Fish Assemblages in European Lakes - Comparison of Sampling Methods and Analysis of Size Structure

Total Page:16

File Type:pdf, Size:1020Kb

Fish Assemblages in European Lakes - Comparison of Sampling Methods and Analysis of Size Structure Fish assemblages in European lakes - Comparison of sampling methods and analysis of size structure DISSERTATION zur Erlangung des akademischen Grades Doctor rerum agriculturarum (Dr. rer. agr.) Eingereicht an der Landwirtschaftlich-Gärtnerischen Fakultät der Humboldt-Universität zu Berlin von Dipl. Biol. MATTHIAS EMMRICH Präsident/Präsidentin der Humboldt-Universität zu Berlin: Prof. Dr. Jan-Hendrik Olbertz Dekan/Dekanin der Landwirtschaftlich-Gärtnerischen Fakultät: Prof. Dr. Dr. h. c. Frank Ellmer Gutachter/Gutachterinnen: 1. Prof. Dr. Robert Arlinghaus 2. PD Dr. Thomas Mehner 3. Prof. Dr. Reiner Eckmann Tag der mündlichen Prüfung: 05.02.2013 Contents page List of papers V Author contributions VI Abstract (English) 1 Abstract (German) 2 1 Introduction 3 1.1 Sampling fish in lakes 4 1.1.1 Recreati onal angling 5 1.1.2 Scientific fish sampling 6 1.2 Size structure of lake fish assemblages 9 1.2.1 Anthropogenic influences of the size structure of lake fish assemblages 12 1.2.2 The role of spatial scale 13 2 Objectives 14 3 Methods and datasets 15 3.1 Sampling fish in lakes 16 3.1.1 Recreati onal angling 16 3.1.2 Scientific fish sampling 16 3.1.2.1 Multi -mesh gillnets 16 3.1 .2 .2 Trawling 18 3. 1. 2.3 Hydroacoustics 19 3.2 Size structure of lake fish assemblages 19 4 Main results 22 4.1 Sampling fish in lakes 22 4.2 Size structure of lake fish assemblages 24 5 Discussion 25 5.1 Sampling fish in lakes 25 5.2 Size structure of lake fish assemblages 29 6 Conclusions 31 Acknowledgement 32 References 34 Declaration of authorship 50 Appendix 51 Paper I 51 Paper II 67 Paper III 84 Paper IV 95 Paper V 115 List of papers This thesis is based on five papers, which are referred to in the text by their Roman numerals (I-V). Paper I Heermann, L., Emmrich, M., Heynen, M., Dorow, M., König, U., Borcherding, J., and Arlinghaus, R. (2013): Explaining recreational angling catch rates of Eurasian perch, Perca fluviatilis: the role of natural and fishing-related environmental factors. Fisheries Management and Ecology, in press. doi: 10.1111/fme.12000 Paper II Emmrich, M., Winfield, I.J., Guillard, J., Rustadbakken, A., Vergès, C., Volta, P., Jeppesen, E., Lauridsen, T.L., Brucet, S., Holmgren, K., Argillier C., and Mehner, T. (2012): Strong correspondence between gillnet catch per unit effort and hydroacoustically derived fish biomass in stratified lakes. Freshwater Biology, 2436-2448. doi: 10.1111/fwb.12022 Paper III Emmrich, M., Helland, I.P., Busch, S., Schiller, S., and Mehner, T. (2010): Hydroacoustic estimates of fish densities in comparison with stratified pelagic trawl sampling in two deep, coregonid-dominated lakes. Fisheries Research 105: 178-186. doi: 10.1016/j.fishres.2010.05.001 Paper IV Emmrich, M., Brucet, S., Ritterbusch, D., and Mehner, T. (2011): Size spectra of lake fish assemblages: responses along gradients of general environmental factors and intensity of lake-use. Freshwater Biology 56: 2316-2333. doi: 10.1111/j.1365-2427.2011.02658.x Paper V Emmrich, M., Pédron, S., Brucet, S., Winfield, I.J., Jeppesen, E., Volta, P., Argillier, C., Lauridsen, T.L., Holmgren, K., Hesthagen, T., and Mehner, T.: Differential pattern of size structure in European lake fish assemblages depending on elevation, latitude and species composition. Manuscript Papers I, II, III & IV are reprinted with permission of the publishers Maps were made with Natural Earth: Free vector and raster map data @ naturalearthdata.com V Author contributions Author of the thesis: Matthias Emmrich (ME) List of co-authors: Atle Rustadbakken (AR) Jost Borcherding (JB) Stéphanie Pédron (SP) Charlotte Vergès (CV) Kerstin Holmgren (KH) Susan Busch (SBu) Christine Argillier(CA) Lisa Heermann (LH) Susanne Schiller (SS) David Ritterbusch (DR) Malte Dorow (MD) Thomas Mehner (TM) Erik Jeppesen (EJ) Martina Heynen (MH) Torben L. Lauridsen (TLL) Ian J. Winfield (IJW) Pietro Volta (PV) Trygve Hesthagen (TH) Ingeborg P. Helland (IPH) Robert Arlinghaus (RA) Ulrike König (UK) Jean Guillard (JG) Sandra Brucet (SBr) Paper I This study consists of two parts: a single-lake study and a multi-lake study with different author contributions. LH & JB designed the single-lake