Novel Secondary Metabolites from Selected British Columbian

Total Page:16

File Type:pdf, Size:1020Kb

Novel Secondary Metabolites from Selected British Columbian NOVEL SECONDARY METABOLITES FROM SELECTED BRITISH COLUMBIAN MARINE INVERTEBRATES by STEPHEN WILLIAM AYER A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Chemistry We accept this thesis as conforming d standard THE UNIVERSITY OF BRITISH COLUMBIA March 1985 © Stephen William Ayer, 1985 In presenting this thesis in partial fulfilment of the re• quirements for an advanced degree at the The University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his or her representatives. It is under• stood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Chemistry The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date: March 1985 Abstract Marine organisms show potential as sources for novel, biologically and pharmacologically active, secondary metabolites. Examination of three nudibranch and one bryozoan species for biologically active metabolites has led to the isolation and structural elucidation of nine new and two known secondary metabolites. The structures of all the compounds were determined by using a combination of spectral analysis, chemical interconversion, synthesis, and single-crystal X-ray diffraction analysis. The British Columbian dorid nudibranch Acant hodori s nanaimoensi s yielded three new sesquiterpenoids. The struc• tures of nanaimoal (6_1) , acanthodoral (64) , and isoacanthodoral (6J5) represent novel sesquiterpenoid carbon skeletons. The natural mixture of aldehydes 61, 64, and 65 exhibited antibacterial and antifungal activity. From Aldisa cooperi, two A*-3-ketosteroidal acids 23 and 24, and glycerol ether 25 were isolated. Acid 23 showed feeding deterrent activity against fish. The dendronotid nudibranch Meli be leonina gave 2,6-dimethy1-5-heptenal 53 and 2,6-dimethyl-5-heptenoic acid 5_4_. The aldehyde 5_3 was responsible for the "grapefruit like" odour of the nudibranch. The bryozoan Phidolopora pacifica was examined in an attempt to correlate the absence of surface fouling, in the field, with the presence of biologically active secondary metabolites. The purine alkaloids 179 and 180, which i i contain the rare naturally occurring nitro functionality, were responsible for much of the antifungal and antialgal activity of the crude extracts. Three nitrophenols 181, 189, and 209 were also isolated from P. pacifica. Nitrophenol 181 had been previously shown to inhibit chloroplast development both in green plants and in the unicellular algae Eugl ena sp. Table of Contents Abstract ii List of Figures vi List of Schemes vii List of Tables viii List of Appendices ix Acknowledgements x Dedication xi Abbreviations xii I . Introduction 1 A. Overview 1 B. Natural Products Chemistry 3 C. Primary and Secondary Metabolites 8 D. Chemical Ecology 11 II. Nudibranchs 16 A. Introduction 16 1. Gastropod Secondary Metabolites 16 2. Nudibranch Defense Mechanisms 21 B. Secondary Metabolites from the Dorid Nudibranch Aldisa cooperi (Robilliard and Baba, 1972) 25 1 1. Introduction 25 2. Isolation and Structure Elucidation 25 3. Biological Activities of Aldisa cooperi Metabolites 42 4. Discussion 43 C. Secondary Metabolites from the Dendronotid Nudibranch Meli be leonina (Gould, 1852) 47 1. Introduction 47 2. Isolation and Structure Elucidation 47 iv 3. Discussion 53 D. Secondary Metabolites from Acant hodoris nanaimoensis (O'Donoghue, 1921) 56 1 . Introduction 56 2. Nanaimoal 59 3. Synthesis of Nanaimoal's (p-Bromophenyl)urethane Derivative. Assignment of Structure 70 1 4. Assignment of the H NMR Spectrum of Nanaimoal using One and Two-Dimensional NMR Techniques 81 5. Isoacanthodoral 99 6. Acanthodoral 112 7. Biological Activities of A. nanaimoensis Secondary Metabolites 117 8. Discussion 117 III. Bryozoans 132 A. Introduction to the Bryozoans 132 B. Secondary Metabolites from Phidolopora pacifica (Robertson 1908) 149 1 . Discussion 163 IV. Experimental 171 V. Appendices 200 VI. Bibliography 204 v List of Figures 1. Phylogenetic classification of nudibranchs 17 2. Typical cryptobranch dorid nudibranch 20 3. Aldisa cooperi 26 4. Secondary metabolites from the dorid nudibranch Aldisa cooper i 27 5. "Un-natural" 20S marine steroids 37 6. Mel i be leonina 48 7. Secondary metabolites from the dendronotid nudibranch Meli be Ieoni na 49 8. Acanthodori s nanaimoensis 57 9. Secondary metabolites from Acanthodoris nanaimoensis 60 10. GC analysis of a crude chloroform extract of A. nanaimoensis 61 1 11. 