Studies on the Role of Formyl Peptide Receptors in Pituitary and Adrenal

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Role of Formyl Peptide Receptors in Pituitary and Adrenal STUDIES ON THE ROLE OF FORMYL PEPTIDE RECEPTORS IN PITUITARY AND ADRENAL FUNCTION. By Vance Alexander Naughton A thesis submitted to Imperial College London for the degree of Doctor of Philosophy. Section of Investigative Medicine Department of Medicine Imperial College London 1 Declaration of Copyright The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 2 Declaration of Originality I hereby declare that all work submitted within this thesis is my own, and where I have received help or collaborated, I have referenced and acknowledged this accordingly. 3 Acknowledgements Those acknowledged are (were) based at Imperial College London unless stated otherwise. The Fpr2/3 knockout mice were generated as part of a collaborative project between Prof. Roderick Flower and Prof. Mauro Perretti (William Harvey Research Institute, London), Prof. John Morris (University of Oxford), and Prof. Julia Buckingham. Many thanks to Dr. Bradley Spencer-Dene (London Research Institute) for guidance during the immunohistochemistry experiments. Thank you to Paul Nya and colleagues for their tissue processing service (Histopathology, Hammersmith Hospital, London). I am grateful to Djordje Gveric (UK Multiple Sclerosis Tissue Bank) for help in obtaining human pituitary glands. Thank you to Dr. Federico Roncaroli, for his expert interpretation of slides from the human pituitary immunohistochemistry study. Thank you to Prof. Mohammed Ghatei, Dr. Michael Patterson, and Dr. Chris John for peptide iodinations. I am thankful to Prof. Dominic Wells and Prof. David Nutt for their useful insights. Finally, I thank my supervisors Dr. Chris John and Prof. Julia Buckingham for their support throughout this project. 4 Abstract The mechanism by which glucocorticoids (GCs) achieve negative feedback on the release of hypothalamo-pituitary-adrenal (HPA) axis hormones has long been under investigation. Annexin A1 (ANXA1) is a key mediator of the effects of GCs within the neuroendocrine and immune systems. Previous research suggested the negative feedback effect of the GC-ANXA1 system on the pituitary release of adrenocorticotrophic hormone (ACTH) was mediated via a member of the formyl peptide receptor (Fpr in rodents, FPR in humans) family. The present work tested the hypothesis that specific Fpr/FPR subtypes modulate both pituitary and adrenal function in terms of stress hormone (ACTH and corticosterone) secretion (following exposure to secretagogues CRH and ACTH or the inflammogen LPS in rats), and their tissue distribution (mice and rats) will itself be upregulated following inflammogenic stress (LPS in mice and rats, multiple sclerosis in human tissue). This was achieved through 1) immunohistochemical detection of FPR1, FPR2/ALX, and FPR3 in human anterior pituitary sections, and of green fluorescent protein (GFP) in HPA axis tissues from Fpr2/3-/-, GFP+/+ mice; 2) measurement of basal and stimulated ACTH and GC release from dispersed rat anterior pituitary and adrenal cells, incubated with agonists and antagonists for FPR1, FPR2/ALX and FPR3, namely, formyl- Met-Leu-Phe (fMLF), ANXA1 amino-acetylated peptide (ANXA1Ac2-26), Trp-Lys-Tyr-Met-Val-D-met (WKYMVm), haem-binding protein fragment (F2L), aspirin-triggered lipoxin A4 (15-epi-LXA4), and Trp-Arg-Trp-Trp-Trp-Trp (WRW4). These ligands were found to elicit a range of modulatory, concentration-dependent effects on pituitary ACTH and adrenal GC secretion. Evidence was found for the spatial distribution of: FPR3 and FPR2/ALX within the human anterior pituitary, and GFP (as a surrogate for Fpr2/3) colocalised with ACTH, growth hormone (GH), and prolactin (PRL) within the Fpr2/3-/-, GFP+/+ mouse pituitary. The findings contribute evidence in support of a role of Fpr/FPR subtypes and their ligands as modulators of pituitary and adrenal hormone release. 5 Table of Contents Chapter One: Introduction ............................................................................................................................. 17 1.1 BACKGROUND ..................................................................................................................................... 18 1.2 ANATOMY AND PHYSIOLOGY OF THE HPA AXIS ....................................................................... 21 1.2.1 Overview of the HPA axis ............................................................................................................... 21 1.2.2 Role of glucocorticoids .................................................................................................................... 