United States Patent [191 [111 3,768,865 [45] Oct

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent [191 [111 3,768,865 [45] Oct United States Patent [191 [111 3,768,865 [45] Oct. 30, 1973 Dehn [54] PROCESS FOR THE DISPOSAL OF SALT SOLUTIONS CONTAMINATED WITH [56] References Cited AZIDE ‘ UNITED STATES PATENTS [75] Inventor: Frederick C. Dehn, New 2,348,16l 5/1944 Van DUZCC ................... .. 166/305 D Martinsville, W. Va. 3,l96,6l9 7/l965 Shock . .. 6l/.5 X 3,135,50l 6/1964 Dahms et al .......................... .._299/4 [731 Assignee: PPG Industries, Inc., Pittsburgh, Pa. [221 Filed: July 13, 1972 Primary Examiner--Ernest R. Purser Attorney-Russell A. Eberly [211 Appl. No.: 271,436 Related 0.8. Application Data [57] ABSTRACT [63] Continuation-impart of Ser. No. 92,37], Nov. 24, 1970, abandoned. The disposal of salt solutions contaminated with azide is accomplished by depositing the solution in a subter U-S- Cl ------------------------- -- 299/4, 23/157, 61/0-5, ranean cavity, maintaining the solution in the subter [52] 166/305 D ranean cavity until it is essentially free of azide, and [51] Int. Cl ........................................... .. E2lb pumping the essentially azidefree solution to the gun [53] Field of Search ..................................... .. 61/05; face - 23/157-163, 190, 191, 356, 360;166/305 299/4, 5;D 18 v Claims,_ 2 Drawing_ Figures_ 39 38 ‘a 341 1\ 4 45 Na. N3 Aun No.0“ Lew-mun] HCl 16- |'——W 4~ 4.0 _ b ,42 : " l2‘ ~ ' <—-sTeAm l4 _' _ KNS. DRIPS Patented‘ Oct. 30, 1973 3,768,865 2 Sheets-Sheet 1 V =03:nzaz8: $502563 p.01. INVENTOR FPEDfk/CK c. UEHN ATTORNEYj Patented Oct. 30, 1973 3,768,865.‘ 2 Sheets-Sheet >3 mom/m c. aemv BY awkqghm ATTORNEY-s 3,768,865 1 2 PROCESS FOR THE DISPOSAL OF SALT drochloric acid as the feed acid and to deposit solutions SOLUTIONS CONTAMINATED WITII AZIDE of the by-product sodium chloride in a sodium chloride well. The azide contaminant often decomposes with the CROSS-REFERENCE TO RELATED APPLICATION passage of a short time, usually a matter of a few weeks This application is a continuation-in-part of the appli or months. Rarely does azide persist longer than about cation Ser. No. 92,371, filed Nov. 24, 1970 and now four weeks. Upon reduction of the azide concentration abandoned. to an insigni?cant value, e.g., 30 parts per billion parts Those engaged in axide chemistry are often faced of by-product salt, the well may be placed into produc with the disposal of a salt solution contaminated with tion retrieving most of the salt deposited. If the solution azide. Usually the salt is a by-product of a process pumped into the well was not saturated, additional salt wherein a metal azide, an organic azide, or hydrazoic values would also be recovered. Of course, the accept acid is produced. Potassium azide, for example, may be able value for an insigni?cant concentration will vary produced from sodium azide and potassium carbonate depending upon the use to which the brine is put. In a by metathesis. The resulting by-product sodium car producing ?eld where a large cavity is connected to the bonate often contains small amounts of azide as a con surface by at least two wells, azide contaminated salt taminant which greatly enhances the problem of dis solution may be pumped into the cavity through one posal. well while the other well is producing. If the average Hydrazoic acid is becoming of increasing importance residence time is on the order of the time it takes the primarily as an intermediate in the preparation of vari azide to decompose, the azide concentration can be ous azide compounds such as its salts. Hydrazoic acid 20 brought to a very low value. The large amount of dilu is bioactive and may be produced for those purposes. tion taking place also aids in reducing the azide con One particularly favorable use for hydrazoic acid is the centration. preparation of alkali metal azide or alkaline earth metal Often two relatively large chambers are connected by azide by contacting the hydrazoic acid with the appro a narrow passageway. One or more wells connect each priate basic compound such as the hydroxide. 