© in This Web Service Cambridge University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stereoselektive Synthese Von Stickstoffheterocyclen An
Stereoselektive Synthese von Stickstoffheterocyclen an Glycosylaminen als chiralen Auxiliaren Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften“ am Fachbereich Chemie und Pharmazie der Johannes Gutenberg-Universität Mainz Martin Schultz-Kukula geboren in Germersheim Mainz im Dezember 2001 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: 2002 Die vorliegende Arbeit wurde in der Zeit von Januar 1998 bis Dezember 2001 am Institut für Organische Chemie der Johannes Gutenberg-Universität in Mainz unter Anleitung von Herrn Prof. Dr. Horst Kunz angefertigt. Meiner Familie Wir stellen viele Fragen an die Natur; die Natur sagt meistens „nein“, manchmal „vielleicht“, aber niemals „ja“. Albert Einstein Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 1 1.1 Stickstoffheterocyclen in Naturstoffen 1 1.2 Asymmetrische Synthese 4 1.3 Auxiliare in asymmetrischen Synthesen 5 1.4 Verwendung von Kohlenhydraten als chirale Auxiliare 7 1.5 Zielsetzung 9 Allgemeiner Teil 2 Reaktionen an Glycosyliminen 11 2.1 Synthese der Auxiliare 11 2.2 Synthese der Glycosylimine 12 2.3 Synthese von Dehydropiperidinonen durch die Tandem-Mannich- Michael-Reaktion 13 2.3.1 Umsetzungen von N-Glycosyliminen mit 1-Methoxy-3- trimethylsiloxy-butadien 14 2.3.2 Mechanismus und Stereochemie der Tandem-Mannich-Michael- Reaktion 15 3 Darstellung des Alkaloids Pumiliotoxin C und analoger Verbindungen 17 3.1 Decahydrochinolin-Alkaloide 17 3.2 Synthese des (-)-4a-epi-Pumiliotoxin C (12a) 19 3.2.1 Konjugierte Addition von Organo-Kupfer-Verbindungen -
The Cyanogenic Polymorphism in Trifolium Repens L
Heredity66 (1991) 105—115 Received 16 May 1990 Genetical Society of Great Britain The cyanogenic polymorphism in Trifolium repens L. (white clover) M. A. HUGHES Department of Biochemistry and Genetics, The Medical School, The University, Newcastle upon Tyne NE2 4HH Thecyanogenic polymorphism in white clover is controlled by alleles of two independently segregating loci. Biochemical studies have shown that non-functional alleles of the Ac locus, which controls the level of cyanoglucoside produced in leaf tissue, result in the loss of several steps in the biosynthetic pathway. Alleles of the Li locus control the synthesis of the hydrolytic enzyme, linamarase, which is responsible for HCN release following tissue damage. Studies on the selective forces and the distribution of the cyanogenic morphs of white clover are discussed in relation to the quantitative variation in cyanogenesis revealed by biochemical studies. Molecular studies reveal considerable restriction fragment length polymorphism for linamarase homologous genes. Keywords:cyanogenesis,polymorphism, Trifolium repen, white clover. genetics to plant taxomony. This review discusses the Introduction extensive and diverse ecological genetic studies in rela- Theterm cyanogenesis describes the release of hydro- tion to the more recent biochemical and molecular cyanic acid (HCN), which occurs when the tissues of studies of cyanogenesis in white clover. some plant species are damaged. The first report of cyanogenesis in Trifolium repens (white clover) was by Mirande (1912) and this was shortly followed by a Biochemistry paper which demonstrated that the species was poly- Theproduction of HCN by higher plants depends morphic for the character, with both cyanogenic and upon the co-occurrence of a cyanogenic glycoside and acyanogenic plants occurring in the same population catabolic enzymes. -
Chronic Cassava Toxicity
