Formation Mechanism of Insensitive Tellurium Hexanitride with Armchair
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NSF Renewal Proposal Appendix B
Appendix B – Part II Results from Prior Support (one-pagers) As examples of the breadth and vitality of the scientific achievements of the COMPRES community, Appendix B of this proposal provides 143 research “one-pagers” that have been submitted by research groups in preparation of this proposal that summarize selected published results enabled by COMPPRES investment in community facilities and infrastructure from 2012- 2016. B-1 Table of Contents – One-Pagers High pressure-temperature phase diagrams of energetic materials: FOX-7 & TATB B-6 Nanocrystals in compression: Unexpected structural phase transition and amorphization due to surface impurities B-7 Pressure induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite B-8 High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties B-9 Pressure-driven high-to-low spin transition in the bimetallic quantum magnet [Ru2(O2CMe)4]3[Cr(CN)6] B-10 Pressure-induced magnetic crossover driven by hydrogen bonding in CuF2(H2O)2(3- chloropyridine) B-11 Pressure-induced structural transition in copper pyrazine dinitrate and implications for quantum magnetism B-12 High pressure vibrational properties of WS2 nanotubes B-13 Infrared study of the pressure-induced insulator-to-metal transition in PrRu4P12 B-14 Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete B-15 High-pressure behavior of osmium: An analog for iron in Earth’s core B-16 Pressure-induced phase -
A Bibliography of Experimental Saturation Properties of the Cryogenic Fluids1
National Bureau of Standards Library, K.W. Bldg APR 2 8 1965 ^ecknlcai rlote 92c. 309 A BIBLIOGRAPHY OF EXPERIMENTAL SATURATION PROPERTIES OF THE CRYOGENIC FLUIDS N. A. Olien and L. A. Hall U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national stand- ards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particu- larly for government agencies; cooperation in the establishment of standard practices for incorpora- tion in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, tech- nical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Ap- plied Mathematics. -
Route to High-Energy Density Polymeric Nitrogen T-N Via Heâˆ'n Compounds
ARTICLE DOI: 10.1038/s41467-018-03200-4 OPEN Route to high-energy density polymeric nitrogen t- N via He−N compounds Yinwei Li1, Xiaolei Feng2,3, Hanyu Liu4, Jian Hao1, Simon A.T. Redfern 3,5, Weiwei Lei6, Dan Liu6 & Yanming Ma2,7 Polymeric nitrogen, stabilized by compressing pure molecular nitrogen, has yet to be recovered to ambient conditions, precluding its application as a high-energy density material. 1234567890():,; Here we suggest a route for synthesis of a tetragonal polymeric nitrogen, denoted t-N, via He-N compounds at high pressures. Using first-principles calculations with structure searching, we predict a class of nitrides with stoichiometry HeN4 that are energetically stable (relative to a mixture of solid He and N2) above 8.5 GPa. At high pressure, HeN4 comprises a polymeric channel-like nitrogen framework filled with linearly arranged helium atoms. The nitrogen framework persists to ambient pressure on decompression after removal of helium, forming pure polymeric nitrogen, t-N. t-N is dynamically and mechanically stable at ambient pressure with an estimated energy density of ~11.31 kJ/g, marking it out as a remarkable high- energy density material. This expands the known polymeric forms of nitrogen and indicates a route to its synthesis. 1 School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China. 2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China. 3 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. 4 Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA. 5 Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China. -
United States Patent [191 [111 3,768,865 [45] Oct
