Scientific and Technical Report 2010

Total Page:16

File Type:pdf, Size:1020Kb

Scientific and Technical Report 2010 CSEM SA Jaquet-Droz 1 CH-2002 Neuchâtel CSEM Alpnach Untere Gründlistrasse 1 CH-6055 Alpnach Dorf CSEM Basel Mattenstrasse 22 CH-4016 Basel CSEM Landquart Bahnhofstrasse 1 CH-7302 Landquart CSEM Muttenz Tramstrasse 99 CH-4132 Muttenz 2010 CSEM Zurich Technoparkstrasse 1 SCIENTIFIC AND TECHNICAL REPORT CH-8005 Zurich www.csem.ch [email protected] CSEM Centre Suisse d’Electronique et de Microtechnique SA Since its creation in 1984, CSEM has evolved as one of the most renowned RTOs (Research and Technology Organizations) in Europe, in particular because of its ability to integrate technologies and to convert them into commercial success stories. The technological excellence of our people is complemented by a range of tools, internal and external, that are well adapted to our mission. Professional researchers and permanent employees of CSEM, stimulated by young doctoral and post-doctoral scientists, are the driving force behind our activities. Their work is accompanied by professional marketing, financial and legal services. Important additional elements are our national and international partnerships with industry and well-defined R&D and academic partners such as the prestigious Swiss Institutes of Technology (EPFL, ETHZ). The successful results of these cooperations are documented in this report. In 2010, CSEM handled more than 190 projects, the majority of which were technology development, integration and transfer contracts with Swiss industry. In 58 of these projects, our Swiss academic partners made a significant contribution. Furthermore, CSEM contributed to a record volume of projects in 2010 with Switzerland's Commission for Technology and Innovation (CTI). Thus, CSEM confirmed its important contribution to Switzerland’s leadership in innovation, the main driver of growth and economic well-being in our country. Beyond our strong technology integration and transfer capability, we have established a supportive and enabling start-up creation process. In tandem with our partner Jade Invest SA, an early-stage venture fund, we have created a strong tool for value creation for the Swiss economy. A vital asset in generating value is the knowledge accumulated year after year, and even more so the capability to work at the interfaces of multiple disciplines, such as microelectronics, microsystems and nanotechnology, as well as on their integration. At the end of 2010, the total number of employees at CSEM was 390, of which 29 were Ph.D students. CSEM ended 2010 with positive net results, the final income reaching CHF 68.5 million. We hope that you enjoy reading this document, and would be delighted if you identify ideas and concepts that can be adapted, developed and commercialized in the marketplace. 1 CONTENTS A 290 μA, 3.2 MHz 4-bit Phase ADC for Constant PREFACE 5 Envelope, Ultra-low Power Radio 37 A Low-cost Electronically Steerable Switched Parasitic Array for GNSS Applications 38 RESEARCH ACTIVITIES IN 2010 7 A Low-power Fully Integrated RF locked Loop for 3D Face Detection and Identification System 9 Miniature Atomic Clocks 39 Phase Contrast X-ray Imaging 10 High Performance MEMS-based Frequency Synthesizer 40 Time References – Progress on the Realization of a Miniature Atomic Clock 11 Antenna Design Rules for Self powered 13.56 MHz RFID Systems 41 Time References – Silicon Flexures for the Sugar- Cube Delta Robot 12 A 2.4 GHz BAW-based Transceiver for Wireless Body Area Networks 42 Time References – Hermetic Packaging