25 chamber with the surface. Such a system is customarily , Hydrazoic acid may be prepared by several processes operated by pumping water into one chamber and for which the basic chemistry is known. However, re pumping brine from the other chamber to the surface. finements must be made to the laboratory processes If at least some of the water pumped into the first employing the basic chemistry in order to achieve a chamber is substituted by the azide contaminated by commercially successful plant capable of producing product salt solution from the production of hydrazoic sizable amounts of hydrazoic acid. One of the known acid, the principles of dilution and residence time may laboratory methods for producing hydrazoic acid is the be utilized to achieve a satisfactorily low azide level by acidi?cation of at least one alkali metal azide or alka the time the solution is withdrawn from the other line earth metal azide with an acid such as one or more chamber. of the strong mineral acids Such a process without fur 35 The basic principles of the present invention are illus ther re?nement presents a problem with respect to safe trated by reference to the drawings wherein like num disposal of the by-product salt of the acid which is al bers refer to like parts and wherein most always more or less contaminated with azide. FIG. 1 represents a process within the contemplation It is the purpose of this invention to provide a safe of the present invention and and efficient method of disposal of azide-contaminated FIG. 2 represents a modification to the process of salt. It has now been found that the azide-contaminated FIG. 1. salt may be disposed of by depositing a solution of the The process illustrated in FIG. 1 shows the formation same in a subterranean cavity. Wells are admirably of hydrazoic acid by acidifying sodium azide with hy suited for the purpose. The subterranean cavity should drochloric acid, The hydrazoic acid so produced is con be deep within the earth so that the solution will not be 45 tacted with potassium hydroxide to produce potassium mixed to any substantial degree with surface ground azide, although the hydrazoic acid can be put to a num waters. Most subterranean cavities used for the prac ber of other uses. Because sodium azide produced by tice of this invention are at least 300 feet from the sur the Wislicenus method produces one mole of sodium face of the earth. More often, they are at least 500 feet azide produced, it is often convenient to acidify the deep. It is preferred that they be at least 1,000 or even mixture rather than separate the sodium hydroxide l,500 feet below the surface. from the sodium azide before acidifying the sodium Many wells especially suitable for the practice of this azide. If the sodium hydroxide is not removed, addi invention have been or are presently used for the solu tional acid will be required to neutralize it when the so tion mining of salts. Examples of such salts are sodium dium azide is acidi?ed. 55 chloride, potassium chloride, and sodium carbonate. Referring now in more detail to FIG. 1, equimolar Wells used for the recovery of sulfur by the F rasch pro portions of sodium azide and sodium hydroxide are fed cess are also satisfactory. These wells may be aban through line 1 to mix tank 2 where they are contacted doned for production purposes. Alternatively, the well with hydrochloric acid introduced through line 4. A gas may be located in an active ?eld where one or more stream containing mostly nitrogen, a small percentage other wells are currently producing. In either case, the (usually about 3 per cent) of hydrazoic acid, some by-product salt from the production of hydrazoic acid water vapor, and some hydrogen chloride is introduced may be the same or different from the salt produced through line 6 and sparger 7 and bubbled through the from the field. - mixture in mix tank 2 to dilute any hydrazoic acid formed and sweep it from the mix tank through line 8. In a preferred embodiment of this invention, the salt 65 is the same as the principal salt comprising the subter Because hydrazoic acid is explosive in concentrated ranean deposit. Because hydrazoic acid is most often amounts, dilution by an inert gas such as nitrogen, he prepared from sodium azide, it is convenient to use hy lium, argon, neon, xenon, krypton, air, methane, eth 3,768,865 3 . 4 ane, water vapor, CF4,CF 3C1, or mixtures thereof is de values, its use is not mandatory and it may be omitted. sirable to reduce the possibility of an explosion. The Under such circumstances, line 42 would be connected gas in line 8 advantageously contains about 5 to 8 per directly to shaft 60. ' cent hydrazoic acid. Greater or lesser proportions may FIG. 2 shows a modi?cation of the process described be used if desired. Liquid from mix tank 2 having a pH with reference to FIG. 1. In FIG. 2 shaft 60 of a first of about 5 to 6 is forwarded to mix tank 10 through line well is shown connecting line 58 with chamber 64 of 12 by pump 14. Hydrochloric acid is introduced subterranean cavity 62. Subterranean cavity 62 com through line 16 to lower the pH of the reaction mixture prises chambers 64 and 66 connected by passageway to about 2 to 3.