study, LH & UK analysed the data (single- lake study), LH & MH wrote the paper (single-lake study), RA, ME & MD designed the multi-lake study, ME analysed the data (multi-lake study), ME & RA wrote the paper (multi-lake study). Paper II All authors contributed with data, ME & TM designed the study, ME analysed the data and wrote the paper. All co-authors revised the paper. Paper III All authors contributed with data, ME & TM designed the study, ME analysed the data and wrote the paper. All co-authors revised the paper. Paper IV DR created the database, ME contributed with data, ME & TM designed the study, ME & SBr analysed the data, ME wrote the paper. All co-authors revised the paper. Paper V All authors contributed with data, SP created the database, ME & TM designed the study, ME analysed the data and wrote the paper. All co- authors revised the paper. VI __________________________________________________________________________________ Abstract (English) Lake fish assemblages are increasingly exposed to environmental change in their habitats. The investigation of abiotic and biotic factors and their effects on the size structure of lake fish is essential for predicting the response of fish assemblages to environmental change. However, sampling of lake fish is challenging because sampling gears are selective. The quality and correspondence of fish catches from angling, gillnetting, trawling and hydroacoustics were analysed. Non-standardised catch data from recreational angling were of limited quality for a comparison of fish stocks. Vertical hydroacoustics is an efficient method to quantify fish biomass in stratified lakes. Sampling effort of multi-mesh gillnets can be reduced when fish abundance estimates are derived from contemporarily operating hydroacoustics. Trawling is useful to sample pelagic fish assemblages in deep lakes. The size structures of fish assemblages differed on a small and a large geographical scale along gradients of abiotic and biotic lake descriptors and differences in fish assemblage composition. At a small geographical scale assemblages in deep and less nutrient-rich lakes with high predator abundances were characterised by a higher proportion of large fish. Shallow nutrient-rich lakes with few predators were characterised by more medium-sized fish. At a large geographical scale thermal optima of fish generated two types of assemblages with different size structures. A high proportion of large salmonids was observed in coldwater lakes at high elevation sites in northern and southern Europe. Lowland lakes with cool- and warmwater fish were dominated by small-sized individuals. The results suggest that lowland lake fish assemblages are relatively robust against environmental change. Coldwater fish assemblages instead may suffer dramatic consequences from global warming as expected species shifts are likely to be accompanied by shifts in the size structure towards smaller individuals. Key words: lake fish, hydroacoustics, gillnet, trawl net, recreational angling, body size, size structure __________________________________________________________________________________ 1 __________________________________________________________________________________ Abstract (German) Fischgemeinschaften in Seen sind zunehmenden Umweltveränderungen unterworfen. Die Analyse des Einflusses abiotischer und biotischer Faktoren auf die Größenstruktur von Fischgemeinschaften ist entscheidend, um die Entwicklung von Seeökosystemen im Zuge von Umweltveränderungen vorhersagen zu können. Es ist jedoch schwierig Fische in Seen zu beproben, da Fanggeräte selektiv sind. Die Qualität und Vergleichbarkeit von Fischfängen durch Angler, Kiemennetze, Schleppnetze und Hydroakustik wurden untersucht. Anglerfänge eignen sich begrenzt für vergleichende Fischbestandsuntersuchungen. Vertikale Hydroakustik eignet sich für die Fischbiomasse- quantifizierung in geschichteten Seen. Der Beprobungsaufwand von Kiemennetzen kann reduziert werden, wenn zeitnah hydroakustische Untersuchungen statt finden. Schleppnetze eignen sich für die Beprobung von pelagischen Fischen in tiefen Seen. Die Größenstruktur von Fischgemeinschaften unterschied sich auf regionaler und überregionaler Ebene entlang abiotischer und biotischer Gradienten. Die regionale Studie zeigte, dass tiefe nährstoffarme Seen mit hohen Raubfischabundanzen durch mehr große Fische gekennzeichnet