University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 6-23-2014 Characterization of the Bacterial Metallothionein, PmtA in the Human Pathogen Pseudomonas aeruginosa Kathryn M. Pietrosimone University of Connecticut - Storrs,
[email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Pietrosimone, Kathryn M., "Characterization of the Bacterial Metallothionein, PmtA in the Human Pathogen Pseudomonas aeruginosa" (2014). Doctoral Dissertations. 498. https://opencommons.uconn.edu/dissertations/498 Characterization of the Bacterial Metallothionein, PmtA, from the Human Pathogen Pseudomonas aeruginosa Kathryn M. Pietrosimone, Ph.D. University of Connecticut, 2014 Small, cysteine-rich proteins called metallothioneins (MTs) bind essential divalent heavy metal cations, such as zinc and copper, as well as toxic heavy metals, such as cadmium and mercury. Stressful conditions such as exposure to heavy metals or reactive oxygen species (ROS) increase the expression of MTs. The numerous cysteine residues in MTs allow the protein to neutralize toxic effects of ROS, bind heavy metals, influence immune cell movement and proliferation. The bacteria Pseudomonas aeruginosa expresses an MT, PmtA, that is similar in structure the eukaryotic MTs. Evidence presented in these suggests that PmtA is an immunomodulatory protein, similar to the eukaryotic counterpart. Jurkat T cells pre-incubated with PmtA and subsequently exposed to a gradient of SDF-1α, lost the ability to move in a persistent direction, while Jurkat T cells pre-incubated with GST did respond to the SDF-1α gradient. Incubation with PmtA also decreased SDF-1α-induced internalization of the receptor CXCR4 on Jurkat T cells. P. aeruginosa strain PW4670 lacks PmtA expression, and is also more sensitive to oxidant exposure than the parent strain PA01.