Recommended publications
  • NSF Renewal Proposal Appendix B
    Appendix B – Part II Results from Prior Support (one-pagers) As examples of the breadth and vitality of the scientific achievements of the COMPRES community, Appendix B of this proposal provides 143 research “one-pagers” that have been submitted by research groups in preparation of this proposal that summarize selected published results enabled by COMPPRES investment in community facilities and infrastructure from 2012- 2016. B-1 Table of Contents – One-Pagers High pressure-temperature phase diagrams of energetic materials: FOX-7 & TATB B-6 Nanocrystals in compression: Unexpected structural phase transition and amorphization due to surface impurities B-7 Pressure induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite B-8 High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties B-9 Pressure-driven high-to-low spin transition in the bimetallic quantum magnet [Ru2(O2CMe)4]3[Cr(CN)6] B-10 Pressure-induced magnetic crossover driven by hydrogen bonding in CuF2(H2O)2(3- chloropyridine) B-11 Pressure-induced structural transition in copper pyrazine dinitrate and implications for quantum magnetism B-12 High pressure vibrational properties of WS2 nanotubes B-13 Infrared study of the pressure-induced insulator-to-metal transition in PrRu4P12 B-14 Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete B-15 High-pressure behavior of osmium: An analog for iron in Earth’s core B-16 Pressure-induced phase
    [Show full text]
  • Thermophysics of Alkali and Related Azides II. Heat Capacities of Potassium, Rubidium, Cesium, and Thallium Azides from 5 to 350 K E,B
    A-046 J. Chem. Thermodynamics 1978, 10, 1181-1200 Thermophysics of alkali and related azides II. Heat capacities of potassium, rubidium, cesium, and thallium azides from 5 to 350 K e,b ROBERT W. CARLING cud and EDGAR F. WESTRUM, JR.” Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. (Received 26 July I977; in revised form 7 April 1978) The heat capacities of potassium, rubidium, &urn, and thallium azides were determined from 5 to 350 K by adiabatic calorimetry. Although the alkali-metal azides studied in this work exhibited no thermal anomalies over the temperature range studied, thaIlium azide has a bifurcated anomaly with two maxima at (233.0*0.1) K and (242.0410.02) K. The associated excess entropy was 0.90 calth K-l mol-I. The thermal properties of the azides and the corresponding structurally similar hydrogen difluorides are nearly identical. Both have linear symmetrical anions. However, thallium azide shows a solid-solid phase transition not exhibited by thallium hydrogen difluoride. At 298.15 K the values of C& S”, and -{G”(T)-HN”(0)}/T, respectively, are 18.38, 24.86, and 12.676 calth K-l mol-r for potassium azide; 19.09,28.78, and 15.58 calth K-l mol-1 for rubidium azide; 19.89, 32.11, and 18.17 calth K-l mol-’ for cesium azide; and 19.26, 32.09, and 18.69 calth K-l mol-’ for thallium azide. Heat capacities at constant volume for KNB were deduced from infrared and Raman data.
    [Show full text]
  • Inventor. Myron H. Boyer
    INVENTOR. MYRON H. BOYER BY (2=4 AGEN United States Patent Office is and x represents the valency of M, and (2) at least one oxidizing compound selected from the class consisting of metal peroxides, inorganic perchlorates and metal ni 2,981,616 trates; said azides and said oxidizing compounds being present in amounts expressed by the equation n/my, GAS GENERATOR GRAN wherein in represents the number of azide nitrogenatoms, Myron H. Boyer, Puente, Calif., assignor to m represents the number of equivalents of oxidizing comi North American Aviation, Inc. pounds, and y has a numerical value of from about 23 to about 3.6. |- Filed Oct. 1, 1956, Ser. No. 613,327 10 An example of the gas generator grain of this inven 8 Claims. (CI.52-5) tion is a composition comprising calcium azide and pos tassium perchlorate in amounts such that the “equatiòn n/n has the value 3. The azides, M(Na), that can be used in the prepara This invention relates to a novel composition of matter 5 tion of the compositions of this invention can be any suitable for generating gases. More particularly, this azide which has suitable stability to permit grinding and invention relates to a composition which upon ignition handling in the preparation of the composition, and also generates an inert gas useful for pressurizing rocket pro will burn at a satisfactory rate without exploding. A pellant tanks. class of metal azides which satisfy these requirements In a rocket or missile which is operated on liquid fuel, 20 are the alkali and alkaline earth azides.
