A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 Mpa Roland Span, Eric W

Total Page:16

File Type:pdf, Size:1020Kb

A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 Mpa Roland Span, Eric W A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa Roland Span, Eric W. Lemmon, Richard T Jacobsen, Wolfgang Wagner, and Akimichi Yokozeki Citation: Journal of Physical and Chemical Reference Data 29, 1361 (2000); doi: 10.1063/1.1349047 View online: http://dx.doi.org/10.1063/1.1349047 View Table of Contents: http://scitation.aip.org/content/aip/journal/jpcrd/29/6?ver=pdfcov Published by the AIP Publishing Articles you may be interested in A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa J. Phys. Chem. Ref. Data 35, 205 (2006); 10.1063/1.1859286 A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125) J. Phys. Chem. Ref. Data 34, 69 (2005); 10.1063/1.1797813 The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use J. Phys. Chem. Ref. Data 31, 387 (2002); 10.1063/1.1461829 New Equation of State for Ethylene Covering the Fluid Region for Temperatures From the Melting Line to 450 K at Pressures up to 300 MPa J. Phys. Chem. Ref. Data 29, 1053 (2000); 10.1063/1.1329318 Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa J. Phys. Chem. Ref. Data 29, 331 (2000); 10.1063/1.1285884 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 132.163.193.104 On: Fri, 23 Jan 2015 20:42:46 A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa Roland Spana…,d… Lehrstuhl fu¨r Thermodynamik, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany Eric W. Lemmonb… Physical and Chemical Properties Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328 Richard T Jacobsenc… Center for Applied Thermodynamic Studies, College of Engineering, University of Idaho, Moscow, Idaho 83844-1011 Wolfgang Wagner Lehrstuhl fu¨r Thermodynamik, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany Akimichi Yokozeki DuPont FluoroProducts Laboratory, Chestnut Run Plaza 711, Wilmington, Delaware 19880 Received December 10, 1999; revised manuscript received November 20, 2000 A new formulation for the thermodynamic properties of nitrogen has been developed. Many new data sets have become available, including high accuracy data from single and dual-sinker apparatuses which improve the accuracy of the representation of the p␳T surface of gaseous, liquid, and supercritical nitrogen, including the saturation states. New measurements of the speed of sound from spherical resonators yield accurate information on caloric properties in gaseous and supercritical nitrogen. Isochoric heat capacity and enthalpy data have also been published. Sophisticated procedures for the optimization of the mathematical structure of equations of state and special functional forms for an improved representation of data in the critical region were used. Constraints regarding the structure of the equation ensure reasonable results up to extreme conditions of tempera- ture and pressure. For calibration applications, the new reference equation is supple- mented by a simple but also accurate formulation, valid only for supercritical nitrogen between 250 and 350 K at pressures up to 30 MPa. The uncertainty in density of the new reference equation of state ranges from 0.02% at pressures less than 30 MPa up to 0.6% at very high pressures, except in the range from 270 to 350 K at pressures less than 12 MPa where the uncertainty in density is 0.01%. The equation is valid from the triple point temperature to temperatures of 1000 K and up to pressures of 2200 MPa. From 1000 to 1800 K, the equation was validated with data of limited accuracy. The extrapolation behavior beyond 1800 K is reasonable up to the limits of chemical stability of nitrogen, as indicated by comparison to experimental shock tube data. © 2001 by the U.S. Sec- retary of Commerce on behalf of the United States. All rights reserved. Key words: caloric properties; density; equation of state; fundamental equation; nitrogen; thermodynamic properties. Contents a͒Electronic mail: [email protected] b͒Electronic mail: [email protected] c͒Current Address: Idaho National Engineering and Environmental Labora- 1. Introduction................................ 