. Etiology Mycobacteriosis is caused by members of the genus Mycobacterium, which are Gram-positive, acid fast, pleomorphic rods in the family Mycobacteriaceae and order Actinomycetales. This genus is traditionally divided into two groups: the members of the Mycobacterium tuberculosis complex (e.g., M. tuberculosis, M. bovis, M. caprae, M. pinnipedii), which cause tuberculosis in mammals, and the nontuberculous mycobacteria. The organisms in the latter group include environmental saprophytes, which sometimes cause opportunistic infections, and other species such as M. -
Major Challenges Through the Transforming Coldwater Fisheries in India
Journal of Coldwater Fisheries 1(1):1-3, 2018 Major challenges through the transforming coldwater fisheries in India A K SINGH National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh) E-mail:[email protected] ABSTRACT Himalayan River systems in India comprises of the Indus, the Ganges and the Brahmaputra being distinct entities harbouring precious ichthyofaunal diversity. The Schizothoracines are important dominant fishery of these river systems followed by cyprinids while there are numerous small fish species having ornamental value. Unfortunately, the fishery of Himalaya is suffering from anthropogenic stresses, physical barriers in the form of damming and hydropower projects and resulting habitat loss. Since societal development, climate change and ecosystem degradations are stemming into big threats to the natural aquatic resources and their fish germplasm, scientists and policy makers are facing several challenges for sustainable management of the aquatic germplasm resources and aquaculture production enhancement: Keywords: Fishery resources, Sustainable development, Aquaculture diversification; Recreational fishery; Policy framework Development of sustainable fishery resources regulatory measures and public awareness and sensitization (Singh & Akhtar, 2015, Singh & Sarma, 2017; Singh, 2018). The subsistence and commercial fisheries of Himalayan states exploit major important species under Development of eco-tourism and recreational schizothoracines (Schizothorax and Schizothoraichthys -
Fish Fauna of River Ujh, an Important Tributary of the River Ravi, District Kathua, Jammu
Environment Conservation Journal 16 (1&2)81-86, 2015 ISSN 0972-3099 (Print) 2278-5124 (Online) Abstracted and Indexed Fish fauna of river Ujh, an important tributary of the river Ravi, District Kathua, Jammu V. Rathore and S. P. S. Dutta Received:16.03.2015 Accepted:18.05.2015 Abstract Fish survey of river Ujh, an important clean water tributary of the river Ravi, in Kathua district, has revealed the presence of 42 fish species belonging to 5 orders, 10 families and 27 genera. Fish fauna is dominated by Cypriniformes (27 species), followed by Siluriformes (10 species), Synbranchiformes (2 species), Perciformes (2 species) and Beloniformes (1 species). Fishing methods commonly employed include cast net, rod and hook, pocket net, poisoning, hand picking, stick, sickle and simple cloth. Fish diversity is fast depleting due to over exploitation, illegal fishing methods and fishing during breeding season. There are great prospects of increasing fish production in this river by stocking various carps in seasonal Ujh barrage at village Jasrota. Keywords: Fish fauna, river, fish diversity Introduction Riverine fish resources are fast depleting due to passes through narrow valley, deepens more and lack of fish resource information and over more to assume the character of gorge. Further exploitation. Sustainable exploitation of water bodies require detailed analysis of fish fauna down, at Panjtirthi, the valley widens and four inhabiting lotic waters and scientific streams viz. Bhini, Dangara, Sutar and Talin join management through regular monitoring and the Ujh. The Bhini is perennial and the remaining proper check on fishing pressure, including three streams are seasonal.It ultimately joins the unscientific fishing methods. -
Pgrounds, Meadows, and Watercourses in the Black Hills
The Affected Environment and Consequences 3-3.3.5. Species Of Local Concern – Mammals 3-3.3.5.1. Long-Eared Myotis (Myotis evotis) Affected Environment The long-eared myotis ranges across much of montane western North America, extending from central British Columbia; the southern half of Alberta and the southwestern corner of Saskatchewan; south to Baja California along the Pacific coast; along the western edges of the Dakotas; and most ofWyoming and Colorado to northwestern New Mexico and northeastern Arizona (Schmidt 2003a). The only records of long-eared myotis in the Black Hills come from unpublished reports (Schmidt 2003a). Clark and Stromberg (1987) report long-eared myotis to occur in suitable habitat throughout Wyoming although the majority of the records are from the western half of the state. Luce et al. (1999) reported long-eared myotis in 22 of the 28 surveys in Wyoming but in only one of the two in the Black Hills counties of Wyoming. It is unknown whether the Black Hills supports a self-sustaining population (Schmidt 2003a). This species is associated with coniferous montane habitats and has been reported foraging among trees and over woodland ponds (Schmidt 2003a). Limited data suggest that the long-eared myotis uses ponderosa pine snags as summer and maternity roosts in other regions (Rabe et al. 1998, Vonhof and Barclay 1997). Rabe et al. (1998) summarize some key snag characteristics for the long-eared myotis and four other bat species in Arizona: roost snags were generally in larger dbh, had more loose bark, and were found at higher densities.