    [Show full text]
  • CHEM Safety Manual
    Department of Chemistry Safety Manual October 2018 Safety Committee Department of Chemistry Hong Kong University of Science and Technology Table of Contents 1.0 Introduction 2.0 Safety Policy and Responsibility for Safety 2.1 Department Head 2.2 Department of Chemistry Safety Committee 2.3 Laboratory Supervisors 2.4 Researchers 2.5 HSEO 3.0 Information, Training, Safety Clearance, and Safety Clearance at Termination 3.1 Initial Training 3.2 Information on Hazardous Substances 3.3 Additional Safety Information 3.4 Safety Clearance at Termination 4.0 Personal Protective Equipment and Safety Engineering Controls 4.1 Eye Protection 4.2 Protective Apparel 4.3 Respirators 4.4 Laboratory Fume Cupboards 4.5 Fire Extinguishers, Safety Showers, and Eyewash Facilities 5.0 Standard Operating Procedures for Work with Hazardous Substances 5.1 Classes of Hazardous Substances 5.2 General Procedures for Work with Toxic Substances 5.3 General Procedures for Work with Flammable and Explosive Substances 6.0 Procedures for Work with Particularly Hazardous Substances 6.1 Identification and Classification of Particularly Hazardous Substances 6.2 Designated Areas 6.3 General Procedures for Work with Substances of Moderate to High Chronic or High Acute Toxicity 6.4 Additional Procedures for Work with Substances of Known High Chronic Toxicity 6.5 Specific Handling Procedures for Some Common Particularly Hazardous Substances 7.0 Proper Planning of Laboratory Work 7.1 Recognition and Assessment 7.2 Planning for the Unexpected: What Could Go Wrong? 7.3 Site Selection
    [Show full text]
  • Material Safety Data Sheet
    Material Safety Data Sheet Carbon Disulfide, 99.9%, Spectrophotometric Grade ACC# 95965 Section 1 - Chemical Product and Company Identification MSDS Name: Carbon Disulfide, 99.9%, Spectrophotometric Grade Catalog Numbers: AC167710000, AC167715000 Synonyms: Carbon Bisulfide; Dithiocarbonic Anhydride; Sulphocarbonic Anhydride. Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300 Section 2 - Composition, Information on Ingredients CAS# Chemical Name Percent EINECS/ELINCS 75-15-0 Carbon Disulfide >99% 200-843-6 Hazard Symbols: T F Risk Phrases: 11 36/38 48/23 62 63 Section 3 - Hazards Identification EMERGENCY OVERVIEW Appearance: clear, colorless liquid. Flash Point: -22 deg F. Danger! Extremely flammable liquid. May cause central nervous system effects. This substance has caused adverse reproductive and fetal effects in animals. Causes severe eye irritation. May cause skin irritation. May cause respiratory and digestive tract irritation. May cause liver and kidney damage. May cause cardiac disturbances. May cause skin sensitization by skin contact. Target Organs: Kidneys, liver, cardiovascular system, nervous system. Potential Health Effects Eye: May cause severe eye irritation. Skin: Causes skin irritation. May be absorbed through the skin in harmful amounts. Prolonged and/or repeated contact may cause defatting of the skin and dermatitis. Dermatitis and vesiculation may result from skin contact with the vapor or liquid. Chronic exposure may result in sensitization. Ingestion: May cause digestive tract disturbances. May cause effects similar to those for inhalation exposure. Can cause nervous system damage. Ingestion may cause convulsions, seizures and possible coma.