United States Patent [191 [111 3,768,865 [45] Oct. 30, 1973 Dehn [54] PROCESS FOR THE DISPOSAL OF SALT SOLUTIONS CONTAMINATED WITH [56] References Cited AZIDE ‘ UNITED STATES PATENTS [75] Inventor: Frederick C. Dehn, New 2,348,16l 5/1944 Van DUZCC ................... .. 166/305 D Martinsville, W. Va. 3,l96,6l9 7/l965 Shock . .. 6l/.5 X 3,135,50l 6/1964 Dahms et al .......................... .._299/4 [731 Assignee: PPG Industries, Inc., Pittsburgh, Pa. [221 Filed: July 13, 1972 Primary Examiner--Ernest R. Purser Attorney-Russell A. Eberly [211 Appl. No.: 271,436 Related 0.8. Application Data [57] ABSTRACT [63] Continuation-impart of Ser. No. 92,37], Nov. 24, 1970, abandoned. The disposal of salt solutions contaminated with azide is accomplished by depositing the solution in a subter U-S- Cl ------------------------- -- 299/4, 23/157, 61/0-5, ranean cavity, maintaining the solution in the subter [52] 166/305 D ranean cavity until it is essentially free of azide, and [51] Int. Cl ........................................... .. E2lb pumping the essentially azidefree solution to the gun [53] Field of Search ..................................... .. 61/05; face - 23/157-163, 190, 191, 356, 360;166/305 299/4, 5;D 18 v Claims,_ 2 Drawing_ Figures_ 39 38 ‘a 341 1\ 4 45 Na. N3 Aun No.0“ Lew-mun] HCl 16- |'——W 4~ 4.0 _ b ,42 : " l2‘ ~ ' <—-sTeAm l4 _' _ KNS. DRIPS Patented‘ Oct. 30, 1973 3,768,865 2 Sheets-Sheet 1 V =03:nzaz8: $502563 p.01. INVENTOR FPEDfk/CK c. UEHN ATTORNEYj Patented Oct. 30, 1973 3,768,865.‘ 2 Sheets-Sheet >3 mom/m c. -
Thermophysics of Alkali and Related Azides II. Heat Capacities of Potassium, Rubidium, Cesium, and Thallium Azides from 5 to 350 K E,B
A-046 J. Chem. Thermodynamics 1978, 10, 1181-1200 Thermophysics of alkali and related azides II. Heat capacities of potassium, rubidium, cesium, and thallium azides from 5 to 350 K e,b ROBERT W. CARLING cud and EDGAR F. WESTRUM, JR.” Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. (Received 26 July I977; in revised form 7 April 1978) The heat capacities of potassium, rubidium, &urn, and thallium azides were determined from 5 to 350 K by adiabatic calorimetry. Although the alkali-metal azides studied in this work exhibited no thermal anomalies over the temperature range studied, thaIlium azide has a bifurcated anomaly with two maxima at (233.0*0.1) K and (242.0410.02) K. The associated excess entropy was 0.90 calth K-l mol-I. The thermal properties of the azides and the corresponding structurally similar hydrogen difluorides are nearly identical. Both have linear symmetrical anions. However, thallium azide shows a solid-solid phase transition not exhibited by thallium hydrogen difluoride. At 298.15 K the values of C& S”, and -{G”(T)-HN”(0)}/T, respectively, are 18.38, 24.86, and 12.676 calth K-l mol-r for potassium azide; 19.09,28.78, and 15.58 calth K-l mol-1 for rubidium azide; 19.89, 32.11, and 18.17 calth K-l mol-’ for cesium azide; and 19.26, 32.09, and 18.69 calth K-l mol-’ for thallium azide. Heat capacities at constant volume for KNB were deduced from infrared and Raman data. -
Inventor. Myron H. Boyer
INVENTOR. MYRON H. BOYER BY (2=4 AGEN United States Patent Office is and x represents the valency of M, and (2) at least one oxidizing compound selected from the class consisting of metal peroxides, inorganic perchlorates and metal ni 2,981,616 trates; said azides and said oxidizing compounds being present in amounts expressed by the equation n/my, GAS GENERATOR GRAN wherein in represents the number of azide nitrogenatoms, Myron H. Boyer, Puente, Calif., assignor to m represents the number of equivalents of oxidizing comi North American Aviation, Inc. pounds, and y has a numerical value of from about 23 to about 3.6. |- Filed Oct. 1, 1956, Ser. No. 613,327 10 An example of the gas generator grain of this inven 8 Claims. (CI.52-5) tion is a composition comprising calcium azide and pos tassium perchlorate in amounts such that the “equatiòn n/n has the value 3. The azides, M(Na), that can be used in the prepara This invention relates to a novel composition of matter 5 tion of the compositions of this invention can be any suitable for generating gases. More particularly, this azide which has suitable stability to permit grinding and invention relates to a composition which upon ignition handling in the preparation of the composition, and also generates an inert gas useful for pressurizing rocket pro will burn at a satisfactory rate without exploding. A pellant tanks. class of metal azides which satisfy these requirements In a rocket or missile which is operated on liquid fuel, 20 are the alkali and alkaline earth azides. -