1365 tory, Idaho Falls, Idaho 83415-3790. 1.1. Prior Correlations of Nitrogen Properties.... 1365 ͒ d Current address: ALSTOM Power Technology Ltd., Segelhof 1, CH-5405 1.2. The Equation of State for Nitrogen. ....... 1365 Baden-Da¨ttwil, Switzerland. © 2001 by the U.S. Secretary of Commerce on behalf of the United States. 2. Vapor–Liquid and Solid–Liquid Coexistence All rights reserved. Properties................................. 1366 Õ Õ Õ Õ Õ 0047-2689 2000 29„6… 1361 73 $35.001361 J. Phys. Chem. Ref. Data, Vol. 29, No. 6, 2000 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 132.163.193.104 On: Fri, 23 Jan 2015 20:42:46 1362 SPAN ET AL. 2.1. Critical Point........................... 1366 13. Summary of enthalpy, heat of vaporization, and 2.2. Triple Point............................ 1367 Joule–Thomson coefficient data............... 1377 2.3. Vapor Pressure......................... 1367 14. Dissociation of nitrogen at high temperatures. 1380 2.4. Saturation Densities..................... 1367 15. Summary of comparisons of the selected data in 2.5. Melting Pressure........................ 1367 six different regions of the surface of state...... 1383 2.6. Ancillary Equations. .................... 1368 16. Data types used in linear and nonlinear 3. Experimental Data for the Single-Phase Region... 1370 optimization algorithms...................... 1384 3.1. p␳T Data and Virial Coefficients. ......... 1370 17. Parameters and coefficients of the equation of 3.2. Caloric Data. ......................... 1371 state...................................... 1385 4. The Equation of State for Nitrogen............. 1374 18. Parameters of the Gaussian bell shaped terms in 4.1. Properties of the Ideal Gas................ 1374 the equation of state......................... 1385 4.1.1. Ideal Gas Heat Capacity............ 1376 19. Parameters and coefficients of the calibration 4.1.2. Effects of Vibrational Relaxation equation of state............................ 1398 Time on the Speed of Sound......... 1381 4.1.3. Ideal Gas Helmholtz Energy......... 1382 4.2. Properties of the Real Fluid............... 1382 List of Figures 4.2.1. Selected Database.................. 1382 1. Comparisons of vapor pressures calculated with 4.2.2. Fitting Procedures. ................. 1382 the ancillary equations to experimental data...... 1368 4.2.3. Equation for the Residual Helmholtz 2. Comparisons of saturated liquid densities Energy........................... 1384 calculated with the ancillary equations to 4.3. Derived Thermodynamic Properties......... 1384 experimental data........................... 1369 5. Comparisons of the Equation of State to 3. Comparisons of saturated vapor densities Experimental Data.......................... 1387 calculated with the ancillary equations to 5.1. Comparisons with Vapor Pressures and experimental data........................... 1369 Saturation Densities..................... 1387 4. Comparisons of melting pressures calculated 5.2. Comparisons of the Equation of State for with the ancillary equation to experimental data.. 1369 Nitrogen with other Experimental Data...... 1388 5. p␳T data.................................. 1373 5.3. Representation of Properties in the Critical 6. p␳T data between 250 and 400 K. ͑Author Region................................ 1393 labels are given in Fig. 5.͒.................... 1373 5.4. Extrapolation Behavior................... 1395 7. Critical region p␳T data. ͑Author labels are 5.4.1. Ideal Curves of Nitrogen............ 1395 given in Fig. 5.͒............................ 1373 5.4.2. Hugoniot Curve................... 1395 8. Speed of sound data......................... 1376 5.4.3. Property Plots..................... 1396 9. Isobaric and isochoric heat capacity data. ...... 1377 6. Estimated Uncertainty of Calculated Properties... 1397 14 10. Low temperature ideal gas heat capacity of N2. 