400 MHz H NMR spectrum of nanaimoal (CDC1 ) ... 63 (61) 3 1 12. Model systems for the H NMR chemical shifts of the gem-dimethyl group in nanaimoal (6_1) 70 13. Nanaimoane carbon skeleton showing the numbering scheme 80 14. Pulse sequence for the homonuclear COSY NMR experiment 89 1 15. 400 MHz H NMR COSY/45 spectrum of nanaimoal's (p-bromophenyl)urethane derivative 91 16. Expansion and amplification of Figure 15 to show homoallylic couplings 92 17. Pulse sequence for 2D /-resolved NMR experiment .... 93 18. Partial 400 MHz *H NMR 2D /-resolved spectrum (symmetrized) of nanaimoal (61) 97 19. Slices of individual peaks shown at the top of Figure 18 to show multiplicities 98 20. Computer generated X-ray structure of isoacanthodoral's 2,4-dinitrophenylhydrazone derivative 96 110 vi 21. Computer generated X-ray structure of acanthodoral's (p-bromophenyl )urethane derivative 114 116 22. Phidolopora pacifica 150 23. A computer-generated perspective drawing of the final X-ray model of p-bromophenacylphidolopin 194 160 vi i List of Schemes 1. Interpretation of the HRMS of 3-oxo-4-cholenoic acid (23) 30 2. Interpretation of the HRMS of 3-oxo-4,22-choladienic acid (24) 33 3. Interpretation of the MS of diacetyl derivative 44 .. 41 4. Proposed mechanism for the microbial transformation of cholesterol into 17-ketosteroids 44 5. Interpretation of the mass spectral fragmentation of 2,6-dimethyl-5-heptenal (53) 52 6. Interpretation of the MS of nanaimoal (61) 62 7. Biogenetic arguments used in support of structure 61 for nanaimoal 67 8. Retrosynthetic analysis of the postulated structure for nanaimoal 72 9. Previous synthesis of the nanaimoane carbon skeleton 73 10. Interpretation of the MS of urethane 79 11. Interpretation of the MS of isoacanthodoral (65) .. 101 12. Biogenetic arguments leading to the consideration of 100 as the structure for isoacanthodoral 103 13. Acid catalyzed rearrangement of 98 107 14. Proposed biogenesis of isoacanthodoral (65) from acanthodoral (64) .". 109 15. Interpretation of the MS fragmentation of nitrophenol 189 154 16. Interpretation of the MS of desmethylphidolopin .... viii List of Tables 1. Comparison of the 'H NMR data for various A"-3-ketosteroids (CDC1 ) 29 3 13 2. C NMR data and spectral comparisons for the assignment of stereochemistry to 3-oxo-4-cholenoic acid (23) 36 3. 'H NMR data for various 20R and 20S steroids (CDC1 ) . 39 3 13 4. C NMR data for 2,6-dimethyl-5-heptenal (53) and citronellal (55) 51 1 5. H NMR data (400 MHz) for nanaimoal (61) and derivatives 83 6. Nudibranch sesquiterpenoids 119 7. Bryozoan metabolites 134 8. 'H NMR data (CDC1 , 80 MHz) and spectral comparisons for 3 nitrophenols isolated from Phidolopora paci fi ca 153 9. 'H NMR data and spectral comparisons for purine derivatives isolated from Phidolopora pacifica 158 ix List of Appendices 1. 400 MHz NMR spectrum of 75 201 2. 400 MHz NMR spectrum of 98 202 3. 