23 1.2.3 Regulation of glucocorticoid release ............................................................................................... 30 1.2.4 Hypothalamic control of ACTH secretion ....................................................................................... 36 1.2.5 The stress response .......................................................................................................................... 39 1.2.6 Negative feedback control of CRH/AVP and ACTH secretion ....................................................... 43 1.3 HPA AXIS RESPONSES TO INFLAMMOGENIC STRESS ............................................................... 46 1.3.1 The HPA-immune system................................................................................................................ 46 1.3.2 Mechanisms of HPA activation during infection ............................................................................. 47 1.3.3 Evidence for inflammogen receptors within the pituitary gland ...................................................... 50 1.3.4 Evidence for inflammogen receptors within the adrenal gland ....................................................... 50 1.4 ROLE OF ANNEXIN A1 IN MODULATING HPA AXIS FUNCTION .............................................. 53 1.4.1 Basic annexin A1 biology ................................................................................................................ 53 1.4.2 Effects of ANXA1 within the HPA axis .......................................................................................... 54 1.4.3 Mechanism of action of annexin A1 within the anterior pituitary gland ......................................... 55 1.5 ANNEXIN A1 SIGNALLING AND THE ROLE OF THE FORMYL PEPTIDE RECEPTOR (FPR/FPR) FAMILY .......................................................................................................................... 59 1.5.1 Biology of the Fpr/FPR family ........................................................................................................ 59 1.5.2 Formyl peptide receptor 1 (FPR1) ................................................................................................... 61 1.5.3 Formyl peptide receptor 2/ lipoxin receptor (FPR2/ALX) .............................................................. 62 1.5.4 Formyl peptide receptor 3 (FPR3) ................................................................................................... 64 1.5.5 Translation of rodent Fpr and human FPR biology ......................................................................... 65 1.6 EFFECTS OF INFLAMMOGENS ON HPA AXIS ACTIVITY, ANXA1, AND THE FPR/FPR FAMILY ............................................................................................................................................. 68 1.6.1 The role of pituitary ANXA1 and the Fpr/FPR family in response to an inflammogen .................. 69 1.6.2 The role of adrenal ANXA1 and the Fpr/FPR family in response to an inflammogen .................... 69 1.7 HYPOTHESIS, AIMS, AND OBJECTIVES .......................................................................................... 71 6 Chapter Two: Materials and Methods ........................................................................................................... 79 2.1 OVERVIEW ............................................................................................................................................ 80 2.2 MATERIALS .......................................................................................................................................... 84 2.2.1 Drugs ............................................................................................................................................... 84 2.2.2 Human tissues .................................................................................................................................. 86 2.3 ANIMALS ............................................................................................................................................... 87 2.3.1 Fpr2 and Fpr3 knockout (Fpr2/3-/-) mice ......................................................................................... 87 2.3.2 Rats .................................................................................................................................................. 89 2.4 IN VIVO METHODS ............................................................................................................................... 91 2.4.1 Time course of responses to intraperitoneal injection of
Recommended publications
  • (12) United States Patent (10) Patent No.: US 7,256.253 B2 Bridon Et Al
