Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis Chemical Activity Count (+)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (+)-8HYDROXYCALAMENENE 1 (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 3 (+)-AROMOLINE 1 (+)-CASSYTHICINE 1 (+)-CATECHIN 10 (+)-CATECHIN-7-O-GALLATE 1 (+)-CATECHOL 1 (+)-CEPHARANTHINE 1 (+)-CYANIDANOL-3 1 (+)-EPIPINORESINOL 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALBACIN 2 (+)-GALLOCATECHIN 3 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 2 (+)-T-CADINOL 1 (+)-VESTITONE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (-)-ACANTHOCARPAN 1 (-)-ALPHA-BISABOLOL 2 (-)-ALPHA-HYDRASTINE 1 Chemical Activity Count (-)-APIOCARPIN 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-CANESCACARPIN 1 (-)-CENTROLOBINE 1 (-)-CLANDESTACARPIN 1 (-)-CRISTACARPIN 1 (-)-DEMETHYLMEDICARPIN 1 (-)-DICENTRINE 1 (-)-DOLICHIN-A 1 (-)-DOLICHIN-B 1 (-)-EPIAFZELECHIN 2 (-)-EPICATECHIN 6 (-)-EPICATECHIN-3-O-GALLATE 2 (-)-EPICATECHIN-GALLATE 1 (-)-EPIGALLOCATECHIN 4 (-)-EPIGALLOCATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 9 (-)-EUDESMIN 1 (-)-GLYCEOCARPIN 1 (-)-GLYCEOFURAN 1 (-)-GLYCEOLLIN-I 1 (-)-GLYCEOLLIN-II 1 2 Chemical Activity Count (-)-GLYCEOLLIN-III 1 (-)-GLYCEOLLIN-IV 1 (-)-GLYCINOL 1 (-)-HYDROXYJASMONIC-ACID 1 (-)-ISOSATIVAN 1 (-)-JASMONIC-ACID 1 (-)-KAUR-16-EN-19-OIC-ACID 1 (-)-MEDICARPIN 1 (-)-VESTITOL 1 (-)-VESTITONE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 3 (15:1)-CARDANOL 2 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (2Z,8Z)-10-ANGELOYLOXY-MATRICARIA-ESTER 4 (3'R,4'R)-3'-EPOXYANGELOYLOXY-4'-ACETOXY-3',4'-DIHYDROSESELIN 1 (5R,8R,9S,10R)-12-OXO-ENT-3,13-CLERODIEN-15-OIC-ACID 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-2-HEXENAL 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 3 (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE 3 -METHOXYBRASSITIN 1 1,2,11,13,2,3'-HEXAHYDROVERNODALIN 1 1,2,3,4,6-PENTA-O-GALLOYL-GLUCOSE 1 1,2,4-TRIHYDROXYHEPTADECA-16-ENE 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,2-DIHYDROXY-4-GLUCOSYLNAPTHALENE 2 1,2-DIMETHOXY-3,8-DIHYDROXYXANTHONE 1 3 Chemical Activity Count 1,3,4,5-TETRACAFFEOYLQUINIC-ACID 1 1,3,5-TRIMETHOXYBENZENE 1 1,4-NAPTHAQUINONE 1 1,5-DIHYDROXY-8-METHOXYXANTHONE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,7-DIHYDROXY-4-METHOXYXANTHONE 1 1,8-CINEOLE 18 1,8-DIHYDROXY-3,7-DIMETHOXYXANTHONE 1 1-ACETYLJATIVATRIOL 1 1-ETHYL-BETA-CARBOLINE 1 1-MAACKIAIN 1 1-METHOXYCANTHIN-6-ONE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 1-O-GALLOYL-PEDUNCULAGIN 1 1-PROPENYL-THIOSULFINATE 1 1-TULIPOSIDE-A 3 1-TULIPOSIDE-B 3 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 