of Miniaturized MEMS 13 C-EIT – Unsupervised Identification of Heart and Lungs PHOTONICS 43 Function using Electrical Impedance Tomography 14 Sensing Small Angle Scattering with an X-ray Grating IMS-eye – Concept for Implantable Surgery Eye 15 Interferometer 44 WiseFIELD – An Autonomous, Self-recharging Phase Sensitive X-ray Imaging: Towards Medical Ultra-low Power Wireless Platform for Environmental Applications 45 Monitoring 16 Single-photon Pulse Detectors 46 CHAP – Cell Handling and Analysis Platform 17 Ultra-high Speed Digital Image Sensor 47 Optical Flow Correlator 48 NANO-TERA ACTIVITIES IN 2010 19 High-speed CMOS-compatible Demodulation Imagers GreenPower – Connecting Renewable Energy to for Temporal Waveform Analysis 49 Green Mobility 20 Stereo Omniview Camera System and Time-of-flight LiveSense – Environmental Sensors based on Living Camera for Mars Rover 50 Cells 21 SelfSys – Fluidic Mediated Self-assembly of Mesoscale THIN FILM OPTICS 51 Objects 22 Colorimetric Visual Gas Sensors 52 PATLiSci – Probe Array Technology for Life Science Applications 23 The Morphology of Inkjet Printed Organic Photovoltaic Cells 53 TecInTex – An Integrated Biosensor for the In-situ Monitoring of Wound Healing 24 Design for Organic Electronics 54 NexRay – Next Generation X-ray Systems 25 MICROSYSTEMS TECHNOLOGY 55 INTEGRATED & WIRELESS Batch Fabrication of Rubidium Vapor Cells for Atomic SYSTEMS 27 Clocks 56 Reliable MEMS for Space: How X-ray Techniques Detecting Shapes using a 3D Time-of-Flight Camera 28 Support Development 57 A Software Library to Accelerate the Prototyping of In-situ Structural and Mechanical Testing 58 Vision Applications 29 Defect and Strain Analysis for Epitaxial Grown Thick Infrastructure-free Car Localization in Parking Lots Germanium Layers on Structured Silicon Substrates 59 using Low-power Wireless Sensor Networks 30 Deployment of WiseNET Technologies in Extreme Conditions: the Case of the Bonnard Glacier 31 NANOTECHNOLOGY & LIFE Execution of Embedded Code in a Network Simulator 32 SCIENCES 61 An icyflex-based Multiprocessor Architecture 33 Molecular Vapor Deposition for Functionalized Applications using the icyflex1 Processor 34 Surfaces 62 Design of an Ultra-low Power SoC dedicated to Social A Compact Radioactivity Monitor for Medical Networking Products 35 Applications 63 Design Techniques to Combat Process Variation 36 Metallic Membranes for Chemical Sensing 64 3 MEMS Tunable Quantum Cascade Lasers for IR Smart Electrodes for Vital Sign Monitoring 97 Spectroscopy 65 Medical Multi-parameter Monitoring Sports Shirt 98 Fully Programmable MEMS Gratings for Space Applications 66 Manufacturing of Micro- Nano-structured Plastic MICROROBOTICS & PACKAGING 99 Components 67 Reliable Hermetic Chip-scale Packaging Targeting Ultrathin Nanoporous SiN Membranes for Biotech Wafer-level Bonding 100 Applications 68 Semi-automatic Assembly Process for High Power Silicon Nanostructures by Metal-assisted Chemical Single Emitter Diode Lasers 101 Etching 69 Miniature Carbon-nanotube-based X-ray Sources: Nanodispensing for Antibody Nanoarrays 70 Packaging Aspects 102 Towards Replacing Animal Test in Nanotoxicology 71 2Dplus Laser Micromachining 103 Ultra-thin Microporous Support for In Vitro Model of Customer-specific Small Series Production and Biological Barriers 72 Modeling of Microfluidic Components 104 Use of Biosensors for the Detection of Cocaine at Manufacturing Strips with Deep Channels for Pressure Airport Security Controls 73 Sensing Applications 105 Automated Optical Quality Control of Injection Moulded Micro Fluidic Devices 106 