    US00725.6253B2 (12) United States Patent (10) Patent No.: US 7,256.253 B2 Bridon et al. (45) Date of Patent: Aug. 14, 2007 (54) PROTECTION OF ENDOGENOUS 6,500,918 B2 12/2002 Ezrin et al. THERAPEUTIC PEPTIDES FROM 6,514,500 B1 2/2003 Bridon et al. PEPTIDASE ACTIVITY THROUGH 6,593,295 B2 7/2003 Bridon et al. CONUGATION TO BLOOD COMPONENTS 6,602,981 B2 8/2003 Ezrin et al. 6,610,825 B2 8, 2003 Ezrin et al. (75)75 Inventors: Dominique P. Bridon, San Francisco, 6,706,892 B1 3/2004 Ezrin et al. CA (US); Alan M. Ezrin, Moraga, CA (US); Peter G. Milner, Los Altos, CA 6,849,714 B1 2/2005 Bridon et al. (US); Darren L. Holmes, Anaheim, CA 2002fOO18751 A1 2/2002 Bridon et al. (US); Karen Thibaudeau, Rosemere 2003, OO73630 A1 4/2003 Bridon et al. (CA) 2003/O105867 A1 6/2003 Colrain et al. 2003. O108568 A1 6/2003 Bridon et al. (73) Assignee: Conjuchem Biotechnologies Inc., 2003/0170250 A1 9, 2003 EZrin et al. Montreal (CA) 2004/O127398 A1 7, 2004 Bridon et al. (*) Notice: Subject to any disclaimer, the term of this 2004/O138100 A1 7/2004 Bridon et al. patent is extended or adjusted under 35 2004/O156859 A1 8, 2004 Ezrin et al. U.S.C. 154(b) by 0 days. 2004/0248782 A1 12/2004 Bridon et al. 2004/0266673 Al 12/2004 Bakis et al. (21) Appl. No.: 11/066,697 2005, 0037974 A1 2/2005 Krantz et al. 2005, OO65075 A1 3, 2005 Erickson et al.
    [Show full text]
  • The Role of Inflammatory Pathways in Neuroblastoma Tumorigenesis — Igor Snapkov a Dissertation for the Degree of Philosophiae Doctor – August 2016 Contents
    Faculty of Health Sciences Department of Medical Biology Molecular Inflammation Research Group The role of inflammatory pathways in neuroblastoma tumorigenesis — Igor Snapkov A dissertation for the degree of Philosophiae Doctor – August 2016 Contents 1. List of publications .................................................................................................................. 2 2. List of abbreviations ................................................................................................................ 3 3. Introduction ............................................................................................................................. 5 3.1 Cancer and inflammation .................................................................................................. 5 3.2.1 Pattern recognition receptors and danger signals ............................................................ 7 3.2.2 Formyl peptide receptor 1 (FPR1) ................................................................................. 9 3.3.1 Chemokines................................................................................................................. 12 3.3.2 Chemerin ..................................................................................................................... 13 3.4 Neuroblastoma ................................................................................................................ 14 3.5 Hepatic clearance of danger signals ................................................................................
    [Show full text]
  • Monoclonal Antibody to Parathyroid Hormone / PTH (1-38) - Purified
    OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AM02147PU-N Monoclonal Antibody to Parathyroid hormone / PTH (1-38) - Purified Alternate names: Parathormone, Parathyrin Quantity: 0.1 mg Background: Parathyroid hormone (PTH), or Parathormone, is secreted by the parathyroid glands as a polypeptide containing 84 amino acids. It acts to increase the concentration of calcium in the blood, whereas calcitonin (a hormone produced by the parafollicular cells of the thyroid gland) acts to decrease calcium concentration. Uniprot ID: P01270 NCBI: NP_000306.1 GeneID: 5741 Host / Isotype: Mouse / IgG1 Recommended Isotype SM10P (for use in human samples), AM03095PU-N Controls: Clone: A1/70 Immunogen: Synthetic Human PTH (aa 1-38) poly-Lysine conjugated. AA Sequence: SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNFVALG Format: State: Lyophilized purified IgG fraction from Cell Culture Supernatant Purification: Protein G Chromatography Buffer System: PBS, pH 7.4 Reconstitution: Restore in aqua bidest to 1 mg/ml Applications: RIA: 20 ng/ml. ELISA: 1 µg/ml (Ref.1). ILMA: 20 µg/ml (Ref.3). Immunohistochemistry on Cryosections and Paraffin Sections: 2 µg/ml. Other applications not tested. Optimal dilutions are dependent on conditions and should be determined by the user. Specificity: This antibody detects PTH peptide (aa 15-25; 1-34; 1-38; 1-84; 7-84). There were no cross reactivities obtained with synthetic Human PTH (aa 1-3; 1-10; 4-16; 28-48; 39-84; 44-68; 53-84) nor with PTHrP (aa 1-86), Calcitonin, Gastrin, Beta-2 Microglobulin, Thymulin, Thyroglobulin, Streptavidin, or Glutathione S-transferase.