7. The Calibration Equation..................... 1398 14 The curves for normal N2 and naturally 8. Acknowledgments.......................... 1398 occurring nitrogen are nearly identical.......... 1379 9. References................................. 1399 15 11. Low temperature ideal gas heat capacity of N2 10. Appendix: Thermodynamic Properties of and 14N15N................................ 1379 Nitrogen.................................. 1401 12. Ideal gas heat capacity of naturally occurring nitrogen ͑solid line͒ and calculations from the List of Tables RRHO model without electronic states or 1 Summary of critical point measurements........ 1366 quantum mechanical corrections ͑dashed line͒. 1380 2. Summary of triple point measurements.......... 1367 13. Comparisons of ideal gas heat capacities 3. Summary of vapor pressure data. ............. 1367 calculated with the ancillary equation to 4. Summary of saturated liquid and vapor density experimental
Recommended publications
  • Thermodynamics Notes
    Thermodynamics Notes Steven K. Krueger Department of Atmospheric Sciences, University of Utah August 2020 Contents 1 Introduction 1 1.1 What is thermodynamics? . .1 1.2 The atmosphere . .1 2 The Equation of State 1 2.1 State variables . .1 2.2 Charles' Law and absolute temperature . .2 2.3 Boyle's Law . .3 2.4 Equation of state of an ideal gas . .3 2.5 Mixtures of gases . .4 2.6 Ideal gas law: molecular viewpoint . .6 3 Conservation of Energy 8 3.1 Conservation of energy in mechanics . .8 3.2 Conservation of energy: A system of point masses . .8 3.3 Kinetic energy exchange in molecular collisions . .9 3.4 Working and Heating . .9 4 The Principles of Thermodynamics 11 4.1 Conservation of energy and the first law of thermodynamics . 11 4.1.1 Conservation of energy . 11 4.1.2 The first law of thermodynamics . 11 4.1.3 Work . 12 4.1.4 Energy transferred by heating . 13 4.2 Quantity of energy transferred by heating . 14 4.3 The first law of thermodynamics for an ideal gas . 15 4.4 Applications of the first law . 16 4.4.1 Isothermal process . 16 4.4.2 Isobaric process . 17 4.4.3 Isosteric process . 18 4.5 Adiabatic processes . 18 5 The Thermodynamics of Water Vapor and Moist Air 21 5.1 Thermal properties of water substance . 21 5.2 Equation of state of moist air . 21 5.3 Mixing ratio . 22 5.4 Moisture variables . 22 5.5 Changes of phase and latent heats .
    [Show full text]
  • Thermodynamic State Variables Gunt
    Fundamentals of thermodynamics 1 Thermodynamic state variables gunt Basic knowledge Thermodynamic state variables Thermodynamic systems and principles Change of state of gases In physics, an idealised model of a real gas was introduced to Equation of state for ideal gases: State variables are the measurable properties of a system. To make it easier to explain the behaviour of gases. This model is a p × V = m × Rs × T describe the state of a system at least two independent state system boundaries highly simplifi ed representation of the real states and is known · m: mass variables must be given. surroundings as an “ideal gas”. Many thermodynamic processes in gases in · Rs: spec. gas constant of the corresponding gas particular can be explained and described mathematically with State variables are e.g.: the help of this model. system • pressure (p) state process • temperature (T) • volume (V) Changes of state of an ideal gas • amount of substance (n) Change of state isochoric isobaric isothermal isentropic Condition V = constant p = constant T = constant S = constant The state functions can be derived from the state variables: Result dV = 0 dp = 0 dT = 0 dS = 0 • internal energy (U): the thermal energy of a static, closed Law p/T = constant V/T = constant p×V = constant p×Vκ = constant system. When external energy is added, processes result κ =isentropic in a change of the internal energy. exponent ∆U = Q+W · Q: thermal energy added to the system · W: mechanical work done on the system that results in an addition of heat An increase in the internal energy of the system using a pressure cooker as an example.