NANOMEDICINE 75 Self Alignment assisted MEMS Packaging 107 Lab-in-a-pipette-tip for Small Volume Rapid Biosensing 76 AC-electrokinetic Pump with Flow Rectifier for Cost-effective Infrared CO2 Sensor for Food Packaging Unidirectional Flow 108 Inspection 77 Microfluidic Devices for Superparamagnetic Angle Interrogating Optical Sensor ARGOS: Scanning Nanoparticle Handling 109 MEMS Mirror for Higher Performance Label-free Modular System for Automated Sorting and Optical Biosensing 78 Microinjection of Large Cells 110 Electrochemical Monitoring System for Hepatic Low Temperature Hermetic Sealing for Implantable Function Detoxification Capability 79 Medical Systems 111 Cell-based Microfluidic Platforms for Relevant 3D in- Contactless Gripper with Ultrasonic Air Cushion 112 vitro Models aimed at Personalized and Regenerative Medicine 80 TestChest: a Real-time Simulator of Human ANNEXES 113 Respiration including Heart-Lung Interaction 81 Publications 113 Phantom based System to Evaluate Electrical Proceedings 116 Impedance Tomography (EIT) Performance 82 Conferences and Workshops 119 HorseVent: A Novel Anesthesia Ventilator for Large Animals 83 Competence Centre for Materials Science and Technology (CCMX), Nano-Tera, National Centers of Competence in Research (NCCR) and Swiss National SYSTEMS 85 Science Foundation (SNSF) Projects 123 Swiss Commission for Technology and Innovation New Generation of Domestic Heat Controller 86 (CTI) 124 A Micro-robot for Astrophysics 87 European Commission Projects 126 Ball Bearing Fomblin Lubrication for Space European Space Agency (ESA), European Southern Mechanisms 88 Observatory (ESO) and Astrophysical Instrument Focusing Mechanism for Camera Focus System on Projects 129 Mars (ExoMars Rover) 89 Industrial Property 130 High Performance Stabilized Lasers 90 Collaboration with Research Institutes and Universities 130 Compact and Reliable Optical Bench for Industrial Teaching 133 Cesium Beam Clock 91 Theses 135 Towards Femtosecond Blue Laser Diode 92 Commissions and Committees 137 A 3D Laser Printer for the Fabrication of In-glass Microstructures 93 Prizes and Awards 140 A Chest Sensor for Continuous Measurement of Blood Pressure and Arterial Stiffness 94 Vital Parameter Sensing under Harsh Conditions 96 4 PREFACE Dear Reader, CSEM has always been focused on serving industry and the Swiss economy as a priority. Using technologies developed or integrated within our company, companies ranging from SMEs to multinationals have launched many successful
Recommended publications
  • NSF Renewal Proposal Appendix B
    Appendix B – Part II Results from Prior Support (one-pagers) As examples of the breadth and vitality of the scientific achievements of the COMPRES community, Appendix B of this proposal provides 143 research “one-pagers” that have been submitted by research groups in preparation of this proposal that summarize selected published results enabled by COMPPRES investment in community facilities and infrastructure from 2012- 2016. B-1 Table of Contents – One-Pagers High pressure-temperature phase diagrams of energetic materials: FOX-7 & TATB B-6 Nanocrystals in compression: Unexpected structural phase transition and amorphization due to surface impurities B-7 Pressure induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite B-8 High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties B-9 Pressure-driven high-to-low spin transition in the bimetallic quantum magnet [Ru2(O2CMe)4]3[Cr(CN)6] B-10 Pressure-induced magnetic crossover driven by hydrogen bonding in CuF2(H2O)2(3- chloropyridine) B-11 Pressure-induced structural transition in copper pyrazine dinitrate and implications for quantum magnetism B-12 High pressure vibrational properties of WS2 nanotubes B-13 Infrared study of the pressure-induced insulator-to-metal transition in PrRu4P12 B-14 Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete B-15 High-pressure behavior of osmium: An analog for iron in Earth’s core B-16 Pressure-induced phase