    [Show full text]
  • Activity of the Pineal Gland, Thymus and Hypophysial- Adrenal System in Oncological Patients I.F
    138 Experimental Oncology 25, 138-142, 2003 (June) ACTIVITY OF THE PINEAL GLAND, THYMUS AND HYPOPHYSIAL- ADRENAL SYSTEM IN ONCOLOGICAL PATIENTS I.F. Labunets*, Yu.A. Grinevich Institute of Oncology, Academy of Medical Sciences of Ukraine, Kyiv 03022, Ukraine ÀÊÒÈÂÍÎÑÒÜ ÝÏÈÔÈÇÀ, ÒÈÌÓÑÀ È ÃÈÏÎÔÈÇÀÐÍÎ- ÍÀÄÏÎ×Å×ÍÈÊÎÂÎÉ ÑÈÑÒÅÌÛ Ó ÁÎËÜÍÛÕ ÎÍÊÎËÎÃÈ×ÅÑÊÎÃÎ ÏÐÎÔÈËß È.Ô. Ëàáóíåö*, Þ.À. Ãðèíåâè÷ Èíñòèòóò îíêîëîãèè ÀÌÍ Óêðàèíû, Êèåâ, Óêðàèíà Melatonin, thymic serum factor (FTS), alpha-melanocytestimulating hormone (alpha-MSH) and cortisol levels in blood serum and urine of healthy subjects and patients with skin melanoma and malignant thymoma of different age groups have been studied. It has been found that in healthy 20–29 year old men the highest melatonin level was observed in winter, those of FTS, cortisol and alpha-MSH — in summer-autumn, autumn-winter and summer, respectively. In male induviduals over 30 years, the increase of melatonin level in winter was not registered, and in those over 40, the stable secretion of FTS and cortisol and decrease of alpha-MSH acrophase at spring time were observed. In healthy women under 40, melatonin level was heightened in follicular and luteal phase of cycle and that of FTS — in luteal phase. Stability of melatonin secretion and reduction of FTS content in luteal phase of cycle were typical for women over 40. The age-related disorders of indices were more pronounced upon tumor development. In men under 40 years suffering from melanoma and thymoma, circannual changes of pineal gland, thymus and hypophysial-adrenal system function were typical for healthy subjects after 40 years. In women with melanoma and thymoma under 40 years melatonin and FTS level during menstrual cycle were similar with those in healthy women over 40.
    [Show full text]
  • Receptor-Like 1 and -Like 2 This Information Is Current As of October 2, 2021
    Urokinase Induces Basophil Chemotaxis through a Urokinase Receptor Epitope That Is an Endogenous Ligand for Formyl Peptide Receptor-Like 1 and -Like 2 This information is current as of October 2, 2021. Amato de Paulis, Nunzia Montuori, Nella Prevete, Isabella Fiorentino, Francesca Wanda Rossi, Valeria Visconte, Guido Rossi, Gianni Marone and Pia Ragno J Immunol 2004; 173:5739-5748; ; doi: 10.4049/jimmunol.173.9.5739 Downloaded from http://www.jimmunol.org/content/173/9/5739 References This article cites 65 articles, 33 of which you can access for free at: http://www.jimmunol.org/content/173/9/5739.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Urokinase Induces Basophil Chemotaxis through a Urokinase Receptor Epitope That Is an Endogenous Ligand for Formyl Peptide Receptor-Like 1 and -Like 21 Amato de Paulis,* Nunzia Montuori,† Nella Prevete,* Isabella Fiorentino,* Francesca Wanda Rossi,* Valeria Visconte,‡ Guido Rossi,‡ Gianni Marone,2* and Pia Ragno† Basophils circulate in the blood and are able to migrate into tissues at sites of inflammation.