400 MHz NMR spectrum of 114 203 x Acknowledgements I would like to gratefully acknowledge the guidance, encouragement, patience, and friendship of Dr. R.J. Andersen. Many people have influenced the outcome of this work and a number of individuals stand out. My wife Roxanne pro• vided unrelenting love, support, and encouragement for which I am deeply indebted. Mike LeBlanc competently introduced me to SCUBA diving, assisted with all the invertebrate collections, and performed the bioassays. Dr. 0. Chan and Ms. Marietta T. Austria provided friendly and helpful assistance with the 2D-NMR studies. David Behrens allowed me to reproduce his drawing of a typical cryptobranch dorid nudibranch and Ron Long kindly provided photographs of all the invertebrates studied. I thank Sandra Millen for helpful discussions on nudibranch biology. A number of people assisted with the collection of the marine organisms, and the spectral data of the compounds isolated from them. I thank the staff of the Bamfield Marine Station and the departmental NMR and MS laboratories for courteous and reliable assistance. xi To Jean, Roxanne, Genevieve, Dorothy, Bill, and Allen Abbreviat ions AQN = Acquisition DMSO = Dimethylsulfoxide EtOAc = Ethyl acetate g = Grease peak GC = Gas chromatography GC-MS = gas chromatography - mass spectrometry HPLC = High performance liquid chromatography HRMS = High resolution mass spectrum IR = Infrared MS = Low resolution mass spectrum 'H NMR = Proton nuclear magnetic resonance 13 C NMR = Carbon-13 nuclear magnetic resonance nOe = Nuclear Overhauser enhancement mp = Melting point RD = Relaxation delay RT = Room temperature S = Solvent signal SFORD = Single frequency off resonance decoupled SCUBA = Self-contained underwater breathing apparatus TLC = Thin layer chromatography U = Unknown impurity signal UV = Ultraviolet W = Water signal xi i i I. INTRODUCTION A. OVERVIEW The purpose of the research
Recommended publications
  • Stereoselektive Synthese Von Stickstoffheterocyclen An
    Stereoselektive Synthese von Stickstoffheterocyclen an Glycosylaminen als chiralen Auxiliaren Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften“ am Fachbereich Chemie und Pharmazie der Johannes Gutenberg-Universität Mainz Martin Schultz-Kukula geboren in Germersheim Mainz im Dezember 2001 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: 2002 Die vorliegende Arbeit wurde in der Zeit von Januar 1998 bis Dezember 2001 am Institut für Organische Chemie der Johannes Gutenberg-Universität in Mainz unter Anleitung von Herrn Prof. Dr. Horst Kunz angefertigt. Meiner Familie Wir stellen viele Fragen an die Natur; die Natur sagt meistens „nein“, manchmal „vielleicht“, aber niemals „ja“. Albert Einstein Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 1 1.1 Stickstoffheterocyclen in Naturstoffen 1 1.2 Asymmetrische Synthese 4 1.3 Auxiliare in asymmetrischen Synthesen 5 1.4 Verwendung von Kohlenhydraten als chirale Auxiliare 7 1.5 Zielsetzung 9 Allgemeiner Teil 2 Reaktionen an Glycosyliminen 11 2.1 Synthese der Auxiliare 11 2.2 Synthese der Glycosylimine 12 2.3 Synthese von Dehydropiperidinonen durch die Tandem-Mannich- Michael-Reaktion 13 2.3.1 Umsetzungen von N-Glycosyliminen mit 1-Methoxy-3- trimethylsiloxy-butadien 14 2.3.2 Mechanismus und Stereochemie der Tandem-Mannich-Michael- Reaktion 15 3 Darstellung des Alkaloids Pumiliotoxin C und analoger Verbindungen 17 3.1 Decahydrochinolin-Alkaloide 17 3.2 Synthese des (-)-4a-epi-Pumiliotoxin C (12a) 19 3.2.1 Konjugierte Addition von Organo-Kupfer-Verbindungen
    [Show full text]
  • Rope Parasite” the Rope Parasite Parasites: Nearly Every AuSC Child I Ever Treated Proved to Carry a Significant Parasite Burden
    Au#sm: 2015 Dietrich Klinghardt MD, PhD Infec4ons and Infestaons Chronic Infecons, Infesta#ons and ASD Infec4ons affect us in 3 ways: 1. Immune reac,on against the microbes or their metabolic products Treatment: low dose immunotherapy (LDI, LDA, EPD) 2. Effects of their secreted endo- and exotoxins and metabolic waste Treatment: colon hydrotherapy, sauna, intes4nal binders (Enterosgel, MicroSilica, chlorella, zeolite), detoxificaon with herbs and medical drugs, ac4vaon of detox pathways by solving underlying blocKages (methylaon, etc.) 3. Compe,,on for our micronutrients Treatment: decrease microbial load, consider vitamin/mineral protocol Lyme, Toxins and Epigene#cs • In 2000 I examined 10 au4s4c children with no Known history of Lyme disease (age 3-10), with the IgeneX Western Blot test – aer successful treatment. 