waren. Nährstoffreiche Flachseen mit wenigen Raubfischen zeigten höhere Anteile von mittleren Fischgrößen. Im überregionalen Vergleich führten Temperaturpräferenzen der Fischarten zu zwei Fischgemeinschaften, die sich in ihrer Größenzusammensetzung unterschieden. Ein hoher Anteil großer Salmoniden war typisch für hochgelegene Kaltwasserseen im Norden und Süden Europas. Flachlandseen mit Kühl- und Warmwasserfischen zeichneten sich durch eine Dominanz von kleinen Fischen aus. Das lässt vermuten, dass Fischgemeinschaften in Flachlandseen relativ robust gegenüber Umweltveränderungen reagieren. Kaltwasserfischgemeinschaften könnten im Zuge der Klimaerwärmung starken Änderungen unterliegen, da eine Veränderung in der Artenzusammen- setzung von einer Verschiebung in der Größenstruktur hin zu mehr kleinen Fischen begleitet sein wird. Schlagwörter: Fisch, See, Hydroakustik, Kiemennetz, Schleppnetz, Freizeitangelei, Körpergröße, Größenstruktur __________________________________________________________________________________
Recommended publications
  • Spawning and Early Life History of Mountain Whitefish in The
    SPAWNING AND EARLY LIFE HISTORY OF MOUNTAIN WHITEFISH IN THE MADISON RIVER, MONTANA by Jan Katherine Boyer A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Fish and Wildlife Management MONTANA STATE UNIVERSITY Bozeman, Montana January 2016 © COPYRIGHT by Jan Katherine Boyer 2016 All Rights Reserved ii ACKNOWLEDGMENTS First, I thank my advisor, Dr. Christopher Guy, for challenging me and providing advice throughout every stage of this project. I also thank my committee members, Dr. Molly Webb and Dr. Tom McMahon, for guidance and suggestions which greatly improved this research. My field technicians Jordan Rowe, Greg Hill, and Patrick Luckenbill worked hard through fair weather and snowstorms to help me collect the data presented here. I also thank Travis Horton, Pat Clancey, Travis Lohrenz, Tim Weiss, Kevin Hughes, Rick Smaniatto, and Nick Pederson of Montana Fish, Wildlife and Parks for field assistance and advice. Mariah Talbott, Leif Halvorson, and Eli Cureton of the U. S. Fish and Wildlife Service assisted with field and lab work. Richard Lessner and Dave Brickner at the Madison River Foundation helped to secure funding for this project and conduct outreach in the Madison Valley. The Channels Ranch, Valley Garden Ranch, Sun West Ranch, and Galloup’s Slide Inn provided crucial land and river access. I also thank my fellow graduate students both for advice on project and class work and for being excellent people to spend time with. Ann Marie Reinhold, Mariah Mayfield, David Ritter, and Peter Brown were especially helpful during the early stages of this project.
    [Show full text]
  • Fisheries Management Plan for Black Hills Streams 2015 – 2019
    Fisheries Management Plan for Black Hills Streams 2015 – 2019 South Dakota Game, Fish and Parks Wildlife Division Gene Galinat Greg Simpson Bill Miller Jake Davis Michelle Bucholz John Carreiro Dylan Jones Stan Michals Fisheries Management Plan for Black Hills Streams, 2015-2019 Table of Contents I. Introduction ............................................................................................................................... 3 II. Resource Descriptions ........................................................................................................... 4 Black Hills Fish Management Area ...................................................................................... 4 III. Management of Black Hills Fish Management Area Stream Fisheries ...................... 7 Classification of Trout Streams ............................................................................................. 7 Regulations .............................................................................................................................. 7 Stocking .................................................................................................................................... 8 Fish Surveys ............................................................................................................................ 8 Angler Surveys ........................................................................................................................ 9 Habitat and Angler Access ...................................................................................................