    [Show full text]
  • Functional Receptor Formylpeptide Receptor-Like-1 As a Factor, Uses the G Protein-Coupled Humanin, a Newly Identified Neuroprote
    Humanin, a Newly Identified Neuroprotective Factor, Uses the G Protein-Coupled Formylpeptide Receptor-Like-1 as a Functional Receptor This information is current as of September 23, 2021. Guoguang Ying, Pablo Iribarren, Ye Zhou, Wanghua Gong, Ning Zhang, Zu-Xi Yu, Yingying Le, Youhong Cui and Ji Ming Wang J Immunol 2004; 172:7078-7085; ; doi: 10.4049/jimmunol.172.11.7078 Downloaded from http://www.jimmunol.org/content/172/11/7078 References This article cites 39 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/172/11/7078.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 23, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Humanin, a Newly Identified Neuroprotective Factor, Uses the G Protein-Coupled Formylpeptide Receptor-Like-1 as a Functional Receptor1 Guoguang Ying,* Pablo Iribarren,* Ye Zhou,* Wanghua Gong,† Ning Zhang,* Zu-Xi Yu,‡ Yingying Le,* Youhong Cui,* and Ji Ming Wang2* Alzheimer’s disease (AD) is characterized by overproduction of ␤ amyloid peptides in the brain with progressive loss of neuronal ␤ ␤ cells.
    [Show full text]
  • Insights Into Nuclear G-Protein-Coupled Receptors As Therapeutic Targets in Non-Communicable Diseases
    pharmaceuticals Review Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases Salomé Gonçalves-Monteiro 1,2, Rita Ribeiro-Oliveira 1,2, Maria Sofia Vieira-Rocha 1,2, Martin Vojtek 1,2 , Joana B. Sousa 1,2,* and Carmen Diniz 1,2,* 1 Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; [email protected] (S.G.-M.); [email protected] (R.R.-O.); [email protected] (M.S.V.-R.); [email protected] (M.V.) 2 LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected] (J.B.S.); [email protected] (C.D.) Abstract: G-protein-coupled receptors (GPCRs) comprise a large protein superfamily divided into six classes, rhodopsin-like (A), secretin receptor family (B), metabotropic glutamate (C), fungal mating pheromone receptors (D), cyclic AMP receptors (E) and frizzled (F). Until recently, GPCRs signaling was thought to emanate exclusively from the plasma membrane as a response to extracellular stimuli but several studies have challenged this view demonstrating that GPCRs can be present in intracellular localizations, including in the nuclei. A renewed interest in GPCR receptors’ superfamily emerged and intensive research occurred over recent decades, particularly regarding class A GPCRs, but some class B and C have also been explored. Nuclear GPCRs proved to be functional and capable of triggering identical and/or distinct signaling pathways associated with their counterparts on the cell surface bringing new insights into the relevance of nuclear GPCRs and highlighting the Citation: Gonçalves-Monteiro, S.; nucleus as an autonomous signaling organelle (triggered by GPCRs).