5 children were IgM posi4ve, 3 children IgG, 2 children were negave. That is 80% of the children had clinical Lyme disease, none the history of a 4cK bite! • Why is it taking so long for au4sm-literate prac44oners to embrace the fact, that many au4s4c children have contracted Lyme or several co-infec4ons in the womb from an oVen asymptomac mother? Why not become Lyme literate also? • Infec4ons can be treated without the use of an4bio4cs, using liposomal ozonated essen4al oils, herbs, ozone, Rife devices, PEMF, colloidal silver, regular s.c injecons of artesunate, the Klinghardt co-infec4on cocKtail and more. • Symptomac infec4ons and infestaons are almost always the result of a high body burden of glyphosate, mercury and aluminum - against the bacKdrop of epigene4c injuries (epimutaons) suffered in the womb or from our ancestors( trauma, vaccine adjuvants, worK place related lead, aluminum, herbicides etc., electromagne4c radiaon exposures etc.) • Most symptoms are caused by a confused upregulated immune system (molecular mimicry) Toxins from a toxic environment enter our system through damaged boundaries and membranes (gut barrier, blood brain barrier, damaged endothelium, etc.).
    [Show full text]
  • The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra Salamandra)
    biomolecules Article The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra salamandra) Alexandra Plácido 1,2,*, João Bueno 3,4, Eder A. Barbosa 4 , Daniel C. Moreira 3 , Jhones do Nascimento Dias 5, Wanessa Felix Cabral 3, Patrícia Albuquerque 5, Lucinda J. Bessa 1 , Jaime Freitas 6 , Selma A. S. Kuckelhaus 3, Filipe C. D. A. Lima 7 , Augusto Batagin-Neto 8 , Guilherme D. Brand 4 , João B. Relvas 2, José Roberto S. A. Leite 1,3 and Peter Eaton 1 1 LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; [email protected] (L.J.B.); [email protected] (J.R.S.A.L.); [email protected] (P.E.) 2 Institute for Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), 4200-135 Porto, Portugal; [email protected] 3 Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasilia, Brasilia, DF 70910-900, Brazil; [email protected] (J.B.); [email protected] (D.C.M.); [email protected] (W.F.C.); [email protected] (S.A.S.K.) 4 Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasília, Brasília, DF 70910-900, Brazil; [email protected] (E.A.B.); [email protected] (G.D.B.) 5 Laboratory of Molecular Biology of Fungal Pathogens, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil; [email protected] (J.d.N.D.); [email protected]
    [Show full text]
  • Mueller-Schwarze D. Chemical Ecology of Vertebrates (CUP, 2006
    This page intentionally left blank Chemical Ecology of Vertebrates Chemical Ecology of Vertebrates is the first book to focus exclusively on the chem- ically mediated interactions between vertebrates, including fish, amphibians, reptiles, birds, and mammals, and other animals, and plants. Reviewing the lat- est research in three core areas: pheromones (where the interactions are between members of the same species), interspecific interactions involving allomones (where the sender benefits) and kairomones (where the receiver benefits) This book draws information into a coherent whole from widely varying sources in many different disciplines. Chapters on the environment, properties of odour signals, and the production and release of chemosignals set the stage for dis- cussion of more complex behavioral topics. While the main focus is ecological, dealing with behavior and interactions in the field, it also covers chemorecep- tion, orientation and navigation, the development of behavior, and the practical applications of chemosignals. Dietland Muller-Schwarze¨ is Professor of Environmental Biology at the State University of New York. Chemical Ecology of Vertebrates DIETLAND MULLER-SCHWARZE¨ State University of New York cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521363778 © Cambridge University Press 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.