    [Show full text]
  • United States Patent [191 [111 3,768,865 [45] Oct
    United States Patent [191 [111 3,768,865 [45] Oct. 30, 1973 Dehn [54] PROCESS FOR THE DISPOSAL OF SALT SOLUTIONS CONTAMINATED WITH [56] References Cited AZIDE ‘ UNITED STATES PATENTS [75] Inventor: Frederick C. Dehn, New 2,348,16l 5/1944 Van DUZCC ................... .. 166/305 D Martinsville, W. Va. 3,l96,6l9 7/l965 Shock . .. 6l/.5 X 3,135,50l 6/1964 Dahms et al .......................... .._299/4 [731 Assignee: PPG Industries, Inc., Pittsburgh, Pa. [221 Filed: July 13, 1972 Primary Examiner--Ernest R. Purser Attorney-Russell A. Eberly [211 Appl. No.: 271,436 Related 0.8. Application Data [57] ABSTRACT [63] Continuation-impart of Ser. No. 92,37], Nov. 24, 1970, abandoned. The disposal of salt solutions contaminated with azide is accomplished by depositing the solution in a subter U-S- Cl ------------------------- -- 299/4, 23/157, 61/0-5, ranean cavity, maintaining the solution in the subter [52] 166/305 D ranean cavity until it is essentially free of azide, and [51] Int. Cl ........................................... .. E2lb pumping the essentially azidefree solution to the gun [53] Field of Search ..................................... .. 61/05; face - 23/157-163, 190, 191, 356, 360;166/305 299/4, 5;D 18 v Claims,_ 2 Drawing_ Figures_ 39 38 ‘a 341 1\ 4 45 Na. N3 Aun No.0“ Lew-mun] HCl 16- |'——W 4~ 4.0 _ b ,42 : " l2‘ ~ ' <—-sTeAm l4 _' _ KNS. DRIPS Patented‘ Oct. 30, 1973 3,768,865 2 Sheets-Sheet 1 V =03:nzaz8: $502563 p.01. INVENTOR FPEDfk/CK c. UEHN ATTORNEYj Patented Oct. 30, 1973 3,768,865.‘ 2 Sheets-Sheet >3 mom/m c.
    [Show full text]
  • Thermophysics of Alkali and Related Azides II. Heat Capacities of Potassium, Rubidium, Cesium, and Thallium Azides from 5 to 350 K E,B
    A-046 J. Chem. Thermodynamics 1978, 10, 1181-1200 Thermophysics of alkali and related azides II. Heat capacities of potassium, rubidium, cesium, and thallium azides from 5 to 350 K e,b ROBERT W. CARLING cud and EDGAR F. WESTRUM, JR.” Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. (Received 26 July I977; in revised form 7 April 1978) The heat capacities of potassium, rubidium, &urn, and thallium azides were determined from 5 to 350 K by adiabatic calorimetry. Although the alkali-metal azides studied in this work exhibited no thermal anomalies over the temperature range studied, thaIlium azide has a bifurcated anomaly with two maxima at (233.0*0.1) K and (242.0410.02) K. The associated excess entropy was 0.90 calth K-l mol-I. The thermal properties of the azides and the corresponding structurally similar hydrogen difluorides are nearly identical. Both have linear symmetrical anions. However, thallium azide shows a solid-solid phase transition not exhibited by thallium hydrogen difluoride. At 298.15 K the values of C& S”, and -{G”(T)-HN”(0)}/T, respectively, are 18.38, 24.86, and 12.676 calth K-l mol-r for potassium azide; 19.09,28.78, and 15.58 calth K-l mol-1 for rubidium azide; 19.89, 32.11, and 18.17 calth K-l mol-’ for cesium azide; and 19.26, 32.09, and 18.69 calth K-l mol-’ for thallium azide. Heat capacities at constant volume for KNB were deduced from infrared and Raman data.
