Talking Points for GOES-R Hurricane Intensity Estimate Baseline Product
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 15 Hurricane Structure
MET 200 Lecture 15 Hurricanes Last Lecture: Atmospheric Optics Structure and Climatology The amazing variety of optical phenomena observed in the atmosphere can be explained by four physical mechanisms. • What is the structure or anatomy of a hurricane? • How to build a hurricane? - hurricane energy • Hurricane climatology - when and where Hurricane Katrina • Scattering • Reflection • Refraction • Diffraction 1 2 Colorado Flood Damage Hurricanes: Useful Websites http://www.wunderground.com/hurricane/ http://www.nrlmry.navy.mil/tc_pages/tc_home.html http://tropic.ssec.wisc.edu http://www.nhc.noaa.gov Hurricane Alberto Hurricanes are much broader than they are tall. 3 4 Hurricane Raymond Hurricane Raymond 5 6 Hurricane Raymond Hurricane Raymond 7 8 Hurricane Raymond: wind shear Typhoon Francisco 9 10 Typhoon Francisco Typhoon Francisco 11 12 Typhoon Francisco Typhoon Francisco 13 14 Typhoon Lekima Typhoon Lekima 15 16 Typhoon Lekima Hurricane Priscilla 17 18 Hurricane Priscilla Hurricanes are Tropical Cyclones Hurricanes are a member of a family of cyclones called Tropical Cyclones. West of the dateline these storms are called Typhoons. In India and Australia they are called simply Cyclones. 19 20 Hurricane Isaac: August 2012 Characteristics of Tropical Cyclones • Low pressure systems that don’t have fronts • Cyclonic winds (counter clockwise in Northern Hemisphere) • Anticyclonic outflow (clockwise in NH) at upper levels • Warm at their center or core • Wind speeds decrease with height • Symmetric structure about clear "eye" • Latent heat from condensation in clouds primary energy source • Form over warm tropical and subtropical oceans NASA VIIRS Day-Night Band 21 22 • Differences between hurricanes and midlatitude storms: Differences between hurricanes and midlatitude storms: – energy source (latent heat vs temperature gradients) - Winter storms have cold and warm fronts (asymmetric). -
Investigation and Prediction of Hurricane Eyewall
INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification. -
Extratropical Cyclones and Anticyclones
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Courtesy of Jeff Schmaltz, the MODIS Rapid Response Team at NASA GSFC/NASA Extratropical Cyclones 10 and Anticyclones CHAPTER OUTLINE INTRODUCTION A TIME AND PLACE OF TRAGEDY A LiFE CYCLE OF GROWTH AND DEATH DAY 1: BIRTH OF AN EXTRATROPICAL CYCLONE ■■ Typical Extratropical Cyclone Paths DaY 2: WiTH THE FI TZ ■■ Portrait of the Cyclone as a Young Adult ■■ Cyclones and Fronts: On the Ground ■■ Cyclones and Fronts: In the Sky ■■ Back with the Fitz: A Fateful Course Correction ■■ Cyclones and Jet Streams 298 9781284027372_CH10_0298.indd 298 8/10/13 5:00 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Introduction 299 DaY 3: THE MaTURE CYCLONE ■■ Bittersweet Badge of Adulthood: The Occlusion Process ■■ Hurricane West Wind ■■ One of the Worst . ■■ “Nosedive” DaY 4 (AND BEYOND): DEATH ■■ The Cyclone ■■ The Fitzgerald ■■ The Sailors THE EXTRATROPICAL ANTICYCLONE HIGH PRESSURE, HiGH HEAT: THE DEADLY EUROPEAN HEAT WaVE OF 2003 PUTTING IT ALL TOGETHER ■■ Summary ■■ Key Terms ■■ Review Questions ■■ Observation Activities AFTER COMPLETING THIS CHAPTER, YOU SHOULD BE ABLE TO: • Describe the different life-cycle stages in the Norwegian model of the extratropical cyclone, identifying the stages when the cyclone possesses cold, warm, and occluded fronts and life-threatening conditions • Explain the relationship between a surface cyclone and winds at the jet-stream level and how the two interact to intensify the cyclone • Differentiate between extratropical cyclones and anticyclones in terms of their birthplaces, life cycles, relationships to air masses and jet-stream winds, threats to life and property, and their appearance on satellite images INTRODUCTION What do you see in the diagram to the right: a vase or two faces? This classic psychology experiment exploits our amazing ability to recognize visual patterns. -
NWS Unified Surface Analysis Manual
Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Learning from Hurricane Hugo: Implications for Public Policy