    [Show full text]
  • Basic Thermodynamics-17ME33.Pdf
    Module -1 Fundamental Concepts & Definitions & Work and Heat MODULE 1 Fundamental Concepts & Definitions Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic processes. Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium, Zeroth law of thermodynamics, Temperature; concepts, scales, fixed points and measurements. Work and Heat Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. 10 Hours 1st Hour Brain storming session on subject topics Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems 2nd Hour Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive and extensive properties. 3rd Hour Thermodynamic state, state point, state diagram, path and process, quasi-static
    [Show full text]
  • Thermal Equilibrium State of the World Oceans
    Thermal equilibrium state of the ocean Rui Xin Huang Department of Physical Oceanography Woods Hole Oceanographic Institution Woods Hole, MA 02543, USA April 24, 2010 Abstract The ocean is in a non-equilibrium state under the external forcing, such as the mechanical energy from wind stress and tidal dissipation, plus the huge amount of thermal energy from the air-sea interface and the freshwater flux associated with evaporation and precipitation. In the study of energetics of the oceanic circulation it is desirable to examine how much energy in the ocean is available. In order to calculate the so-called available energy, a reference state should be defined. One of such reference state is the thermal equilibrium state defined in this study. 1. Introduction Chemical potential is a part of the internal energy. Thermodynamics of a multiple component system can be established from the definition of specific entropy η . Two other crucial variables of a system, including temperature and specific chemical potential, can be defined as follows 1 ⎛⎞∂η ⎛⎞∂η = ⎜⎟, μi =−Tin⎜⎟, = 1,2,..., , (1) Te m ⎝⎠∂ vm, i ⎝⎠∂ i ev, where e is the specific internal energy, v is the specific volume, mi and μi are the mass fraction and chemical potential for the i-th component. For a multiple component system, the change in total chemical potential is the sum of each component, dc , where c is the mass fraction of each component. The ∑i μii i mass fractions satisfy the constraint c 1 . Thus, the mass fraction of water in sea ∑i i = water satisfies dc=− c , and the total chemical potential for sea water is wi∑iw≠ N −1 ∑()μμiwi− dc .
    [Show full text]
  • Laws of Thermodynamics
    Advanced Instructional School on Mechanics, 5 - 24, Dec 2011 Special lectures Laws of Thermodynamics K. P. N. Murthy School of Physics, University of Hyderabad Dec 15, 2011 K P N Murthy (UoH) Thermodynamics Dec 15, 2011 1 / 126 acknowledgement and warning acknowledgement: Thanks to Prof T Amaranath and V D Sharma for the invitation warning: I am going to talk about the essential contents of the laws of thermodynamics, tracing their origin, and their history The Zeroth law, the First law the Second law .....and may be the Third law, if time permits I leave it to your imagination to connect my talks to the theme of the School which is MECHANICS. K P N Murthy (UoH) Thermodynamics Dec 15, 2011 2 / 126 Each law provides an experimental basis for a thermodynamic property Zeroth law= ) Temperature, T First law= ) Internal Energy, U Second law= ) Entropy, S The earliest was the Second law discovered in the year 1824 by Sadi Carnot (1796-1832) Sadi Carnot Helmholtz Rumford Mayer Joule then came the First law - a few decades later, when Helmholtz consolidated and abstracted the experimental findings of Rumford, Mayer and Joule into a law. the Zeroth law arrived only in the twentieth century, and I think Max Planck was responsible for it K P N Murthy (UoH) Thermodynamics Dec 15, 2011 3 / 126 VOCALUBARY System: The small part of the universe under consideration: e.g. a piece of iron a glass of water an engine The rest of the universe (in which we stand and make observations and measurements on the system) is called the surroundings a glass of water is the system and the room in which the glass is placed is called the surrounding.