    [Show full text]
  • The Vermont Management Plan for Brook, Brown and Rainbow Trout Vermont Fish and Wildlife Department January 2018
    The Vermont Management Plan for Brook, Brown and Rainbow Trout Vermont Fish and Wildlife Department January 2018 Prepared by: Rich Kirn, Fisheries Program Manager Reviewed by: Brian Chipman, Will Eldridge, Jud Kratzer, Bret Ladago, Chet MacKenzie, Adam Miller, Pete McHugh, Lee Simard, Monty Walker, Lael Will ACKNOWLEDGMENT: This project was made possible by fishing license sales and matching Dingell- Johnson/Wallop-Breaux funds available through the Federal Sportfish Restoration Act. Table of Contents I. Introduction ......................................................................................... 1 II. Life History and Ecology ................................................................... 2 III. Management History ......................................................................... 7 IV. Status of Existing Fisheries ............................................................. 13 V. Management of Trout Habitat .......................................................... 17 VI. Management of Wild Trout............................................................. 34 VII. Management of Cultured Trout ..................................................... 37 VIII. Management of Angler Harvest ................................................... 66 IX. Trout Management Plan Goals, Objectives and Strategies .............. 82 X. Summary of Laws and Regulations .................................................. 87 XI. Literature Cited ............................................................................... 92 I. Introduction
    [Show full text]
  • 321 Cmr: Division of Fisheries and Wildlife
    321 CMR: DIVISION OF FISHERIES AND WILDLIFE 321 CMR 5.00: COLDWATER FISH RESOURCES Section 5.01: Introduction and Purpose 5.02: Definitions 5.03: Criteria and Procedure for Designating Coldwater Fish Resources 5.04: Requests that the Division Evaluate the CFR Status of a Waterbody 5.01: Introduction and Purpose Certain species of fish are sensitive to increases in temperature and require coldwater to fulfill one or more of their life stage requirements. Since the 1940's, the Division has documented the presence of coldwater fish resources (CFRs) in the Commonwealth where these fish occur. In the 1990's, the Division established a list of CFRs to facilitate the tracking and effective monitoring, management and protection of these resources by the Division, other state agencies, and local regulatory authorities, including conservation commissions and planning boards. Under the Department of Environmental Protection's Water Management Act regulations at 310 CMR 36.00: Massachusetts Water Resources Management Program, an applicant proposing a water withdrawal that may affect a CFR designated by the Division pursuant to 321 CMR 5.00 will be required to minimize any impact on the CFR. The Division has not assessed all of the waterbodies in the Commonwealth to determine their status as a CFR. 321 CMR 5.00 codifies the criteria, procedures and related definitions used by the Division to designate waterbodies as CFRs. 321 CMR 5.00 also provides notice of where the Division's current list of CFRs is available for review by regulatory authorities
    [Show full text]
  • Adaptive Phenotypic Diversification Along a Temperature-Depth Gradient Jan Ohlberger Åke Brännström ([email protected]) Ulf Dieckmann ([email protected])
    International Institute for Tel: +43 2236 807 342 Applied Systems Analysis Fax: +43 2236 71313 Schlossplatz 1 E-mail: [email protected] A-2361 Laxenburg, Austria Web: www.iiasa.ac.at Interim Report IR-13-055 Adaptive phenotypic diversification along a temperature-depth gradient Jan Ohlberger Åke Brännström ([email protected]) Ulf Dieckmann ([email protected]) Approved by Pavel Kabat Director General and Chief Executive Officer June 2015 Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. *Manuscript 1 Manuscript type: Article 2 3 Adaptive phenotypic diversification along a temperature-depth gradient 4 Jan Ohlberger1,2,3,*, Åke Brännström3,4,#, Ulf Dieckmann3,+ 5 6 1 Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 7 D-12587 Berlin, Germany 8 2 Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, N-0316 Oslo, 9 Norway 10 3 Evolution and Ecology Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, 11 Austria 12 4 Department of Mathematics and Mathematical Statistics, Umeå University, SE-90187 Umeå, Sweden 13 * [email protected] (corresponding author) 14 # [email protected] 15 + [email protected] 16 17 Keywords: adaptive dynamics, ecological gradient, evolutionary diversification, sympatric 18 speciation, temperature adaptation 19 Online appendix A: Model variables, functions, and parameters 20 Online appendix B: Model functions and their estimation from empirical data 21 Online appendix C: Sensitivity analysis 22 ABSTRACT 23 Theoretical models suggest that sympatric speciation along environmental gradients might be 24 common in nature.