    [Show full text]
  • Jedy Obojživelníků
    Úvodní přednášky z předmětu TOXIKOLOGIE VŠCHTVŠCHT PrahaPraha Jedovatá stopa - pokračování Toxiny nižších hub (tzv. mikromycety) a jejich metabolity – zhruba 64 000 druhů, patřímezi ně aflatoxin s hodnotou LD50 pro AFB1 v rozsahu 0,4 .10-3 g.kg-1 Jedovaté vyšší houby, makromycety, především ty, které vytvářejí plodnice obsahující houbové jedy – Lysohlávka kopinatá Toxiny makromycetů se dělí podle účinků: Psilocybe hepatonefrotoxický syndrom (muchomůrka zelená) halucinogenní syndrom (muchomůrka červená) gastroenterodyspeptický syndrom (hřib satan) FALLOIDIN – peptidický jed muchomůrky zelené (tzv. jed dědiců) LD50 falloidinu činí 2.10-3 g.kg-1 (jedna houba může zhruba způsobit smrt dvou až tří dospělých lidí) Živočišné toxiny Typickým zástupcem je crotalustoxin, jed chřestýše, s hodnotou LD50=2.10-7 g.kg-1 nebo nervový jed tetrodotoxin, produkovaný rybami čeledi Tetraodontoidea (ryba fugu). Klasifikace: nejčastěji podle zoologického dělení prvoci, ostnokožci, blanokřídlý hmyz, škorpióni, pavouci, obojživelnící, ryby a hadi. Jed kobry – cobrotoxin s „impozantní“ jedovatostí LD50=3.10-7g.kg-1 „Mezi třetí a čtvrtou hodinou ranní se nás zmocnila nepopsatelná slabost v údech doprovázená ztrátou citlivosti, jako bychom měli ruce a nohy nejprve v mrazu a pak v ohni. Téměř jsem přestával vnímat, nerozeznával jsem lehké předměty od těžkých, uzvednout džbán vody a ptačí pírko bylo pro mne totéž. Pak se mi ulevilo. Ráno jsme zjistili, že jeden z vepřů, který snědl rybí vnitřnost nepřežil. Když za námi pak přišli domorodci a viděli tuto rybu pověšenou na palubě, dali nám okamžitě na srozuměnou, že není k snědku…“ deník Jamese Cooka. 1774 Hadí jedy směsi nízkomolekulárních látek a makromolekul (peptidy, polypeptidy, proteinové toxiny a enzymy) Dělí se na: Neurotoxiny -působí na neuromuskulární synapse, a tak způsobují svalovou paralýzu.