CHEM Safety Manual
Department of Chemistry Safety Manual October 2018 Safety Committee Department of Chemistry Hong Kong University of Science and Technology Table of Contents 1.0 Introduction 2.0 Safety Policy and Responsibility for Safety 2.1 Department Head 2.2 Department of Chemistry Safety Committee 2.3 Laboratory Supervisors 2.4 Researchers 2.5 HSEO 3.0 Information, Training, Safety Clearance, and Safety Clearance at Termination 3.1 Initial Training 3.2 Information on Hazardous Substances 3.3 Additional Safety Information 3.4 Safety Clearance at Termination 4.0 Personal Protective Equipment and Safety Engineering Controls 4.1 Eye Protection 4.2 Protective Apparel 4.3 Respirators 4.4 Laboratory Fume Cupboards 4.5 Fire Extinguishers, Safety Showers, and Eyewash Facilities 5.0 Standard Operating Procedures for Work with Hazardous Substances 5.1 Classes of Hazardous Substances 5.2 General Procedures for Work with Toxic Substances 5.3 General Procedures for Work with Flammable and Explosive Substances 6.0 Procedures for Work with Particularly Hazardous Substances 6.1 Identification and Classification of Particularly Hazardous Substances 6.2 Designated Areas 6.3 General Procedures for Work with Substances of Moderate to High Chronic or High Acute Toxicity 6.4 Additional Procedures for Work with Substances of Known High Chronic Toxicity 6.5 Specific Handling Procedures for Some Common Particularly Hazardous Substances 7.0 Proper Planning of Laboratory Work 7.1 Recognition and Assessment 7.2 Planning for the Unexpected: What Could Go Wrong? 7.3 Site Selection -
Physics of Solids Under Strong Compression
Rep. Prog. Phys. 59 (1996) 29–90. Printed in the UK Physics of solids under strong compression W B Holzapfel Universitat-GH¨ Paderborn, Fachbereich Physik, Warburger Strasse 100, D-33095 Paderborn, Germany Abstract Progress in high pressure physics is reviewed with special emphasis on recent developments in experimental techniques, pressure calibration, equations of state for simple substances and structural systematics of the elements. Short sections are also devoted to hydrogen under strong compression and general questions concerning new electronic ground states. This review was received in February 1995 0034-4885/96/010029+62$59.50 c 1996 IOP Publishing Ltd 29 30 W B Holzapfel Contents Page 1. Introduction 31 2. Experimental techniques 31 2.1. Overview 31 2.2. Large anvil cells (LACs) 33 2.3. Diamond anvil cells (DACs) 33 2.4. Shock wave techniques 39 3. Pressure sensors and scales 42 4. Equations of state (EOS) 44 4.1. General considerations 44 4.2. Equations of state for specific substances 51 4.3. EOS data for simple metals 52 4.4. EOS data for metals with special softness 55 4.5. EOS data for carbon group elements 58 4.6. EOS data for molecular solids 59 4.7. EOS data for noble gas solids 60 4.8. EOS data for hydrogen 62 4.9. EOS forms for compounds 63 5. Phase transitions and structural systematics 65 5.1. Alkali and alkaline-earth metals 66 5.2. Rare earth and actinide metals 66 5.3. Ti, Zr and Hf 68 5.4. sp-bonded metals 68 5.5. -
Polymeric Nitrogen by Plasma Enhanced Chemical Vapor Deposition
New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Fall 1-31-2015 Polymeric nitrogen by plasma enhanced chemical vapor deposition El Mostafa Benchafia New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Materials Science and Engineering Commons Recommended Citation Benchafia, El Mostafa, "Polymeric nitrogen by plasma enhanced chemical vapor deposition" (2015). Dissertations. 98. https://digitalcommons.njit.edu/dissertations/98 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept -
Pressure-Induced Stability and Polymeric Nitrogen in Alkaline Earth