    [Show full text]
  • Inventor. Myron H. Boyer
    INVENTOR. MYRON H. BOYER BY (2=4 AGEN United States Patent Office is and x represents the valency of M, and (2) at least one oxidizing compound selected from the class consisting of metal peroxides, inorganic perchlorates and metal ni 2,981,616 trates; said azides and said oxidizing compounds being present in amounts expressed by the equation n/my, GAS GENERATOR GRAN wherein in represents the number of azide nitrogenatoms, Myron H. Boyer, Puente, Calif., assignor to m represents the number of equivalents of oxidizing comi North American Aviation, Inc. pounds, and y has a numerical value of from about 23 to about 3.6. |- Filed Oct. 1, 1956, Ser. No. 613,327 10 An example of the gas generator grain of this inven 8 Claims. (CI.52-5) tion is a composition comprising calcium azide and pos tassium perchlorate in amounts such that the “equatiòn n/n has the value 3. The azides, M(Na), that can be used in the prepara This invention relates to a novel composition of matter 5 tion of the compositions of this invention can be any suitable for generating gases. More particularly, this azide which has suitable stability to permit grinding and invention relates to a composition which upon ignition handling in the preparation of the composition, and also generates an inert gas useful for pressurizing rocket pro will burn at a satisfactory rate without exploding. A pellant tanks. class of metal azides which satisfy these requirements In a rocket or missile which is operated on liquid fuel, 20 are the alkali and alkaline earth azides.
    [Show full text]
  • CHEM Safety Manual
    Department of Chemistry Safety Manual October 2018 Safety Committee Department of Chemistry Hong Kong University of Science and Technology Table of Contents 1.0 Introduction 2.0 Safety Policy and Responsibility for Safety 2.1 Department Head 2.2 Department of Chemistry Safety Committee 2.3 Laboratory Supervisors 2.4 Researchers 2.5 HSEO 3.0 Information, Training, Safety Clearance, and Safety Clearance at Termination 3.1 Initial Training 3.2 Information on Hazardous Substances 3.3 Additional Safety Information 3.4 Safety Clearance at Termination 4.0 Personal Protective Equipment and Safety Engineering Controls 4.1 Eye Protection 4.2 Protective Apparel 4.3 Respirators 4.4 Laboratory Fume Cupboards 4.5 Fire Extinguishers, Safety Showers, and Eyewash Facilities 5.0 Standard Operating Procedures for Work with Hazardous Substances 5.1 Classes of Hazardous Substances 5.2 General Procedures for Work with Toxic Substances 5.3 General Procedures for Work with Flammable and Explosive Substances 6.0 Procedures for Work with Particularly Hazardous Substances 6.1 Identification and Classification of Particularly Hazardous Substances 6.2 Designated Areas 6.3 General Procedures for Work with Substances of Moderate to High Chronic or High Acute Toxicity 6.4 Additional Procedures for Work with Substances of Known High Chronic Toxicity 6.5 Specific Handling Procedures for Some Common Particularly Hazardous Substances 7.0 Proper Planning of Laboratory Work 7.1 Recognition and Assessment 7.2 Planning for the Unexpected: What Could Go Wrong? 7.3 Site Selection
    [Show full text]
  • Material Safety Data Sheet
    Material Safety Data Sheet Carbon Disulfide, 99.9%, Spectrophotometric Grade ACC# 95965 Section 1 - Chemical Product and Company Identification MSDS Name: Carbon Disulfide, 99.9%, Spectrophotometric Grade Catalog Numbers: AC167710000, AC167715000 Synonyms: Carbon Bisulfide; Dithiocarbonic Anhydride; Sulphocarbonic Anhydride. Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300 Section 2 - Composition, Information on Ingredients CAS# Chemical Name Percent EINECS/ELINCS 75-15-0 Carbon Disulfide >99% 200-843-6 Hazard Symbols: T F Risk Phrases: 11 36/38 48/23 62 63 Section 3 - Hazards Identification EMERGENCY OVERVIEW Appearance: clear, colorless liquid. Flash Point: -22 deg F. Danger! Extremely flammable liquid. May cause central nervous system effects. This substance has caused adverse reproductive and fetal effects in animals. Causes severe eye irritation. May cause skin irritation. May cause respiratory and digestive tract irritation. May cause liver and kidney damage. May cause cardiac disturbances. May cause skin sensitization by skin contact. Target Organs: Kidneys, liver, cardiovascular system, nervous system. Potential Health Effects Eye: May cause severe eye irritation. Skin: Causes skin irritation. May be absorbed through the skin in harmful amounts. Prolonged and/or repeated contact may cause defatting of the skin and dermatitis. Dermatitis and vesiculation may result from skin contact with the vapor or liquid. Chronic exposure may result in sensitization. Ingestion: May cause digestive tract disturbances. May cause effects similar to those for inhalation exposure. Can cause nervous system damage. Ingestion may cause convulsions, seizures and possible coma.