    [Show full text]
  • The Fish Communities of the Toronto Waterfront: Summary and Assessment 1989 - 2005
    THE FISH COMMUNITIES OF THE TORONTO WATERFRONT: SUMMARY AND ASSESSMENT 1989 - 2005 SEPTEMBER 2008 ACKNOWLEDGMENTS The authors wish to thank the many technical staff, past and present, of the Toronto and Region Conservation Authority and Ministry of Natural Resources who diligently collected electrofishing data for the past 16 years. The completion of this report was aided by the Canada Ontario Agreement (COA). 1 Jason P. Dietrich, 1 Allison M. Hennyey, 1 Rick Portiss, 1 Gord MacPherson, 1 Kelly Montgomery and 2 Bruce J. Morrison 1 Toronto and Region Conservation Authority, 5 Shoreham Drive, Downsview, ON, M3N 1S4, Canada 2 Ontario Ministry of Natural Resources, Lake Ontario Fisheries Management Unit, Glenora Fisheries Station, Picton, ON, K0K 2T0, Canada © Toronto and Region Conservation 2008 ABSTRACT Fish community metrics collected for 16 years (1989 — 2005), using standardized electrofishing methods, throughout the greater Toronto region waterfront, were analyzed to ascertain the current state of the fish community with respect to past conditions. Results that continue to indicate a degraded or further degrading environment include an overall reduction in fish abundance, a high composition of benthivores, an increase in invasive species, an increase in generalist species biomass, yet a decrease in specialist species biomass, and a decrease in cool water Electrofishing in the Toronto Harbour thermal guild species biomass in embayments. Results that may indicate a change in a positive community health direction include no significant changes to species richness, a marked increase in diversity in embayments, a decline in non-native species in embayments and open coasts (despite the invasion of round goby), a recent increase in native species biomass, fluctuating native piscivore dynamics, increased walleye abundance, and a reduction in the proportion of degradation tolerant species.
    [Show full text]
  • Coldwater Fish: Whitefish and Smelt - Anthony J
    FISHERIES AND AQUACULTURE – Vol. III – Coldwater Fish: Whitefish and Smelt - Anthony J. Novotny COLDWATER FISH: WHITEFISH AND SMELT Anthony J. Novotny Fisheries Research Biologist, Marinka International, 1919 E. Calhoun, Seattle, WA 98112-2644,USA Keywords: aquaculture, brackish waters, cages, capture fisheries, coregonids, floating net pens, fresh water, gill-netting, hatchery, lakes, net value, non-inland waters, osmerids, ponds, pond culture, pumped water, rivers, seining, smelts, traps, whitefish. Contents 1. Introduction 2. World Production of Smelt in Fresh and Brackish Waters by Capture 2.1. World Smelt Production by Capture in Inland Fresh Waters - 1984-1997 2.2. World Freshwater Smelt Production by Capture in Fresh and Brackish Waters, other than Inland Waters - 1984-1997 3. World Production of the Whitefish (whitefish) in Fresh and Brackish Waters by Capture and Aquaculture 3.1. World Production of Wild Whitefish (whitefish) in Fresh and Brackish Waters by Capture: 1984-1997 3.2. World Aquaculture Production of the Whitefish (whitefish) 3.2.1. Whitefish Aquaculture Technology 3.2.2. Production of the Cultured Whitefish 3.2.3. Value of Farmed Whitefish Appendix Glossary Bibliography Biographical sketch Summary The production of fresh and brackish water whitefish and smelts by either capture or culture between 1984 and 1997, represents an average of less than 0.5% of all world wide freshwater fish production. While the total world freshwater fish production has increased each year during this period, the production of whitefish and smelt has declined.WhitefishUNESCO and smelt are products – of EOLSSnorthern hemisphere cold and temperate climate countries. Production of smelt is by capture fisheries, and the production of whitefish is by SAMPLEcapture fisheries and aquaculture.