LEARNING FROM HURRICANE HUGO: IMPLICATIONS FOR PUBLIC POLICY prepared for the FEDERAL INSURANCE ADMINISTRATION FEDERAL EMERGENCY MANAGEMENT AGENCY 500 C Street, S.W. Washington, D.C. 20472 under contract no. EMW-90-G-3304,A001 June 1992 CONTENTS INTRODUCTION ............................... 1.............I PHYSICAL CHARACTERISTICS OF THE STORM . 3 Wind Speeds .3 IMPACTS ON NATURAL SYSTEMS 5 ................................ Biological Systems ....... .................................5 Dunes and Beaches ....... .5............................... Beach Nourishment . .................................7 IMPACTS ON HUMANS AND HUMAN SYSTEMS ............................ 9 Deaths and Injuries ............................ 9 Housing ............................ 9 Utilities ................... 10 Transportation Systems .1................... 10 The Economy ................... 11 Psychological Effects ................... 11 INSURANCE .......................... 13 COASTAL DEVELOPMENT .......................... 14 Setbacks ........................... 15 Coastal Protection Structures .......................... 16 PERFORMANCE OF STRUCTURES ..... .... 18 Effects of Wind and/or Water ...... .... 18 Effects of Water, Waves, or Erosion . .. .18 Effects of Wind .............. .... 19 Foundations .................. .... 21 Slabs ................ .... 22 Piers and Columns ....... .... 22 Pilings............... .... 22 Elevation .................. .... 23 Lower Area Enclosures .... .... 23 Connections ................. ....24 Manufactured Housing .......... .... 24 -
Massachusetts Tropical Cyclone Profile August 2021
Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide. -
1 Vertical Structure of Tropical Cyclone Rainbands As Seen by The
Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A. Hence and Robert A. Houze, Jr. University of Washington, Seattle, Washington Submitted to Journal of Atmospheric Sciences November 2011 Corresponding author address: Deanna Hence, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195 E-mail: [email protected] 1 ABSTRACT 1 Ten years of data from the Tropical Rainfall Measurement Mission satellite’s Precipitation 2 Radar (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo 3 statistics show that rainbands have a two-layered structure, with distinct modes separated by the 4 melting layer. The ice layer is a combination of particles imported from the eyewall and ice left 5 aloft as convective cells collapse. This layering is most pronounced in the inner region of the 6 storm, and the layering is enhanced by storm strength. The inner-region rainbands are vertically 7 confined by outflow from the eyewall but nevertheless are a combination of strong embedded 8 convective cells and robust stratiform precipitation, both of which become more pronounced in 9 stronger cyclones. 10 Changes in rainband coverage, vertical structure, and the amount of active convection 11 indicate a change in the nature of rainbands between the regions inward and outward of a radius 12 of ~200 km. Beyond this radius, rainbands consist of more sparsely distributed precipitation that 13 is more convective in nature than that of the inner-region rainbands, and the outer-region 14 rainband structures are relatively insensitive to changes in storm intensity. -
Airborne Radar Observations of Eye Configuration Changes, Bright
UDC 661.616.22:661.M)9.61: 661.601.81 Airborne Radar Observations of Eye Configuration Changes, Bright Band Distribution, and Precipitation Tilt During the 1969 Multiple Seeding Experiments in Hurricane Debbie' PETER G. BLACK-National Hurricane Research Laboratory, Environmental Research Laboratories, NOAA, Miami, Fla. HARRY V. SENN and CHARLES L. COURTRIGHT-Radar Meteorology Laboratory, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, Fla. ABSTRACT-Project Stormfury radar precipitation data radius of maximum winds follow closely the changes in gathered before, during, and after the multiple seedings of eyewall radius. It is suggested that the different results on the eyewall region of hurricane Debbie on Aug. 18 and 20, the 2 days might be attributable to seeding beyond the 1969, are used to study changes in the eye configuration, radius of maximum winds on the 18th and inside the the characteristics of the radar bright band, and the outer radius of maximum winds on the 20th. precipitation tilt. Increases in the echo-free area within The bright band is found in all quadrants of the storm the eye followed each of the five seedings on the 18th, within 100 n.mi. of the eye, sloping slightly upward near but followed only one seeding on the 20th. Changes in the eyewall. The inferred shears are directed outward and major axis orientation followed only one seeding on the slightly down band with height in both layers studied. 18th, but followed each seeding on the 20th. Similar The hurricane Debbie bright band and precipitation tilt studies conducted recently on unmodified storms suggest data compared favorably with those gathered in Betsy of that such changes do not occur naturally. -
Hurricane Boundary Layer Height Relative to Storm Motion from GPS Dropsonde Composites