    [Show full text]
  • Atkins' Physical Chemistry
    Statistical thermodynamics 2: 17 applications In this chapter we apply the concepts of statistical thermodynamics to the calculation of Fundamental relations chemically significant quantities. First, we establish the relations between thermodynamic 17.1 functions and partition functions. Next, we show that the molecular partition function can be The thermodynamic functions factorized into contributions from each mode of motion and establish the formulas for the 17.2 The molecular partition partition functions for translational, rotational, and vibrational modes of motion and the con- function tribution of electronic excitation. These contributions can be calculated from spectroscopic data. Finally, we turn to specific applications, which include the mean energies of modes of Using statistical motion, the heat capacities of substances, and residual entropies. In the final section, we thermodynamics see how to calculate the equilibrium constant of a reaction and through that calculation 17.3 Mean energies understand some of the molecular features that determine the magnitudes of equilibrium constants and their variation with temperature. 17.4 Heat capacities 17.5 Equations of state 17.6 Molecular interactions in A partition function is the bridge between thermodynamics, spectroscopy, and liquids quantum mechanics. Once it is known, a partition function can be used to calculate thermodynamic functions, heat capacities, entropies, and equilibrium constants. It 17.7 Residual entropies also sheds light on the significance of these properties. 17.8 Equilibrium constants Checklist of key ideas Fundamental relations Further reading Discussion questions In this section we see how to obtain any thermodynamic function once we know the Exercises partition function. Then we see how to calculate the molecular partition function, and Problems through that the thermodynamic functions, from spectroscopic data.
    [Show full text]
  • REFPROP Documentation Release 10.0
    REFPROP Documentation Release 10.0 EWL, IHB, MH, MML May 21, 2018 CONTENTS 1 REFPROP Graphical User Interface3 1.1 General Information...........................................3 1.2 Menu Commands.............................................6 1.3 DLLs................................................... 26 2 REFPROP DLL documentation 27 2.1 High-Level API............................................. 27 2.2 Legacy API................................................ 55 i ii REFPROP Documentation, Release 10.0 REFPROP is an acronym for REFerence fluid PROPerties. This program, developed by the National Institute of Standards and Technology (NIST), calculates the thermodynamic and transport properties of industrially important fluids and their mixtures. These properties can be displayed in Tables and Plots through the graphical user interface; they are also accessible through spreadsheets or user-written applications accessing the REFPROP dll. REFPROP is based on the most accurate pure fluid and mixture models currently available. It implements three models for the thermodynamic properties of pure fluids: equations of state explicit in Helmholtz energy, the modified Benedict-Webb-Rubin equation of state, and an extended corresponding states (ECS) model. Mixture calculations employ a model that applies mixing rules to the Helmholtz energy of the mixture components; it uses a departure function to account for the departure from ideal mixing. Viscosity and thermal conductivity are modeled with either fluid-specific correlations, an ECS method, or in some cases the friction theory method. CONTENTS 1 REFPROP Documentation, Release 10.0 2 CONTENTS CHAPTER ONE REFPROP GRAPHICAL USER INTERFACE 1.1 General Information 1.1.1 About REFPROP REFPROP is an acronym for REFerence fluid PROPerties. This program, developed by the National Institute of Standards and Technology (NIST), calculates the thermodynamic and transport properties of industrially important fluids and their mixtures.
    [Show full text]
  • Physical Chemistry Laboratory, I CHEM 445 Experiment 5 Heat Capacity Ratio for Gases (Revised, 1/10/03)
    1 Physical Chemistry Laboratory, I CHEM 445 Experiment 5 Heat Capacity Ratio for Gases (Revised, 1/10/03) The heat capacity for a substance is the amount of heat needed to raise the temperature of the substance by 1 oC or 1 K. The heat capacities depend on the chemical nature of the substance, on the physical state of the substance, on the temperature, and on whether P or V is held constant during the process: CP or CV. For liquids and solids, CV ≈ CP and the two terms are often used interchangeably. However, for ideal gases, it is well known (Tinoco, Jr., Sauer, and Wang or Noggle) that − − CP = CV + R (1) − In this equation, C = molar heat capacity of the gas, either at constant pressure or at constant volume. The bar over a symbol refers to that quantity per mol of substance. The molar heat capacities are defined by the equations, − − − ∂ E − ∂ H CV = and CP = (2) ∂T ∂T V P For a monatomic gas, there is no rotational or vibrational energy and if the temperature is relatively low, only the ground electronic state of the species is populated to any extent. Consequently, only translational energy is involved; and from kinetic theory, − 3R − 5R CV = and CP = (3) 2 2 For polyatomic gases, there are additional forms of energy that contribute to the heat capacity. − − − − E = E(trans) + E(rot) + E(vib) (4) For many simple diatomic molecules, however, the vibrational contribution to the heat 5R capacity is small, and in the neighborhood of room temperature,C = . However, the V 2 heat capacities of diatomic molecules increase with increasing temperature as the vibrational modes become active.