    [Show full text]
  • © in This Web Service Cambridge University
    Cambridge University Press 978-1-107-40693-3 - Chemical Ecology of Vertebrates Dietland Müller-Schwarze Index More information index Aardvark (Orycteropus afer) 153 Air currents 6 Aardwolf (Proteles cristatus) 23, 31, 153, 154, Alarm 159 odors 191 Acacia responses, fish 192 fever tree (Acacia xanthophloea) 312 substance 192 umbrella thorn (A. tortilis) 312 “alarm signals, damage-released” 192 whistling thorn (A. drepanolobium) 333 Albatross Acanthochromis polyacanthus (see Damselfish) black-browed (Diomedea melanophris) 74, 352 Accipenser baeri (see Sturgeon, Siberian) black-footed (D. nigripes) 114, 350 Accipenser gueldenstaedtii (see Sturgeon, Russian) grey-headed (D. chrysostoma) 352 Accipenser stellatus (see Sturgeon, stellate) wandering (D. exulans) 352 Acetate esters 26 Alcelaphus cokii (see Hartebeest, Coke’s) Acetone 372 Alces alces (see Moose) 6-Acetonylisoxanthopterin 194 Aldehydes in coyote lures 411 Acetophenone 190 Alder, green (Alnus crispa) 299, 300, 309 Achillea ligustica (see Yarrow, Ligurian) induced defense 332 Achillea millefolium (see Yarrow) Alert odors 191 Acidification of water, effects 392 Alfalfa (Medicago sativa) 278, 286, 307 Acomastylis [Geum] rossii (see Aven, alpine) Algae (Shewanella sp.) 247 Acomys cahirinus (see Mouse, spiny) Alkaloids, Acomys russatus (see Mouse, golden spiny) bioaccumulation 253 Acrocephalus schoenobaenus (see Warbler, sedge) birds 50 Actinomycetes 66 poison dart frogs 49, 252 “Active signalers” 172 properties, occurrence 280 Active space 9, 33, 57 Alligator, American (Alligator mississipiensis) 349 Adaptations (herbivory) Allocholic acid 66, 172 defensive 315 Allomarking 148 offensive 315 Almond, bitter (Prunus amygdalus) 291 Adrenocortical effects, mice 220 Alnus crispa (see Alder, green) Aepyceros melampus (see Impala) Alouatta belzebul (see Monkey, red-handed Aeschna juncea (see Dragonfly) howler) Aeschna umbrosa (see Dragonfly) Alouatta palliata (see Monkey, howler) Aethia cristatella (see Auklet, crested) Alpaca (Lama pacos) 140 Agaricus sp.
    [Show full text]
  • University of Ivt-Vljtam Ih a B Ieant Leicester
    Synthesis of Aminosterols Structurally Related to Squalamine. University of iVT-VljTAM Ih a b Ieant Leicester Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester by Andrew John Matthews Department of Chemistry University of Leicester Supervisor: Prof. Paul Cullis January 2001 UMI Number: U141457 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U141457 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Contents. Statement .......................................................................................................................................v Acknowledgements ......................................................................................................................v Abbreviations .............................................................................................................................. vi A bstract......................................................................................................................................viii
    [Show full text]
  • „Léčivá Zvířata“
    MASARYKOVA UNIVERZITA Pedagogická fakulta Katedra fyziky, chemie a odborného vzdělávání „LÉČIVÁ ZVÍŘATA“ Diplomová práce Brno 2016 Vedoucí práce: Autor práce: Mgr. Jiří Šibor, Ph.D. Bc. Zuzana Bakalová Prohlášení: Prohlašuji, že jsem závěrečnou diplomovou práci vypracovala samostatně, s využitím pouze citovaných pramenů, dalších informací a zdrojů v souladu s Disciplinárním řádem pro studenty Pedagogické fakulty Masarykovy univerzity a se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů. V Brně dne 23. 3. 2016 ………………………………… Zuzana Bakalová 2 Poděkování: Děkuji panu Mgr. Jiřímu Šiborovi, Ph.D. za odborné připomínky a cenné rady, ale i za čas, který se mnou trávil a přispěl tím k vylepšení obsahu a celkovému zdokonalení této diplomové práce. V Brně dne 23. 3. 2016 Zuzana Bakalová 3 Obsah: 1 Úvod a cíle práce [14] ............................................................................................7 2 Jedovaté látky a jejich působení .............................................................................8 2.1 Imunita ............................................................................................................9 2.2 Protiochrana .................................................................................................. 10 3 Taxonomické rozdělení vybraných jedovatých živočichů ..................................... 10 3.1 Říše: PRVOCI (Protozoa) ............................................................................