4/63 7L ARCHIV NESTEL C-010e 26528 II Chronic Cassava Toxicity Proceedings of an interdisciplinary workshop London, England, 29-30 January 1973 Editors: Barry Nestel and Reginald Maclntyre INTERNATIONAL CENTRE DE RECHERCHES DEVELOPMENT POUR LE DEVELOPPEMENT RESEARCH CENTRE INTERNATIONAL Oawa, Canada 1973 IDRC-OlOe CHRONIC CASSAVA TOXICITY Proceedings of an interdisciplinary workshop London, England, 29-30 January 1973 Editors: BARRY NESTEL AND REGINALD MACINTYRE 008817 UDC: 615.9:547.49 633.68 © 1973 International Development Research Centre Head Office: Box 8500, Ottawa, Canada. K1G 3H9 Microfiche Edition S 1 Contents Foreword Barry Nestel 5-7 Workshop Participants 8-10 Current utilization and future potential for cassava Barry Nestel 11-26 Cassava as food: toxicity and technology D. G. Coursey 27-36 Cyanide toxicity in relation to the cassava research program of CIAT in Colombia James H. Cock 37-40 Cyanide toxicity and cassava research at the International Institute of Tropical Agriculture, Ibadan, Nigeria Sidki Sadik and Sang Ki Hahn 41-42 The cyanogenic character of cassava (Manihor esculenta) G. H. de Bruijn 43-48 The genetics of cyanogenesis Monica A. Hughes 49-54 Cyanogenic glycosides: their occurrence, biosynthesis, and function Eric E. Conn 55-63 Physiological and genetic aspects of cyanogenesis in cassava and other plants G. W. Butler, P. F. Reay, and B. A. Tapper 65-71 Biosynthesis of cyanogenic glucosides in cassava (Manihot spp.) Frederick Nartey 73-87 Assay methods for hydrocyanic acid in plant tissues and their application in studies of cyanogenic glycosides in Manihot esculenta A. Zitnak 89-96 The mode of cyanide detoxication 0. -
Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis
Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis Chemical Activity Count (+)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (+)-8HYDROXYCALAMENENE 1 (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 3 (+)-AROMOLINE 1 (+)-CASSYTHICINE 1 (+)-CATECHIN 10 (+)-CATECHIN-7-O-GALLATE 1 (+)-CATECHOL 1 (+)-CEPHARANTHINE 1 (+)-CYANIDANOL-3 1 (+)-EPIPINORESINOL 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALBACIN 2 (+)-GALLOCATECHIN 3 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 2 (+)-T-CADINOL 1 (+)-VESTITONE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (-)-ACANTHOCARPAN 1 (-)-ALPHA-BISABOLOL 2 (-)-ALPHA-HYDRASTINE 1 Chemical Activity Count (-)-APIOCARPIN 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-CANESCACARPIN 1 (-)-CENTROLOBINE 1 (-)-CLANDESTACARPIN 1 (-)-CRISTACARPIN 1 (-)-DEMETHYLMEDICARPIN 1 (-)-DICENTRINE 1 (-)-DOLICHIN-A 1 (-)-DOLICHIN-B 1 (-)-EPIAFZELECHIN 2 (-)-EPICATECHIN 6 (-)-EPICATECHIN-3-O-GALLATE 2 (-)-EPICATECHIN-GALLATE 1 (-)-EPIGALLOCATECHIN 4 (-)-EPIGALLOCATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 9 (-)-EUDESMIN 1 (-)-GLYCEOCARPIN 1 (-)-GLYCEOFURAN 1 (-)-GLYCEOLLIN-I 1 (-)-GLYCEOLLIN-II 1 2 Chemical Activity Count (-)-GLYCEOLLIN-III 1 (-)-GLYCEOLLIN-IV 1 (-)-GLYCINOL 1 (-)-HYDROXYJASMONIC-ACID 1 (-)-ISOSATIVAN 1 (-)-JASMONIC-ACID 1 (-)-KAUR-16-EN-19-OIC-ACID 1 (-)-MEDICARPIN 1 (-)-VESTITOL 1 (-)-VESTITONE 1 -
Compendium of Botanicals Reported to Contain Naturally Occuring Substances of Possible Concern for Human Health When Used in Food and Food Supplements
View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 20, 2017 brought to you by CORE provided by Online Research Database In Technology Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements EFSA authors; Pilegaard, Kirsten Link to article, DOI: 10.2903/j.efsa.2012.2663 Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): EFSA authors (2012). Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. Parma, Italy: Europen Food Safety Authority. (The EFSA Journal; No. 2663, Vol. 10(5)). DOI: 10.2903/j.efsa.2012.2663 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. EFSA Journal 2012;10(5):2663 SCIENTIFIC REPORT OF EFSA Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements1 European Food Safety Authority2, 3 European Food Safety Authority (EFSA), Parma, Italy ABSTRACT In April 2009, EFSA published on its website a Compendium of botanicals reported to contain toxic, addictive, psychotropic or other substances of concern. -