    [Show full text]
  • Report-Of Committee on Chemicals and Explosives
    448 REPORT OF COMMITTEE ON CHEMICALS AND EXPLOSIVES CE-1 Report-of Committee on Chemicals and Explosives Correlating Committee Dr. Robert W. Van Dolah, Chairman, Pittsburgh Mining and Safety Research Center, Bureau of Mines, U.S. Department of the Interior, 4800 Forbes Ave., Pittsburgh, PA 15213 Chester I. Babeock,~ Secretary, National Pire Protection Assn., 470 Atlantic Ave., Boston, MA 02210 W. H. Doyle, Simsbury, CT ilenry T. Rlttman, Institute of Makers of •, Thomas E. Duke, Fire Prevention & Engi- Explosives neering Bureau of Texas Richard F. Schwab, Allied Chemical Corp. Dr. Richard Y. Le Vine, Olin Corp. tNonvoting. Sectional Committee on Electrical Equipment in Chemical Atmospheres Dr. Richard Y. Le Vine, Chairman, Olin Corp., 120 Long Ridge Rd., Stamford, CT 06904 Chester I. Babcock,~ Secretary, National Fire Protection Association, 470 Atlantic Ave., Boston, MA 02210 L. J. Hall. Panel No. 14, National Electrical R. F. Schwab, Morristown, NJ Code Committee W. A. Short, National Electrical-Manu- • Robert P. llowell, American Petroleu~i In" facturers Assn. stitute George O. Hunt, Jr., Manufacturing Chem- Alternates. ists' Assn. Elton L. Lltehfleld, Pittsburgh, PA F. D. Alroth. (Alternate to P. J. Schram) Frederick L. Maltby, Instrument Society W. Calder (Alternate to F. L. Maltby) of America W. H. Levers (Alternate to Robert P. C. E. Miller, Norwood, MA Howell) " Frank E. Rademacher, Chicago, IL J. Rennle (Alternate to C. E. Miller) John E. Rogerson. Cincinnati, OH Thomas S. Staron, (Alternate to Frank E. P. J. Schram, Chicago, IL Rademaehcr) tNonvoting 449 CE-2 EXPLANATION OF REPORT Sectional Committee on llazardous Chemical Reactions R. F. Schwab, Chairman, Allied Chemical Corp., P.O.
    [Show full text]
  • 731 2964292 4:22: §::1;"::,:%I';;;~ 112/22 9 Montreal’ Quebm Canada 3,797,854 3/1974 Poole Et Al
    United States Patent [19] 1111 3,883,373 Sidebottom [45] May 13, 1975 [54] GAS GENERATING COMPOSITIONS [56] References Cited [75] Inventor: Eric William Sidebottom, Otterburn UNITED STATES PATENTS Heights, Quebec. Canada 2,981,616 4/1961 Boyer .................................. .. 149/35 [731 2964292 4:22: §::1;"::,:%i';;;~ 112/22 9 Montreal’ Quebm Canada 3,797,854 3/1974 POOle et al ...................... .. 149/35 x [22] Filed: July 2, 1973 _ Primary Examiner—Stephen J. Lechert, Jr. [2]] Appl' NO" 375’654 Attorney, Agent, or Firm—Alexander O. Mclntosh [30] Foreign Application Priority Data [57] ABSTRACT July 24, i972 United Kingdom ............. .. 34481/72 A gas generating composition having as ingredients an . _ alkali or alkaline earth metal azide, an oxidizing com [52] US. Cl. ...................... .. 149/6; 149/35, 149/37, pound, an Oxide such as silica or alumina, and option_ 149/40; 149/41; 149/42; 149/43;_ 149/45; ally, a metal such as silicon or aluminum. The compo 149/75’ 149/77 sition is useful as a source of gas to in?ate bags used Int. _ . ..' . I . _ . .. as restraint Systems for the protection of automobile [58] Field of Search ............. .. 149/6, 35, 37, 75, 40, passengers. 149/77, 45, 36, 42, 41, 43 8 Claims, No Drawings 3,883,373 1 2 GAS GENERATING COMPOSITIONS and zinc, in proportion sufficient to react with the me tallic residue of the reaction between (1) and (2). This invention relates to a composition of matter suit The use of a mixture of an oxide and a metal as ingre able for generating gases.