    [Show full text]
  • Gümrük Tarife Cetveli Izahnamesi Fasil29
    BÖLÜM VI KİMYA SANAYİİ VE BUNA BAĞLI SANAYİİ ÜRÜNLERİ Bölüm Notları. 1.- (A) (28.44) veya (28.45) Pozisyonlarından birindeki tanıma uyan bütün ürünler (radyoaktif cevherler hariç) bu pozisyonlara dahil olup, Tarifenin başka pozisyonlarına girmez; (B) Yukarıda (a) bendindeki hükümler saklı kalmak şartıyla,(28.43), (28.46) veya (28.52) pozisyonlarından birindeki tanıma uyan bütün ürünler bu pozisyonlara dahil olup, bu Bölümün başka bir pozisyonuna girmez. 2.- Yukarıdaki bir numaralı not hükümleri saklı kalmak şartıyla, ölçülü dozlarda paketlenmiş veya perakende satış için hazırlanmış olmalarına göre (30.04), (30.05), (30.06), (32.12), (33.03), (33.04), (33.05), (33.06), (33.07), (35.06), (37.07) veya (38.08) pozisyonlarından birinde yer alan ürünler bu pozisyonlara dahil olup, tarifenin başka bir pozisyonuna girmez. 3.- Tamamı veya bir kısmı bu bölümde yer alan iki veya daha fazla ayrı maddeden oluşan ve VI. veya VII. Bölümlerde yer alan bir ürünü elde etmek için birbirleri ile karıştırılması tasarlanan set halindeki eşya, oluşturduğu maddelerin aşağıdaki şekillerde olmaları kaydıyla, bu ürüne uygun olan pozisyonda sınıflandırılır: (a) Bulundukları durum göz önüne alınarak, tekrar bir araya getirilmeye gerek duyulmadan birlikte kullanılmaya mahsus olduğu açıkça belli olan; (b) Birlikte sunulan; ve (c) Sunuldukları durumda niteliği veya nisbi miktarlarıı itibariyle birbirinin tamamlayıcısı olduğu açık olan. GENEL AÇIKLAMALAR Bölüm Notu l. Tarifenin bu bölümüne ait (1) numaralı notun (A) bendi hükümleri gereğince, bütün radyoaktif kimyasal elementlerle radyoaktif izotoplar ve bu elementlerin bileşikleri ve izotopları (organik veya inorganik ve kimyasal olarak belirli bir yapıda olsun olmasın) tarifenin başka pozisyonlarına girebilecek durumda olsalar dahi, 28.44 pozisyonunda yer alır. Bu nedenle, örn; radyoaktif gliserol ve radyoaktif sodyum klorür 25.01 ve 29.05 pozisyonlarında yer almayıp 28.44 pozisyonunda yer alır.
    [Show full text]
  • Veratrum Californicum) Megan M
    University of Missouri, St. Louis IRL @ UMSL Theses Graduate Works 11-20-2015 Discovery and Metabolic Engineering of Steroid Alkaloid Biosynthetic Genes from (Veratrum californicum) Megan M. Augustin University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/thesis Part of the Biology Commons Recommended Citation Augustin, Megan M., "Discovery and Metabolic Engineering of Steroid Alkaloid Biosynthetic Genes from (Veratrum californicum)" (2015). Theses. 17. http://irl.umsl.edu/thesis/17 This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Discovery and Metabolic Engineering of Steroid Alkaloid Biosynthetic Genes from Veratrum californicum By Megan M. Augustin B.S. Biology, University of Missouri-St. Louis, 2007 A.A. General Transfer Studies, St. Louis Community College-Florissant Valley, 2004 A Thesis Submitted to The Graduate School of the University of Missouri-St. Louis in partial fulfillment of the requirements for the degree Master of Science In Biology With an emphasis in Molecular and Cellular Biology December 2015 Advisory Committee Wendy Olivas, Ph.D. Chairperson Bethany Zolman, Ph.D. Toni M. Kutchan, Ph.D. Augustin, Megan, 2015, UMSL, p.2 Abstract The steroid alkaloid cyclopamine has shown much promise as a treatment for cancers in which aberrant hedgehog signaling plays a role. The compound, originally discovered due to its teratogenic effects in sheep, binds to the hedgehog signaling receptor Smoothend and prevents downstream activation.