    [Show full text]
  • Report-Of Committee on Chemicals and Explosives
    448 REPORT OF COMMITTEE ON CHEMICALS AND EXPLOSIVES CE-1 Report-of Committee on Chemicals and Explosives Correlating Committee Dr. Robert W. Van Dolah, Chairman, Pittsburgh Mining and Safety Research Center, Bureau of Mines, U.S. Department of the Interior, 4800 Forbes Ave., Pittsburgh, PA 15213 Chester I. Babeock,~ Secretary, National Pire Protection Assn., 470 Atlantic Ave., Boston, MA 02210 W. H. Doyle, Simsbury, CT ilenry T. Rlttman, Institute of Makers of •, Thomas E. Duke, Fire Prevention & Engi- Explosives neering Bureau of Texas Richard F. Schwab, Allied Chemical Corp. Dr. Richard Y. Le Vine, Olin Corp. tNonvoting. Sectional Committee on Electrical Equipment in Chemical Atmospheres Dr. Richard Y. Le Vine, Chairman, Olin Corp., 120 Long Ridge Rd., Stamford, CT 06904 Chester I. Babcock,~ Secretary, National Fire Protection Association, 470 Atlantic Ave., Boston, MA 02210 L. J. Hall. Panel No. 14, National Electrical R. F. Schwab, Morristown, NJ Code Committee W. A. Short, National Electrical-Manu- • Robert P. llowell, American Petroleu~i In" facturers Assn. stitute George O. Hunt, Jr., Manufacturing Chem- Alternates. ists' Assn. Elton L. Lltehfleld, Pittsburgh, PA F. D. Alroth. (Alternate to P. J. Schram) Frederick L. Maltby, Instrument Society W. Calder (Alternate to F. L. Maltby) of America W. H. Levers (Alternate to Robert P. C. E. Miller, Norwood, MA Howell) " Frank E. Rademacher, Chicago, IL J. Rennle (Alternate to C. E. Miller) John E. Rogerson. Cincinnati, OH Thomas S. Staron, (Alternate to Frank E. P. J. Schram, Chicago, IL Rademaehcr) tNonvoting 449 CE-2 EXPLANATION OF REPORT Sectional Committee on llazardous Chemical Reactions R. F. Schwab, Chairman, Allied Chemical Corp., P.O.
    [Show full text]
  • 731 2964292 4:22: §::1;"::,:%I';;;~ 112/22 9 Montreal’ Quebm Canada 3,797,854 3/1974 Poole Et Al
    United States Patent [19] 1111 3,883,373 Sidebottom [45] May 13, 1975 [54] GAS GENERATING COMPOSITIONS [56] References Cited [75] Inventor: Eric William Sidebottom, Otterburn UNITED STATES PATENTS Heights, Quebec. Canada 2,981,616 4/1961 Boyer .................................. .. 149/35 [731 2964292 4:22: §::1;"::,:%i';;;~ 112/22 9 Montreal’ Quebm Canada 3,797,854 3/1974 POOle et al ...................... .. 149/35 x [22] Filed: July 2, 1973 _ Primary Examiner—Stephen J. Lechert, Jr. [2]] Appl' NO" 375’654 Attorney, Agent, or Firm—Alexander O. Mclntosh [30] Foreign Application Priority Data [57] ABSTRACT July 24, i972 United Kingdom ............. .. 34481/72 A gas generating composition having as ingredients an . _ alkali or alkaline earth metal azide, an oxidizing com [52] US. Cl. ...................... .. 149/6; 149/35, 149/37, pound, an Oxide such as silica or alumina, and option_ 149/40; 149/41; 149/42; 149/43;_ 149/45; ally, a metal such as silicon or aluminum. The compo 149/75’ 149/77 sition is useful as a source of gas to in?ate bags used Int. _ . ..' . I . _ . .. as restraint Systems for the protection of automobile [58] Field of Search ............. .. 149/6, 35, 37, 75, 40, passengers. 149/77, 45, 36, 42, 41, 43 8 Claims, No Drawings 3,883,373 1 2 GAS GENERATING COMPOSITIONS and zinc, in proportion sufficient to react with the me tallic residue of the reaction between (1) and (2). This invention relates to a composition of matter suit The use of a mixture of an oxide and a metal as ingre able for generating gases.
    [Show full text]
  • CSEM Scientific and Technical Report 2016
    SCIENTIFIC AND TECHNICAL REPORT 2016 CSEM SA Jaquet-Droz 1 CH-2002 Neuchâtel CSEM Alpnach Untere Gründlistrasse 1 CH-6055 Alpnach Dorf CSEM Landquart Bahnhofstrasse 1 CH-7302 Landquart CSEM Muttenz Tramstrasse 99 CH-4132 Muttenz CSEM Zurich Technoparkstrasse 1 CH-8005 Zurich www.csem.ch [email protected] [email protected] IMPRINT Full report title CSEM Scientific and Technical Report 2016 Editor and publisher CSEM SA [email protected] T +41 32 720 5111 Design CSEM Communications [email protected] T +41 32 720 5111 Publication Frequency yearly Media printed and electronic Website www.csem.ch/str2016 Printing Imprimerie Baillod SA, Bevaix (Switzerland) Cover page Projection of artwork by coherent illumination of designed optical nanostructures. The project creates a connection between nanotechnology and art by using designed nanostructures to project artwork in single and full color. Once the optical nanostructures have been designed and a physical master created, an infinite number of low-cost copies can be reproduced. The original artwork, from the artist Véronique Lecomte, known as Velec, is made of neon light tubes. Courtesy: VELEC www.velec.ch CSEM SA CSEM is a private, non-profit research and technology organization (RTO) and a Swiss innovation accelerator—a catalyst for the transfer of technologies and know-how from fundamental research to industry. CSEM’s extraordinary success in the field of innovation and its diffusion stems from its promotion of technology-based activities that address the next generation of trends—the future of energy, the Internet of Things revolution, the advent of wearable technologies for wellness and medical applications, or the rendering widespread of machine-to- machine (M2M) communications required by Industry 4.0.