    [Show full text]
  • The Role of Sphingosine 1- Phosphate in Neutrophil Trans-Migration
    The role of sphingosine 1- phosphate in neutrophil trans-migration Eirini Giannoudaki Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Institute of Cellular Medicine Newcastle University September 2015 Abstract Sphingosine 1-phosphate (S1P), a bioactive lipid mediator and ligand of 5 G-protein coupled receptors, is involved in many cellular processes including cell survival and proliferation, lymphocyte migration, and endothelial barrier function. As neutrophils are major mediators of inflammation, neutrophil trans-endothelial migration could be the target of therapeutic approaches to many inflammatory conditions. The aim of this project was to assess whether S1P can protect against inflammation by affecting neutrophil trans-endothelial migration, either by acting on neutrophils directly or indirectly through the endothelial cells. The direct effects of S1P on isolated human neutrophils from healthy volunteers were assessed. It was shown that S1P signals in neutrophils mainly through the receptors S1PR1 and S1PR4 and it induces phosphorylation of ERK1/2. Moreover, S1P pre- treatment enhances IL-8 induced phosphorylation. However, in chemotaxis assays, S1P pre-treated neutrophils showed no altered migration towards IL-8 in comparison to untreated neutrophils. Additionally, in an in vitro flow-based adhesion assay, S1P pre- treatment did not have a significant effect on IL-8 induced neutrophil adhesion to VCAM-1 and ICAM-1. Next, the effects of S1P on endothelial cells were measured. When HMEC-1 endothelial cell line and HUVEC primary endothelial cells were treated with S1P or S1P receptor agonists CYM5442 and CYM5541, the production of the chemokine IL-8 was induced. On the other hand, this treatment inhibited neutrophil trans-endothelial migration through HMEC-1 and HUVEC endothelial cells.
    [Show full text]
  • Modulation of the Hippocampal Neurogenic Program by the Circadian Clock Machinery and the Small Gtpase, Rasd1/ Dexras1
    Modulation of the Hippocampal Neurogenic Program by the Circadian Clock Machinery and the small GTPase, Rasd1/ Dexras1 By Pascale Bouchard Cannon A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Pascale Bouchard Cannon (2018) Modulation of the Hippocampal Neurogenic Program by the Circadian Clock Machinery and the small GTPase, Rasd1/ Dexras1 Pascale Bouchard Cannon Doctor of Philosophy Department of Cell and Systems Biology University of Toronto 2018 Abstract The mammalian hippocampal subgranular zone (SGZ) is home to a limited pool of quiescent neural stem/ progenitor cells (QNPs). These cells respond to intrinsic and extrinsic physiological changes, embark on the neurogenesis program and give rise to glutamatergic granule neurons that populate the dentate gyrus (DG). In this thesis, I uncovered two mediators of the neurogenic program: the circadian clock and the small GTPase, Dexras1. The circadian clock machinery controls daily timings in cellular events via the transcription- translation feedback loop (TTFL), which includes Bmal1 and Period2. In this thesis, I demonstrate the presence of the molecular clock and of rhythmic cell proliferation in the SGZ. The absence of Period2 abolishes the gating of cell cycle entrance of QNPs, whereas the genetic ablation of Bmal1 results in constitutively high levels of neurogenesis and cognitive defects. Mathematical model simulations show that the circadian clock may be essential in mediating cell-cycle inhibitors that targets the cyclin D/Cdk4-6 complex, and in turn disruptions in this system result in the abolishment of gating mechanisms. This study uncovers the interrelationship between the cell cycle and the circadian clock and emphasizes the importance of proper rhythmicity for hippocampal function.
    [Show full text]
  • New Development in Studies of Formyl‐Peptide Receptors: Critical Roles In
    Review New development in studies of formyl-peptide receptors: critical roles in host defense † † ‡ † ‡ Liangzhu Li,*, Keqiang Chen, , Yi Xiang,§ Teizo Yoshimura, Shaobo Su, Jianwei Zhu,* { ‖ † { Xiu-wu Bian, , ,1 and Ji Ming Wang , ,1 *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong † University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, ‡ MD, USA; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China; §Department of Pulmonary { Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest ‖ Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China RECEIVED AUGUST 11, 2015; REVISED NOVEMBER 29, 2015; ACCEPTED DECEMBER 1, 2015. DOI: 10.1189/jlb.2RI0815-354RR ABSTRACT number of variants and the spectrum of ligands they interact with. Formyl-peptide receptors are a family of 7 transmem- The number and the sequences of genes coding for FPR members brane domain, Gi-protein-coupled receptors that pos- vary considerably among mammalian species. The human FPR sess multiple functions in many pathophysiologic family has 3 members, FPR1, FPR2,andFPR3 (formerly FPR, processes because of their expression in a variety of cell FPRL1,andFPRL2, respectively) [5–8]. The mouse FPR (mFPR or types and their capacity to interact with a variety of Fpr) gene family consists of at least 8 members [9]. mFPR1, now structurally diverse, chemotactic ligands. Accumulating officially termed Fpr1, is considered the mouse ortholog of human evidence demonstrates that formyl-peptide receptors FPR1,whereasFpr2 is structurally and functionally most similar to are critical mediators of myeloid cell trafficking in the human FPR2 [10].