    [Show full text]
  • CSEM Scientific and Technical Report 2016
    SCIENTIFIC AND TECHNICAL REPORT 2016 CSEM SA Jaquet-Droz 1 CH-2002 Neuchâtel CSEM Alpnach Untere Gründlistrasse 1 CH-6055 Alpnach Dorf CSEM Landquart Bahnhofstrasse 1 CH-7302 Landquart CSEM Muttenz Tramstrasse 99 CH-4132 Muttenz CSEM Zurich Technoparkstrasse 1 CH-8005 Zurich www.csem.ch [email protected] [email protected] IMPRINT Full report title CSEM Scientific and Technical Report 2016 Editor and publisher CSEM SA [email protected] T +41 32 720 5111 Design CSEM Communications [email protected] T +41 32 720 5111 Publication Frequency yearly Media printed and electronic Website www.csem.ch/str2016 Printing Imprimerie Baillod SA, Bevaix (Switzerland) Cover page Projection of artwork by coherent illumination of designed optical nanostructures. The project creates a connection between nanotechnology and art by using designed nanostructures to project artwork in single and full color. Once the optical nanostructures have been designed and a physical master created, an infinite number of low-cost copies can be reproduced. The original artwork, from the artist Véronique Lecomte, known as Velec, is made of neon light tubes. Courtesy: VELEC www.velec.ch CSEM SA CSEM is a private, non-profit research and technology organization (RTO) and a Swiss innovation accelerator—a catalyst for the transfer of technologies and know-how from fundamental research to industry. CSEM’s extraordinary success in the field of innovation and its diffusion stems from its promotion of technology-based activities that address the next generation of trends—the future of energy, the Internet of Things revolution, the advent of wearable technologies for wellness and medical applications, or the rendering widespread of machine-to- machine (M2M) communications required by Industry 4.0.
    [Show full text]
  • Formation Mechanism of Insensitive Tellurium Hexanitride with Armchair
    ARTICLE https://doi.org/10.1038/s42004-020-0286-1 OPEN Formation mechanism of insensitive tellurium hexanitride with armchair-like cyclo-N6 anions ✉ ✉ Zhao Liu1,DaLi 1 , Quan Zhuang1, Fubo Tian1, Defang Duan 1, Fangfei Li1 & Tian Cui1,2 1234567890():,; The lower decomposition barriers of cyclo-N6 anions hinder their application as high-energy- density materials. Here, first-principles calculations and molecular dynamics simulations reveal that enhancing the covalent component of the interaction between cyclo-N6 anions and cations can effectively improve the stability of cyclo-N6 anions. Taking tellurium hex- anitride as a representative, the exotic armchair-like N6 anions of tellurium hexanitride exhibit resistance towards electronic attack and gain extra stability through the formation of covalent bonds with the surrounding elemental tellurium under high pressures. These covalent bonds effectively improve the chemical barrier and insensitivity of tellurium hexanitride during blasting, which prevents the decomposition of solid cyclo-N6 salts into molecular nitrogen. Furthermore, the high-pressure induced covalent bonds between cyclo-N6 anions and tell- urium enable the high bulk modulus, remarkable detonation performance, and high- temperature thermodynamic stability of tellurium hexanitride. 1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People’s Republic of China. 2 School of Physical Science and Technology, ✉ Ningbo University, Ningbo 315211, People’s Republic of China. email: [email protected]; [email protected] COMMUNICATIONS CHEMISTRY | (2020) 3:42 | https://doi.org/10.1038/s42004-020-0286-1 | www.nature.com/commschem 1 ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-020-0286-1 igh pressure, a typically clean and controllable thermo- with nitrogen; thus, we adopt the binary Te–N candidates as dynamic variable, can be adopted to obtain curious prototypes to search for cyclo-N6 ions and study the trap effect by H fi 27,28 materials that are dif cult to synthesize under ambient the covalent bond .