    [Show full text]
  • Steroids: a Diverse Class of Secondary Metabolites Aeysha Sultan*And Abdul Rauf Raza Department of Chemistry, University of Sargodha, Sargodha-40100, Pakistan
    inal chem ic i d s Sultan and Rauf Raza. Med chem 2015, 5:7 e tr M y Medicinal chemistry DOI: 10.4172/2161-0444.1000279 ISSN: 2161-0444 Review Article Open Access Steroids: A Diverse Class of Secondary Metabolites Aeysha Sultan*and Abdul Rauf Raza Department of Chemistry, University of Sargodha, Sargodha-40100, Pakistan Abstract Steroids form a group of secondary metabolites having diversity in their structure and biological functions. These natural products, although often linked with the deleterious effect on health, have many medicinal applications and the research is still continued in search of these secondary metabolites as potential lead in drug design/discovery. The Aim of this review is to systematically compile the basic information related to this class of natural products. What are Steroids? 4. Fission of a ring, with addition of a hydrogen atom at each terminal group thus created, is indicated by the prefixseco , e.g., Steroids are a group of cholesterol derived lipophilic, low-molecular 2,3-seco-5a-cholestane 6. weight compounds found in / derived from a variety of different C6H13 OH marine, terrestrial, and synthetic sources. Steroid family includes the 17 H sterols, , bile acids [1-4], a number of hormones (both gonadal and 1 8 2 5 5 H H adrenal cortex hormones) and some hydrocarbons [5]. All steroid 3 6 4a O classes and their metabolites play important roles in the physiology and H 3 H 4 5 H 6 7 biochemistry of living organisms in which these are found. A number The stereochemistry of steroids reveals them to be non-flat of synthetic steroids are being extensively used as anti-hormones [6], molecules and the hexagonal carbon rings (A to C) usually assumes contraceptive drugs [7],anti-cancer agents [8]cardiovascular agents [9], a chair rather than a boat conformation.
    [Show full text]
  • What Do We Know About Parasites?
    What do we know about Parasites? Dietrich Klinghardt MD, PhD April/May 2021 ©INK 2021 Dr. med. D. Klinghardt ̶ Parasiten Mitchell, P. D. (2017). Human parasites in the Roman World: health consequences of conquering an empire. Parasitology, 144(1), 48-58. Summary The archaeological evidence for parasites in the Roman era is presented in order to demonstrate the species present at that time, and highlight the health consequences for people living under Roman rule. Despite their large multi-seat public latrines with washing facilities, sewer systems, sanitation legislation, fountains and piped drinking water from aqueducts, we see the widespread presence of whipworm (Trichuris trichiura), roundworm (Ascaris lumbricoides) and Entamoeba histolytica that causes dysentery. This would suggest that the public sanitation measures were insufficient to protect the population from parasites spread by fecal contamination. Ectoparasites such as fleas, head lice, body lice, pubic lice and bed bugs were also present, and delousing combs have been found. The evidence fails to demonstrate that the Roman culture of regular bathing in the public baths reduced the prevalence of these parasites. Fish tapeworm was noted to be widely present, and was more common than in Bronze and Iron Age Europe. It is possible that the Roman enthusiasm for fermented, uncooked fish sauce (garum) may have facilitated the spread of this helminth. Roman medical practitioners such as Galen were aware of intestinal worms, explaining their existence and planning treatment using the humoural theory of the period. ©INK 2021 Dr. med. D. Klinghardt ̶ Parasiten Ortega, Y. R., & Sterling, C. R. (Eds.). (2018). Foodborne parasites.
    [Show full text]