RSC Advances View Article Online PAPER View Journal | View Issue Pressure-induced stability and polymeric nitrogen in alkaline earth metal N-rich nitrides (XN ,X¼ Ca, Cite this: RSC Adv.,2021,11, 17222 6 Sr and Ba): a first-principles study† Zhipeng Liu, Shuli Wei, * Yanhui Guo, Haiyang Sun, Hao Sun, Qiang Chang and Yuping Sun * Multi-nitrogen or polynitrogen compounds can be used as potential high energy-density materials, so they have attracted great attention. Nitrogen can exist in alkaline earth metal nitrogen-rich (N-rich) compounds in the form of single or double bonds. In recent years, to explore N-rich compounds which are stable and easy to synthesize has become a new research direction. The N-rich compounds XN6 (X ¼ Ca, Sr and Ba) have been reported under normal pressure. In order to find other stable crystal structures, we have performed XN6 (X ¼ Ca, Sr and Ba) exploration under high pressure. We found that SrN6 has a new P1 phase at a pressure of 22 GPa and an infinite nitrogen chain structure, and BaN6 has a new C2/m phase Creative Commons Attribution-NonCommercial 3.0 Unported Licence. at 110 GPa, with an N6 ring network structure. Further, we observed that the infinite nitrogen chain and 2 the N6 ring network structure contain typical covalent bonds formed by the hybridization of the sp and 3 sp orbitals of N, respectively. It is found that both SrN6 and BaN6 are semiconductor materials and the N-2p orbital plays an important role in the stability of the crystal structure for P1-SrN6 and C2/m-BaN6. -
Vi. Properties of Nitrogen Contents
VI. PROPERTIES OF NITROGEN CONTENTS A. Vapor Pressure 1. Vapor Pressure at Saturation B. Specific Volume 1. Specific Volume at Saturation C. Compressibility Factor 1. Compressibility for Nitrogen D. Specific Heat 1. Liquid Nitrogen at Saturation (CU) 2. Gaseous Nitrogen (Cp) / E. Heat of Vaporization 1. Heat of Vaporization and Enthalpy o ‘I itrogen Liquid and Vapor. F. Ent Aalpy 1. Table of Nitrogen Properties’ 2, Temperature-Entropy Chart for Nitrogen G. Thermal Conductivity 1. Liquid Nltrogen 2. Gaseous Nitrogen H. Dielectric Constant 1. Liquid Nitrogen 2. Gaseous Nitrogen I. Surf ace Tension 1. Liquid Nitrogen J. vi sco sity 1. Liquid Nitrogen 2. Gaseous Nitrogen K. Velocity of Sound 1. Liquid Nitrogen 2. Gaseous Nitrogen VI-INDEX Vapor Pressure of Saturated Nitrogen Temperature Pressure * Pres sure (K) ( ATM) PSIA 63.150 0.123 . 1.808 64 .OOO o .I44 2.116 65 .OOO O ,172 2.528 66 .ooo O e203 2 0983 67.000 0.240 3.527 68 .ooo 0.281 4.130 69 .ooo 0.328 4.820 70 .OOO 0.380 5 0585 71 .ooo 0.439 6.453 72 .OOO 0 9505 7.422 73.000 0.579 8 -509 74 .ooo 0 .660 9.699 75.000 0 -750 11.022 76 .ooo 0.849. 12.477 77.000 0 -958 14.079 77.364 1.ooo 14.696 78 .ooo 1.077 15.828 79.000 1.207 17.738 80 .ooo 3. -349 19.825 81 .ooo e503 .22,088 82 .OOO 1.6701 24.542 83 .OOO 1.850 27.188 84 .ooo 2.045 ' 30.053 85 .OOO 2.254 33 125 86 .ooo 2.480 36.446 87 .ooo 2.721 39 988 88 .ooo 2.980 43.794 89 .ooo 3 256 47.850 go. -
Isolated Hydrogen in II–VI Zinc–Chalcogenide Widegap Semiconductors Modelled by the Muon Analogue
Rui C¶esarVil~ao Isolated hydrogen in II{VI zinc{chalcogenide widegap semiconductors modelled by the muon analogue Faculdade de Ci^enciase Tecnologia Universidade de Coimbra Coimbra { 2007 ii Rui C¶esarVil~ao Isolated hydrogen in II{VI zinc{chalcogenide widegap semiconductors modelled by the muon analogue [Hidrogenio¶ isolado em calcogenos¶ de zinco da fam¶³lia II-VI com propriedades semicondutoras e intervalo largo de energias proibidas, estudado atraves¶ da analogia com o muao]~ Disserta»c~aode doutoramento em F¶³sica, especialidade de F¶³sicaExperimental, submetida `aFaculdade de Ci^enciase Tecnologia, Universidade de Coimbra Coimbra - 2007 iv Aos meus Pais A` Susana vi Abstract We have investigated the behaviour of isolated hydrogen in II{VI zinc chalco- genide widegap semiconductors, by means of the positive-muon analogue. A broad program of muon-spin rotation, relaxation and resonance measurements was under- taken for monocrystalline samples of ZnSe, upon adequate characterization (parti- cularly on the electrical transport properties, by means of Hall-e®ect and resistivity measurements). Two compact paramagnetic muonium states MuI and MuII were identi¯ed and the interconversion process was characterized. Capture of a second ¡ electron by MuII, forming the negative ion MuII was observed as well. This charged state becomes thermally unstable above 60 K and we relate this to possible ioni- zation to the conduction band and estimate the corresponding acceptor level. In adition to ZnSe, monocrystalline samples of ZnS and ZnTe were investigated. Only one paramagnetic state is observed in ZnS, whose behaviour is shown to be much similar to that of MuII in ZnSe. In ZnTe, only a diamagnetic state is observed, which we suggest corresponds to a deep donor in this material.