atmosphere Article Hurricane Boundary Layer Height Relative to Storm Motion from GPS Dropsonde Composites Yifang Ren 1, Jun A. Zhang 2,3,* , Stephen R. Guimond 4,5 and Xiang Wang 6 1 The Center of Jiangsu Meteorological Service, Nanjing 21008, China; [email protected] 2 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL 33149, USA 3 NOAA/AOML/Hurricane Research Division, Miami, FL 33149, USA 4 Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA; [email protected] 5 NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USA 6 Centre of Data Assimilation for Research and Application, Nanjing University of Information Science & Technology, Nanjing 210044, China; [email protected] * Correspondence: [email protected] Received: 9 May 2019; Accepted: 10 June 2019; Published: 21 June 2019 Abstract: This study investigates the asymmetric distribution of hurricane boundary layer height scales in a storm-motion-relative framework using global positioning system (GPS) dropsonde observations. Data from a total of 1916 dropsondes collected within four times the radius of maximum wind speed of 37 named hurricanes over the Atlantic basin from 1998 to 2015 are analyzed in the composite framework. Motion-relative quadrant mean composite analyses show that both the kinematic and thermodynamic boundary layer height scales tend to increase with increasing radius in all four motion-relative quadrants. It is also found that the thermodynamic mixed layer depth and height of maximum tangential wind speed are within the inflow layer in all motion-relative quadrants. The inflow layer depth and height of the maximum tangential wind are both found to be deeper in the two front quadrants, and they are largest in the right-front quadrant. -
Tropical Cyclones: Meteorological Aspects Mark A
Tropical Cyclones: Meteorological Aspects Mark A. Lander1 Water and Environmental Research Institute of the Western Pacific, University of Guam, UOG Station, Mangilao, Guam (USA) 96923 Sailors have long recognized the existence of deadly storms in Every year, TCs claim many lives—occasionally exceeding tropical latitudes where the weather was usually a mix of bright sun and 100,000. Some of the world’s greatest natural disasters have been gentle breezes with quickly passing showers. These terrifying storms associated with TCs. For example, Tropical Cyclone 02B was the were known to have a core of screaming winds accompanied by deadliest and most destructive natural disaster on earth in 1991. The blinding rain, spume and sea spray, and sharply lowered barometric associated extreme storm surge along the coast of Bangladesh was the pressure. When the sailors were lucky enough to survive penetration primary reason for the loss of 138,000 lives (Joint Typhoon Warning to the core of such violent weather, they found a region of calm. This Center, 1991). It occurred 19 years after the loss of ≈300,000 lives in region is the signature characteristic and best-known feature of these Bangladesh by a similar TC striking the low-lying Ganges River storms—the eye (Fig. 1). region in April 1970. In a more recent example, flooding caused by These violent storms of the tropical latitudes were known to be Hurricane Mitch killed 10,000+ people in Central America in Fall seasonal, hence their designation by Atlantic sailors as “line” storms, 1998. Nearly all tropical islands—the islands of the Caribbean, Ha- in reference to the sun’s crossing of the line (equator) in September (the waii, French Polynesia, Micronesia, Fiji, Samoa, Mauritius, La Re- month of peak hurricane activity in the North Atlantic). -
An Analysis of Hurricane Irma's Maximum Winds in South Florida
An Analysis of Hurricane Irma’s Maximum Winds in South Florida Andrew B. Hagen, Kevin Scharfenberg, Arlena Moses, Stephen Konarik, Robert Garcia Hurricane Irma struck South Florida on 10 September 2017 and caused significant wind damage to structures and trees as well as widespread power loss. Irma caused more than personal inconvenience to many South Floridians, and its aftermath left people asking how they can be better prepared for the next hurricane. From a wind impact perspective, it is important to spatially quantify the wind magnitude so that residents and business owners of South Florida can have a better understanding of the maximum wind speeds experienced in their neighborhood during Irma. Hurricane Irma’s winds have been analyzed across the National Weather Service Miami County Warning Area, which includes the Florida Peninsula from Lake Okeechobee southward and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. All available data from surface- based weather stations and anemometers are incorporated. WSR-88D Doppler velocity data were also analyzed and used to fill in the gaps for locations where observations are sparse. These data were further augmented with results of ground wind damage surveys. Detailed, color-contoured maps of sustained winds and gusts have been created in addition to a list of observations. For the purposes of consistency on the color-contoured map, all sustained wind observations are converted to a 10 meter, one minute average using standard conversion metrics. The results indicate that sustained hurricane force winds up to Category 2 strength on the Saffir-Simpson Hurricane Wind Scale with higher gusts occurred in southern portions of coastal Collier County, including portions of the Naples area.