    [Show full text]
  • Energetic Materials 1
    ENERGETIC MATERIALS Energetic Materials 1 Volume 1 : Physics and Chemistry of the Inorganic Azides Volume 2: Technology of the Inorganic Azides Physics and Chemistry of the Inorganic Azides Edited by H. [I. Fair :1nC1 R. F. W;~lkcr Energetic Materiuh Division Armanrent Research and Development Command Dover, New Jersey PLENUM PRESS NEW YORK AND LONDON and b + i. Some of the reactions are evidently complex, and such equations &$@[ The same author 1241 also obtained HN3 from hydrazine and hydroxylamine by oxidation (b + c): Lm text are not strictly quantitative. i 1 laterCu , discovered HN3 [I] by reacting benzoylhydrazine with nitrous acid i N2H4 + NHzOH + 20 4 HN3 + 3H2O (b + g-type reaction). The resulting benzoyl azide was saponified, and sodium azide was isolated from the alkaline mixture. In 1903 Wislicenus [14] synthesized Of various oxidants tested, hydroperoxide and chromic acid gave the best sodium azide solely from inorganic compounds, namely, sodium metal, am- results (24% yield). monia, and dinitrogen oxide (a + e). The reaction proceeds in two steps, first Thiele [25] converted aminoguanidine with nitrous acid (b + g) to guanyl converting ammonia with sodium to sodamide, and then reacting this with di- azide [26] which was saponified to sodium azide: nitrogen oxide to yield sodium azide. Fifty percent of the sodamide is decom- posed to hydroxide and ammonia, and the overall balance of the process is 2NaNH2 + N20 -+ NaN3 + NaOH + NH3 Wislicenus conducted the synthesis as a dry procedure at elevated temperature; a Another interesting reaction (b + g) was studied by Freund and Schander low-temperature procedure in liquid ammonia was later patented by Acken and [?7].
    [Show full text]
  • April 25, 1961 V M H, BOYER 2,981,616 'Li "'
    April 25, 1961 v M_ H, BOYER 2,981,616 GAS GENERATOR GRAIN Filed ÜCÍ'. l, 1956 'li "' 26/ BY M2M AGENT 'lf `tent _ ICC 2,981,616 UnitedI tates ï le'ensserr~ia5» 2 vand x represents the valency 'of M, and (2)V at least Forio oxidizing compound selected from the Aclass consistirfg of metal peroxides, inorganic perchlorates and metal iii 2,981,616 trates; said azides and said oxidizing ‘compounds bein‘g GAs GENERATOR GRAIN present in amounts expressed by the V’equation rdm-'45', wherein n represents the number of azide nitrogen atoms, Myron H. Boyer, Puente, Calif., assignor to m represents the number of equivalents ofoxidizing 'coni North American Aviation, Inc. pounds, and y lhas a numerical value of from about Y2:3 a Filed oct. 1, 1956, ser. No. 613,327 to about 3.6. ` » Y d ` ï 10 An example'of the gas generator grain of this 'inven s Claims. (el. sz­­.5) tion vis a composition comprising ’calcium'azide and pól tassium perchlorate ­in amounts ­such that 'ther-'equatiòh n/m has the value 3,. , ' ' Y " i j The azides, M(N3)x, that can be _used in the >preptufaf This invention relates to a novel composition or" matter 15 tion of ’the compositions of vthis inventionca'n Abe any suitable for generating gases. More particularly, this _azide which has suitable stability to permit grindin'grand invention relates to a composition which upon ignition Vhandling in the preparation of the composition, and alsno generates an inert gas useful for pressurizing rocket pro will burn at a satisfactory ­rate Without exploding.
    [Show full text]