    [Show full text]
  • Identification and Modelling of a Representative Vulnerable Fish Species for Pesticide Risk Assessment in Europe
    Identification and Modelling of a Representative Vulnerable Fish Species for Pesticide Risk Assessment in Europe Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Lara Ibrahim, M.Sc. aus Mazeraat Assaf, Libanon Berichter: Universitätsprofessor Dr. Andreas Schäffer Prof. Dr. Christoph Schäfers Tag der mündlichen Prüfung: 30. Juli 2015 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar Erklärung Ich versichere, dass ich diese Doktorarbeit selbständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt habe. Weiterhin versichere ich, die aus benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht zu haben. Lara Ibrahim Aachen, am 18 März 2015 Zusammenfassung Die Zulassung von Pflanzenschutzmitteln in der Europäischen Gemeinschaft verlangt unter anderem eine Abschätzung des Risikos für Organismen in der Umwelt, die nicht Ziel der Anwendung sind. Unvertretbare Auswirkungen auf den Naturhalt sollen vermieden werden. Die ökologische Risikoanalyse stellt die dafür benötigten Informationen durch eine Abschätzung der Exposition der Organismen und der sich daraus ergebenden Effekte bereit. Die Effektabschätzung beruht dabei hauptsächlich auf standardisierten ökotoxikologischen Tests im Labor mit wenigen, oft nicht einheimischen Stellvertreterarten. In diesen Tests werden z. B. Effekte auf das Überleben, das Wachstum und/oder die Reproduktion von Fischen bei verschiedenen Konzentrationen der Testsubstanz gemessen und Endpunkte wie die LC50 (Lethal Concentrations for 50%) oder eine NOEC (No Observed Effect Concentration, z. B. für Wachstum oder Reproduktionsparameter) abgeleitet. Für Fische und Wirbeltiere im Allgemeinen beziehen sich die spezifischen Schutzziele auf das Überleben von Individuen und die Abundanz und Biomasse von Populationen.
    [Show full text]
  • Coldwater Fishery Resources
    Coldwater Fishery Resources Todd Richards ([email protected]) Eastern Brook Trout • Life Cycle • Biology • Conservation Brook Trout Life Cycle Winter Spring Fall Summer Brook Trout “Habitat” Cycle Spring Summer Fall Winter 2010 2011 Hamant Brook 20°C January July January July January Coldwater Fisheries Resources (CFRs) Fish Sampling Fish Community Surveys • Division samples fish communities as part of the statewide survey and inventory project. • To date we have more than 5,000 fish community samples and more than half a million individual fish records Part of !( !( NORTH C OASTAL !( !(!( !(!( !( !( !( !( !(!(!( !(!(!( !(!( !( !(!( !( !(!( !( !( !( !( !( !( !( !( !( !( !( Part of !( !( !( !(!( !( !( !(!( !(!(!( !( !( !( !( CONNECTICUT Part of !( !( !( !( !( !( !(!( !( !( !( !( !(!( !( !(!( !( !( !(!( !(!( PARKER!(!( !( !( !(!( !( !(!(!(!(!( !(!( !(!( !( !( !(!(!( !(!( !(!(!(!(!( !( MERRIMACK !( !( !( !( !(!( !( !( !(!(!(!( !( !( !(!( !(!( !(!(!( !( !(!( !( !( !( !(!(!( !( !( !( !(!(!( !( !( !(!( !( !( !( !( !(!( !( !( !( !( !(!( !( !(!(!( !(!( !( !( !( !( !(!( !( !( !( !(!(!(!(!( !(!( !( !( !( !( !( !( !( !( !(!( !(!( !( !( !(!( !( !( !(!( !( !(!(!( !( !( !( !(!(!( !( !( !(!(!(!( !(!( !( !( !( !(!( !( !( !(!( !( !( !( !( !( !( !( !( !(!(!( !(!(!( !( !( !( !(HUDSON!( !( !(!(!( !( !( !( !( !(!(!(!(!(!( !( !(!(!(!( !( !( !( !( !(!( !( !( !( !( !( !( !( !( !( !( !( !( !( MERRIMACK!( !( !( !(!( !(!( !(!( !(!( !(!( !(!( !(!( !( !( !( !(!( !(!( !(!(!( !( !( !( !( !( !( !( !(!( !(!( !(!(!( !( !( !( !( !( !( !( !(!( !( !(!( !( !( !(!(
    [Show full text]
  • Piscine Mycobacteriosis
    Piscine Importance The genus Mycobacterium contains more than 150 species, including the obligate Mycobacteriosis pathogens that cause tuberculosis in mammals as well as environmental saprophytes that occasionally cause opportunistic infections. At least 20 species are known to Fish Tuberculosis, cause mycobacteriosis in fish. They include Mycobacterium marinum, some of its close relatives (e.g., M. shottsii, M. pseudoshottsii), common environmental Piscine Tuberculosis, organisms such as M. fortuitum, M. chelonae, M. abscessus and M. gordonae, and Swimming Pool Granuloma, less well characterized species such as M. salmoniphilum and M. haemophilum, Fish Tank Granuloma, among others. Piscine mycobacteriosis, which has a range of outcomes from Fish Handler’s Disease, subclinical infection to death, affects a wide variety of freshwater and marine fish. It Fish Handler’s Nodules has often been reported from aquariums, research laboratories and fish farms, but outbreaks also occur in free-living fish. The same organisms sometimes affect other vertebrates including people. Human infections acquired from fish are most often Last Updated: November 2020 characterized by skin lesions of varying severity, which occasionally spread to underlying joints and tendons. Some lesions may be difficult to cure, especially in those who are immunocompromised. Etiology Mycobacteriosis is caused by members of the genus Mycobacterium, which are Gram-positive, acid fast, pleomorphic rods in the family Mycobacteriaceae and order Actinomycetales. This genus is traditionally divided into two groups: the members of the Mycobacterium tuberculosis complex (e.g., M. tuberculosis, M. bovis, M. caprae, M. pinnipedii), which cause tuberculosis in mammals, and the nontuberculous mycobacteria. The organisms in the latter group include environmental saprophytes, which sometimes cause opportunistic infections, and other species such as M.