    [Show full text]
  • Thermodynamic State, Specific Heat, and Enthalpy Function 01 Saturated UO Z Vapor Between 3000 Kand 5000 K
    Februar 1977 KFK 2390 Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter Thermodynamic State, Specific Heat, and Enthalpy Function 01 Saturated UO z Vapor between 3000 Kand 5000 K H. U. Karow Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor GESELLSCHAFT FÜR KERNFORSCHUNG M. B. H. KARLSRUHE KERNFORSCHUNGS ZENTRUM KARLSRUHE KFK 2390 Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter Thermodynamic State, Specific Heat, and Enthalpy Function of Saturated U0 Vapor between 3000 K 2 and 5000 K H. U. Karow Gesellschaft für Kernforschung mbH., Karlsruhe A summarized version of s will be at '7th Symposium on Thermophysical Properties', held the NBS at Gaithe , 1977 Thermodynamic State, Specific Heat, and Enthalpy Function of Saturated U0 2 Vapor between 3000 K and 5000 K Abstract Reactor safety analysis requires knowledge of the thermophysical properties of molten oxide fuel and of the thermal equation-of­ state of oxide fuel in thermodynamic liquid-vapor equilibrium far above 3000 K. In this context, the thermodynamic state of satu­ rated U0 2 fuel vapor, its internal energy U(T), specific heats Cv(T) and C (T), and enthalpy functions HO(T) and HO(T)-Ho have p 0 been determined by means of statistical mechanics in the tempera- ture range 3000 K .•• 5000 K. The discussion of the thermodynamic state includes the evaluation of the plasma state and its contri­ bution to the caloric variables-of-state of saturated oxide fuel vapor. Because of the extremely high ion and electron density due to thermal ionization, the ionized component of the fuel vapor does no more represent a perfect kinetic plasma - different from the nonionized neutral vapor component with perfect gas kinetic behavior up to about 5000 K.
    [Show full text]
  • Chapter 5 the Laws of Thermodynamics: Entropy, Free
    Chapter 5 The laws of thermodynamics: entropy, free energy, information and complexity M.W. Collins1, J.A. Stasiek2 & J. Mikielewicz3 1School of Engineering and Design, Brunel University, Uxbridge, Middlesex, UK. 2Faculty of Mechanical Engineering, Gdansk University of Technology, Narutowicza, Gdansk, Poland. 3The Szewalski Institute of Fluid–Flow Machinery, Polish Academy of Sciences, Fiszera, Gdansk, Poland. Abstract The laws of thermodynamics have a universality of relevance; they encompass widely diverse fields of study that include biology. Moreover the concept of information-based entropy connects energy with complexity. The latter is of considerable current interest in science in general. In the companion chapter in Volume 1 of this series the laws of thermodynamics are introduced, and applied to parallel considerations of energy in engineering and biology. Here the second law and entropy are addressed more fully, focusing on the above issues. The thermodynamic property free energy/exergy is fully explained in the context of examples in science, engineering and biology. Free energy, expressing the amount of energy which is usefully available to an organism, is seen to be a key concept in biology. It appears throughout the chapter. A careful study is also made of the information-oriented ‘Shannon entropy’ concept. It is seen that Shannon information may be more correctly interpreted as ‘complexity’rather than ‘entropy’. We find that Darwinian evolution is now being viewed as part of a general thermodynamics-based cosmic process. The history of the universe since the Big Bang, the evolution of the biosphere in general and of biological species in particular are all subject to the operation of the second law of thermodynamics.