2 10-DEACETYLBACCATIN-III 1 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 10-METHOXYCAMPTOTHECIN 1 11-DEHYDROPAPYRIOGENIN 1 11-DEOXYGLYCYRRHETINIC-ACID 1 11-DIHYDRO-CANTHINE-6-ONE 1 11-HYDROXY-DELTA-8-THC 1 4 Chemical Activity Count 11-HYDROXY-DELTA-9-THC 1 11-METHOXY-KOPSILONGINE 1 12,118-BINARINGIN 1 12-ACETYLDEHYDROLUCICULINE 1 12-METHOXY-PLEIOCARPINE 1 13',II8-BIAPIGENIN 4 13-ACETYL-BREVIFOLIOL 1 13-OXYINGENOL-ESTER 1 15-ALPHA-ACETOXYKAUREN-19-OIC-ACID 1 15-GLUCOPYRANOSYL-GLAUCORUBOLONE 1 15-NONACOSANONE 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPIMETHUENINE 1 16-HYDROXYINGENOL-ESTER 1 16-HYDROXYPSEUDOJOLKINOLIDE 1 18-BETA-GLYCYRRHETIC-ACID 1 19-ACETYL-19-DEBENZOYLTAXININE-M 1 1BETA-HYDROXYBACCATIN-1 1 2',7-DIDEACETOXYAUSTROSPICATINE 1 2'-HYDROXY-4,6'-DIMETHOXY-3'-METHYLDIHYDROCHALCONE 2 2'-HYDROXY-FLAVONE 1 2'-HYDROXYDAIDZEIN 1 2'-HYDROXYGENISTEIN 1 2'-O-GLYCOSYLVITEXIN 1 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H- 1 BENZOCYCLOHEPTENE 2,3-DEHYDROKIEVITONE 1 2,3-DIHYDROXYBENZOIC-ACID 2 5 Chemical Activity Count 2,3-DIHYDROXYETHOXYACETOPHENONE 1 2,4,6-TRIMETHOXYPHENOL 1 2,4-DIHYDROXY-6-METHOXY-3-METHYL-ACETOPHENONE 1 2,4-DIHYDROXY-6-METHOXY-3-METHYL-ACETOPHENONE-2-BETA-GLUCOSIDE 1 2,6-DIMETHOXY-P-BENZOQUINONE 2 2,7-DIHYDROXYCADALENE 2 2,7-DIMETHOXY-5-ISOPROPYL-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE 2 2,9-DIDEACETYLTAXININE 1 2-(3',4-DIPHENYL)-ETHANOL 1 2-AMINO-4-METHYLHEX-5-YNOIC-ACID-(2S,4R)-2-AMINO-4-HYDROXYHEPT-6-YNOIC-ACID 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-CAFFEOYL-OXY-3-{2-(4-HYDROXYBENZYL)-4,5-DIHYDROXY}PHENYLPROPIONIC-ACID 1 2-DEACETOXYAUSTROSPICATINE 1 2-DEACETOXYTAXININE-E 1 2-DEACETOXYTAXININE-J 1 2-DEACETYL-5-DECINNAMOYLTAXININE-J 1 2-DEACETYLTAXININE-J 1 2-DECINNAMOYLTAXININE-J 1 2-HEXEN-1-OL 1 2-HYDROXY-5-ISOPROPYL-7-METHOXY-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE 2 2-METHOXYPHASEOLLINISOFLAVON 2 2-METHYLTRICOSANE-8-ONE-23-OL 1 2-NAPTHOL 2 2-NONANONE 1 2-O-CAFFEOYL-(+)-ALLOHYDROXYCITRIC-ACID 1 2-PROPENE-1-SULFINOTHIOCIC-ACIDS-2-PROPENYL-ESTER 1 20-DEOXYINGENOL-ESTER 1 6 Chemical Activity Count 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 26-DESGLUCOAVENACOSIDE-A 1 26-DESGLUCOAVENACOSIDE-B 1 3',4',5,7-TETRAHYDROXYFLAVONE 1 3'-FORMYL-2',4',6'-TRIHYDROXY-5'-METHYLDIHYDROCHALCONE 2 3'-FORMYL-2',4',6'-TRIHYDROXYDIHYDROCHALCONE 1 3'-O-METHYL-CATECHIN 1 3'-O-METHYLBATATASIN-III 1 3,3',4,5'-TETRAHYDROXYSTILBENE 1 3,3'-BIS-(CARISSYL)-THIOCARBOHYDRAZONE 1 3,3'-DIMETHYLELLAGIC-ACID 2 3,3'-DIMETHYLQUERCETIN 1 3,4,5-TRI-O-CAFFEOYLQUINIC-ACID 1 3,4-DICAFFEOYL-QUINIC-ACID 1 3,4-DIHYDROXYBENZOATE 1 3,4-DIHYDROXYBENZOIC-ACID 1 