    [Show full text]
  • Major Challenges Through the Transforming Coldwater Fisheries in India
    Journal of Coldwater Fisheries 1(1):1-3, 2018 Major challenges through the transforming coldwater fisheries in India A K SINGH National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh) E-mail:[email protected] ABSTRACT Himalayan River systems in India comprises of the Indus, the Ganges and the Brahmaputra being distinct entities harbouring precious ichthyofaunal diversity. The Schizothoracines are important dominant fishery of these river systems followed by cyprinids while there are numerous small fish species having ornamental value. Unfortunately, the fishery of Himalaya is suffering from anthropogenic stresses, physical barriers in the form of damming and hydropower projects and resulting habitat loss. Since societal development, climate change and ecosystem degradations are stemming into big threats to the natural aquatic resources and their fish germplasm, scientists and policy makers are facing several challenges for sustainable management of the aquatic germplasm resources and aquaculture production enhancement: Keywords: Fishery resources, Sustainable development, Aquaculture diversification; Recreational fishery; Policy framework Development of sustainable fishery resources regulatory measures and public awareness and sensitization (Singh & Akhtar, 2015, Singh & Sarma, 2017; Singh, 2018). The subsistence and commercial fisheries of Himalayan states exploit major important species under Development of eco-tourism and recreational schizothoracines (Schizothorax and Schizothoraichthys
    [Show full text]
  • Fish Fauna of River Ujh, an Important Tributary of the River Ravi, District Kathua, Jammu
    Environment Conservation Journal 16 (1&2)81-86, 2015 ISSN 0972-3099 (Print) 2278-5124 (Online) Abstracted and Indexed Fish fauna of river Ujh, an important tributary of the river Ravi, District Kathua, Jammu V. Rathore and S. P. S. Dutta Received:16.03.2015 Accepted:18.05.2015 Abstract Fish survey of river Ujh, an important clean water tributary of the river Ravi, in Kathua district, has revealed the presence of 42 fish species belonging to 5 orders, 10 families and 27 genera. Fish fauna is dominated by Cypriniformes (27 species), followed by Siluriformes (10 species), Synbranchiformes (2 species), Perciformes (2 species) and Beloniformes (1 species). Fishing methods commonly employed include cast net, rod and hook, pocket net, poisoning, hand picking, stick, sickle and simple cloth. Fish diversity is fast depleting due to over exploitation, illegal fishing methods and fishing during breeding season. There are great prospects of increasing fish production in this river by stocking various carps in seasonal Ujh barrage at village Jasrota. Keywords: Fish fauna, river, fish diversity Introduction Riverine fish resources are fast depleting due to passes through narrow valley, deepens more and lack of fish resource information and over more to assume the character of gorge. Further exploitation. Sustainable exploitation of water bodies require detailed analysis of fish fauna down, at Panjtirthi, the valley widens and four inhabiting lotic waters and scientific streams viz. Bhini, Dangara, Sutar and Talin join management through regular monitoring and the Ujh. The Bhini is perennial and the remaining proper check on fishing pressure, including three streams are seasonal.It ultimately joins the unscientific fishing methods.
    [Show full text]