    [Show full text]
  • Formation Mechanism of Insensitive Tellurium Hexanitride with Armchair
    ARTICLE https://doi.org/10.1038/s42004-020-0286-1 OPEN Formation mechanism of insensitive tellurium hexanitride with armchair-like cyclo-N6 anions ✉ ✉ Zhao Liu1,DaLi 1 , Quan Zhuang1, Fubo Tian1, Defang Duan 1, Fangfei Li1 & Tian Cui1,2 1234567890():,; The lower decomposition barriers of cyclo-N6 anions hinder their application as high-energy- density materials. Here, first-principles calculations and molecular dynamics simulations reveal that enhancing the covalent component of the interaction between cyclo-N6 anions and cations can effectively improve the stability of cyclo-N6 anions. Taking tellurium hex- anitride as a representative, the exotic armchair-like N6 anions of tellurium hexanitride exhibit resistance towards electronic attack and gain extra stability through the formation of covalent bonds with the surrounding elemental tellurium under high pressures. These covalent bonds effectively improve the chemical barrier and insensitivity of tellurium hexanitride during blasting, which prevents the decomposition of solid cyclo-N6 salts into molecular nitrogen. Furthermore, the high-pressure induced covalent bonds between cyclo-N6 anions and tell- urium enable the high bulk modulus, remarkable detonation performance, and high- temperature thermodynamic stability of tellurium hexanitride. 1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People’s Republic of China. 2 School of Physical Science and Technology, ✉ Ningbo University, Ningbo 315211, People’s Republic of China. email: [email protected]; [email protected] COMMUNICATIONS CHEMISTRY | (2020) 3:42 | https://doi.org/10.1038/s42004-020-0286-1 | www.nature.com/commschem 1 ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-020-0286-1 igh pressure, a typically clean and controllable thermo- with nitrogen; thus, we adopt the binary Te–N candidates as dynamic variable, can be adopted to obtain curious prototypes to search for cyclo-N6 ions and study the trap effect by H fi 27,28 materials that are dif cult to synthesize under ambient the covalent bond .
    [Show full text]
  • Energetic Materials 1
    ENERGETIC MATERIALS Energetic Materials 1 Volume 1 : Physics and Chemistry of the Inorganic Azides Volume 2: Technology of the Inorganic Azides Physics and Chemistry of the Inorganic Azides Edited by H. [I. Fair :1nC1 R. F. W;~lkcr Energetic Materiuh Division Armanrent Research and Development Command Dover, New Jersey PLENUM PRESS NEW YORK AND LONDON and b + i. Some of the reactions are evidently complex, and such equations &$@[ The same author 1241 also obtained HN3 from hydrazine and hydroxylamine by oxidation (b + c): Lm text are not strictly quantitative. i 1 laterCu , discovered HN3 [I] by reacting benzoylhydrazine with nitrous acid i N2H4 + NHzOH + 20 4 HN3 + 3H2O (b + g-type reaction). The resulting benzoyl azide was saponified, and sodium azide was isolated from the alkaline mixture. In 1903 Wislicenus [14] synthesized Of various oxidants tested, hydroperoxide and chromic acid gave the best sodium azide solely from inorganic compounds, namely, sodium metal, am- results (24% yield). monia, and dinitrogen oxide (a + e). The reaction proceeds in two steps, first Thiele [25] converted aminoguanidine with nitrous acid (b + g) to guanyl converting ammonia with sodium to sodamide, and then reacting this with di- azide [26] which was saponified to sodium azide: nitrogen oxide to yield sodium azide. Fifty percent of the sodamide is decom- posed to hydroxide and ammonia, and the overall balance of the process is 2NaNH2 + N20 -+ NaN3 + NaOH + NH3 Wislicenus conducted the synthesis as a dry procedure at elevated temperature; a Another interesting reaction (b + g) was studied by Freund and Schander low-temperature procedure in liquid ammonia was later patented by Acken and [?7].