    [Show full text]
  • Chapter 20 -- Thermodynamics
    ChapterChapter 2020 -- ThermodynamicsThermodynamics AA PowerPointPowerPoint PresentationPresentation byby PaulPaul E.E. TippensTippens,, ProfessorProfessor ofof PhysicsPhysics SouthernSouthern PolytechnicPolytechnic StateState UniversityUniversity © 2007 THERMODYNAMICSTHERMODYNAMICS ThermodynamicsThermodynamics isis thethe studystudy ofof energyenergy relationshipsrelationships thatthat involveinvolve heat,heat, mechanicalmechanical work,work, andand otherother aspectsaspects ofof energyenergy andand heatheat transfer.transfer. Central Heating Objectives:Objectives: AfterAfter finishingfinishing thisthis unit,unit, youyou shouldshould bebe ableable to:to: •• StateState andand applyapply thethe first andand second laws ofof thermodynamics. •• DemonstrateDemonstrate youryour understandingunderstanding ofof adiabatic, isochoric, isothermal, and isobaric processes.processes. •• WriteWrite andand applyapply aa relationshiprelationship forfor determiningdetermining thethe ideal efficiency ofof aa heatheat engine.engine. •• WriteWrite andand applyapply aa relationshiprelationship forfor determiningdetermining coefficient of performance forfor aa refrigeratior.refrigeratior. AA THERMODYNAMICTHERMODYNAMIC SYSTEMSYSTEM •• AA systemsystem isis aa closedclosed environmentenvironment inin whichwhich heatheat transfertransfer cancan taketake place.place. (For(For example,example, thethe gas,gas, walls,walls, andand cylindercylinder ofof anan automobileautomobile engine.)engine.) WorkWork donedone onon gasgas oror workwork donedone byby gasgas INTERNALINTERNAL
    [Show full text]
  • Physical Chemistry I
    Physical Chemistry I Andrew Rosen August 19, 2013 Contents 1 Thermodynamics 5 1.1 Thermodynamic Systems and Properties . .5 1.1.1 Systems vs. Surroundings . .5 1.1.2 Types of Walls . .5 1.1.3 Equilibrium . .5 1.1.4 Thermodynamic Properties . .5 1.2 Temperature . .6 1.3 The Mole . .6 1.4 Ideal Gases . .6 1.4.1 Boyle’s and Charles’ Laws . .6 1.4.2 Ideal Gas Equation . .7 1.5 Equations of State . .7 2 The First Law of Thermodynamics 7 2.1 Classical Mechanics . .7 2.2 P-V Work . .8 2.3 Heat and The First Law of Thermodynamics . .8 2.4 Enthalpy and Heat Capacity . .9 2.5 The Joule and Joule-Thomson Experiments . .9 2.6 The Perfect Gas . 10 2.7 How to Find Pressure-Volume Work . 10 2.7.1 Non-Ideal Gas (Van der Waals Gas) . 10 2.7.2 Ideal Gas . 10 2.7.3 Reversible Adiabatic Process in a Perfect Gas . 11 2.8 Summary of Calculating First Law Quantities . 11 2.8.1 Constant Pressure (Isobaric) Heating . 11 2.8.2 Constant Volume (Isochoric) Heating . 11 2.8.3 Reversible Isothermal Process in a Perfect Gas . 12 2.8.4 Reversible Adiabatic Process in a Perfect Gas . 12 2.8.5 Adiabatic Expansion of a Perfect Gas into a Vacuum . 12 2.8.6 Reversible Phase Change at Constant T and P ...................... 12 2.9 Molecular Modes of Energy Storage . 12 2.9.1 Degrees of Freedom . 12 1 2.9.2 Classical Mechanics .
    [Show full text]