The Role of Phytotoxic and Antimicrobial Compounds of Euphorbia Gummifera in the Cause and Maintenance of the Fairy Circles of Namibia
The role of phytotoxic and antimicrobial compounds of Euphorbia gummifera in the cause and maintenance of the fairy circles of Namibia by Nicole Galt Submitted in partial fulfillment of the requirements for the degree Magister Scientiae Department of Plant and Soil Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J.J.M. Meyer March 2018 i The role of phytotoxic and antimicrobial compounds of Euphorbia gummifera in the cause and maintenance of the fairy circles of Namibia by Nicole Galt Department of Plant and Soil Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J.J.M. Meyer Degree: MSc Medicinal Plant Science Abstract Fairy circles (FC) are unexplained botanical phenomena of the pro-Namib desert and parts of the West Coast of South Africa. They are defined as circular to oval shaped anomalies of varying sizes that are left bereft of vegetation. Even though there are several distinctly different hypotheses that have aimed to explain the origin of fairy circles, none have done so to satisfaction of the scientific community. The aim of this study was to determine if phytotoxic and antibacterial properties of a co-occurring Euphorbia species, E. gummifera plays a role in the creation of fairy circles. Representative soil samples (from inside-, outside fairy circles and underneath dead E. gummifera plants) and plant samples (aerial ii parts of E. gummifera and intact grasses, Stipagrostis uniplumis) were collected from the area. The collected samples were used for a several biological assays. A soil bed bio-assay was done using the three collected soil types. -
Rapid Detection Method to Quantify Linamarin Content in Cassava Dinara S
essing oc & pr B o io i t B e Gunasekera et al, J Bioprocess Biotech 2018, 8:6 f c h o n l Journal of Bioprocessing & DOI: 10.4172/2155-9821.1000342 i a q n u r e u s o J Biotechniques ISSN: 2155-9821 Research Article Open Access Rapid Detection Method to Quantify Linamarin Content in Cassava Dinara S. Gunasekera*, Binu P. Senanayake, Ranga K. Dissanayake, M.A.M. Azrin, Dhanushi T. Welideniya, Anjana Delpe Acharige, K.A.U. Samanthi, W.M.U.K. Wanninayake, Madhavi de Silva, Achini Eliyapura, Veranja Karunaratne and G.A.J Amaratunga. Sri Lanka Institute of Nanotechnology, Homagama, Sri Lanka *Corresponding author: Dinara S Gunasekera, Senior Research Scientist, Sri Lanka Institute of Nanotechnology, Homagama, Sri Lanka, Tel: +94775448584; E-mail: [email protected] Received date: November 21, 2018; Accepted date: December 12, 2018; Published date: December 20, 2018 Copyright: © 2018 Gunasekera DS et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract There are a number of natural remedies against cancer. Cassava (Manihot esculenta Crantz) has been proven to be a natural remedy against cancer due to the cyanogenic compounds it contains such as linamarin. A rapid and simple liquid chromatography-mass spectroscopy (LC-MS) method was developed to identify and quantify linamarin in Cassava. The method was developed using various Cassava (Manihot esculenta Crantz) extracts. Developed application is not limited to Cassava, but can be extended to other types of linamarin containing plant materials as well. -