    [Show full text]
  • April 25, 1961 V M H, BOYER 2,981,616 'Li "'
    April 25, 1961 v M_ H, BOYER 2,981,616 GAS GENERATOR GRAIN Filed ÜCÍ'. l, 1956 'li "' 26/ BY M2M AGENT 'lf `tent _ ICC 2,981,616 UnitedI tates ï le'ensserr~ia5» 2 vand x represents the valency 'of M, and (2)V at least Forio oxidizing compound selected from the Aclass consistirfg of metal peroxides, inorganic perchlorates and metal iii 2,981,616 trates; said azides and said oxidizing ‘compounds bein‘g GAs GENERATOR GRAIN present in amounts expressed by the V’equation rdm-'45', wherein n represents the number of azide nitrogen atoms, Myron H. Boyer, Puente, Calif., assignor to m represents the number of equivalents ofoxidizing 'coni North American Aviation, Inc. pounds, and y lhas a numerical value of from about Y2:3 a Filed oct. 1, 1956, ser. No. 613,327 to about 3.6. ` » Y d ` ï 10 An example'of the gas generator grain of this 'inven s Claims. (el. sz­­.5) tion vis a composition comprising ’calcium'azide and pól tassium perchlorate ­in amounts ­such that 'ther-'equatiòh n/m has the value 3,. , ' ' Y " i j The azides, M(N3)x, that can be _used in the >preptufaf This invention relates to a novel composition or" matter 15 tion of ’the compositions of vthis inventionca'n Abe any suitable for generating gases. More particularly, this _azide which has suitable stability to permit grindin'grand invention relates to a composition which upon ignition Vhandling in the preparation of the composition, and alsno generates an inert gas useful for pressurizing rocket pro will burn at a satisfactory ­rate Without exploding.
    [Show full text]
  • III.I.III III US005523424A United States Patent (19) 11 Patent Number: 5,523,424 Malik Et Al
    III.I.III III US005523424A United States Patent (19) 11 Patent Number: 5,523,424 Malik et al. (45) Date of Patent: Jun. 4, 1996 (54) SOLVENT-FREE PROCESS FOR THE 4,707,540 11/1987 Manser et al. .......................... 528/417 SYNTHESIS OF ENERGETIC OXETANE 4,764,586 8/1988 Manser et al. ... 149/19.6 MONOMERS 4,804,424 2/1989 Hinshaw ............ ... 149/19.6 4,938,814 7/1990 Schonyer et al... ... 149/19.9 (75) Inventors: Aslam A. Malik, Cameron Park; 4,952,952,644 8/1990 Wardle et al. .......................... 525/410 Gerald E. Manser, El Dorado Hills; 5,049,214 9/1991 Hassell et al. ....................... 149/09.4 Roland P. Carson; Thomas G. FOREIGN PATENT DOCUMENTS Archibald, both of Fair Oaks, all of Calif. 223679 1/1968 Russian Federation. 1112496 5/1968 United Kingdom. (73) Assignee: Aerojet-General Corporation, Rancho Primary Examiner-C. Warren Ivy Cordova, Calif. Assistant Examiner-Amelia Owens Attorney, Agent, or Firm-Townsend and Townsend and 21 Appl. No.: 334,708 Crew (22) Filed: Nov. 4, 1994 57 ABSTRACT 51 Int. C. a - C07D 305/00 This invention relates to a process for the preparation of 52 U.S. Cl. ..................................... 549/510 mono- and bis(azidomethyl)oxetanes. These compounds are 58 Field of Search ............................................... 549/510 prepared by combining a mono- or bis-X-oxetane (wherein Xis, for example, a tosylate, mesylate, halogen, etc.) with an (56) References Cited aqueous solution of a metallic azide and a phase transfer U.S. PATENT DOCUMENTS catalyst. Mono- and bis(azidiomethyl)oxetanes can be poly merized to form homopolymers and copolymers with load 3,138,609 11/1964 Carpenter ...............................
    [Show full text]