    [Show full text]
  • MINIREVIEWS Central Nervous System-Immune System Interactions: Psychoneuroendocrinology of Stress and Its Immune Consequences PAUL H
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Jan. 1994, p. 1-6 Vol. 38, No. 1 0066-4804/94/$04.OO+O Copyright X 1994, American Society for Microbiology MINIREVIEWS Central Nervous System-Immune System Interactions: Psychoneuroendocrinology of Stress and Its Immune Consequences PAUL H. BLACK* Department ofMicrobiology, Boston University School ofMedicine, Boston, Massachusetts 02118 The past 20 years has witnessed the emergence of the field receiving information from the periphery, integrating it with of psychoneuroimmunology (48). This field deals with the the internal environment, and adjusting certain functions influence of the central nervous system (CNS) on the im- such as sympathetic nervous system function and endocrine mune system, or more specifically, whether and how secretion (28). The hypothalamus influences the pituitary thoughts and emotions affect immune function. Studies have gland through a variety of polypeptide "releasing factors," concentrated, for the most part, on the effects of stress on for example, corticotropin-releasing factor (CRF), which the immune system. Stress is defined as a state of dishar- controls the release of corticotropin (ACTH) from the ante- mony or threatened homeostasis provoked by a psycholog- rior pituitary gland. Other hypothalamic releasing hormones ical, environmental, or physiologic stressor (12, 40). It has (RHs) include thyrotropin RH, growth hormone RH, and also become apparent from these studies that the immune luteinizing hormone RH; these control the release of thyro- system can influence the CNS, and thus, a circuit exists tropin, growth hormone, gonadotropin, and luteinizing hor- between these two systems. Regulatory molecules or cyto- mone from the anterior pituitary gland. In addition, hypo- kines elaborated from activated immune cells evoke a thalamic somatostatin and dopamine inhibit the release of CNS response which, in turn, affects the immune system growth hormone and prolactin, respectively, from the ante- (26).
    [Show full text]
  • Structural Basis of Ligand Binding Modes at the Human Formyl Peptide Receptor 2
    ARTICLE https://doi.org/10.1038/s41467-020-15009-1 OPEN Structural basis of ligand binding modes at the human formyl peptide receptor 2 Tong Chen1,2,3,8, Muya Xiong 1,3,8, Xin Zong1,2,3, Yunjun Ge4, Hui Zhang1,2,3, Mu Wang1,5, Gye Won Han6, ✉ ✉ ✉ Cuiying Yi1, Limin Ma2, Richard D. Ye 7, Yechun Xu 1,3 , Qiang Zhao2,3 & Beili Wu 1,3,5 The human formyl peptide receptor 2 (FPR2) plays a crucial role in host defense and inflammation, and has been considered as a drug target for chronic inflammatory diseases. A 1234567890():,; variety of peptides with different structures and origins have been characterized as FPR2 ligands. However, the ligand-binding modes of FPR2 remain elusive, thereby limiting the development of potential drugs. Here we report the crystal structure of FPR2 bound to the potent peptide agonist WKYMVm at 2.8 Å resolution. The structure adopts an active con- formation and exhibits a deep ligand-binding pocket. Combined with mutagenesis, ligand binding and signaling studies, key interactions between the agonist and FPR2 that govern ligand recognition and receptor activation are identified. Furthermore, molecular docking and functional assays reveal key factors that may define binding affinity and agonist potency of formyl peptides. These findings deepen our understanding about ligand recognition and selectivity mechanisms of the formyl peptide receptor family. 1 CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203 Pudong, Shanghai, China. 2 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203 Pudong, Shanghai, China.
    [Show full text]