3,4-DIMETHOXYTOLUENE 2 3,4-HYDROXYCINNAMIC-ACID 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 3 3,4-SECOTRACHYLOBANOIC-ACID 3 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 3 3,5'-DIALLYL-2'-HYDROXY-4-METHOXYBIPHENYL-ETHER 2 3,5,6,7,8,3',4'-HEPTEMETHOXYFLAVONE 2 3,5,8,3',4'-PENTAHYDROXYFLAVONE 1 3,5-BIS(3-METHYL-2-BUTENYL)-4-METHOXY-BENZOIC-ACID 1 3,5-DI-O-CAFFEOYLQUINIC-ACID 1 7 Chemical Activity Count 3,5-DICAFFEOYL-QUINIC-ACID 1 3,5-DIMETHOXY-1,6-DIHYDROXYXANTHONE 2 3,5-DIMETHYL-4,6-DI-O-METHYLPHLOROACETOPHENONE 1 3,6A-DIHYDROXY-8,9-(METHYLENEDIOXY)-PTEROCARPAN 1 3,7'-DIMETHYLQUERCETIN 1 3,7,8,2',5'-PENTAHYDROXYFLAVONE 1 3-ACETYLACONITINE 5 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-23-CAFFEATE 1 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-3-BETA-CAFFEATE 1 3-BETA-ACETOXY-20,25-EPOXYDAMMARANE-24-OL 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-20(29)-LUPEN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-12-EN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-18-EN-28-OIC-ACID 1 3-BUTENYL-ISOTHIOCYANATE 1 3-CARBOMETHOXY-1,8-DIHYDROXYANTHRAQUINONE 1 3-HYDROXY-8,9-(METHYLENEDIOXY)-6A,11A,DEHYDROPTEROCARPAN 1 3-HYDROXY-9-METHOXYPTEROCARPAN 1 3-HYDROXY-FLAVONE 3 3-METHOXY-1,8-DIHYDROXY-ANTHRQUINONE 1 3-METHYLQUERCETIN 1 3-N-BUTYL-PHTHALIDE 2 3-N-BUTYROYL-BETA-IONONE 1 3-O(ALPHA-L-ARABINOPYRANOSYL(1,2))ALPHA-L-ARABINOPYRANOSYL(1-6)2-ACETOAMIDO-2- 1 DEOXY-BETA-D-GLUCOPYRANOSYL-OLEANOLIC-ACID 3-O-ACETYLOLEANOLIC-ACID 1 3-O-ALPHA-L-RHAMNOPYRANOSYL-(1,2)[BETA-D-GLUCOPYRANOSYL-(1,4)]-ALPHA-L- 1 ARABINOPYRANOSYLOELANOLIC-ACID 3-O-CAFFEOYLQUINIC-ACID 1 8 Chemical Activity Count 3-O-METHYL-MANGOSTIN 2 3-O-TRANS-CAFFEOYLTORMENTIC-ACID 1 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID 3 3-OXO-11-ALPHA-METHOXYOLEAN-12-ENE-30-OIC-ACID 3 3-OXO-OLEAN-9(11),12-DIENE-30-OIC-ACID 3 4',5-DIHYDROXY-6,7-DIOXOMETHYLENE-FLAVONE-3-O-BETA-D-GLUCOSIDE 1 4',7-DIHYDROXY-3-METHOXY-5,6-DIMETHYLFLAVONE 2 4'-DIMETHYLPODOPHYLLOTOXIN 1 4'-HYDROXY-3,7'-DIMETHOXY-5-METHYLFLAVONE 1 4'-HYDROXY-FLAVONE 1 4'-O-METHYLCOUMESTROL 1 4'5-DIHYDROXY-3',6,7-TRIMETHOXYFLAVONE 2 4,15-DIHYDROVERNODALIN 1 4,4'-DIALLYL-2,3'-DIHYDROXYBIPHENYL 2 4,4'-DIALLYL-2,3'-DIHYDROXYBIPHENYL-ETHER 2 4,5-DI-O-CAFFEOYLQUINIC-ACID 1 4,5-DIHYDROVERNODALIN 1 4,5-DIHYDROXY-3,7-DIMETHOXYFLAVONE 2 4,5-DIMETHOXY-6-(2-PROPENYL)1,3-BENZDIOXOLE 1 4,7-DIHYDROXY-2-METHOXY-9,10-DIHYDROPHENANTHRENE 1 4,8,13-DUVATRIEN-1,3-DIOL 1 4-(2-PHENYLETHYLETHYL)-PHENOL 1 4-(2-{METHOXYPHENYL}ETHYL)-PHENOL 1 4-ACETYLARABINOSYL-ELLAGIC-ACID 1 4-ACETYLXYLOSYL-ELLAGIC-ACID 1 4-ALLYL-PYROCATECHOL 1 4-AMINO-4-CARBOXYCHROMAN-2-ONE 2 9 Chemical Activity Count 4-ARABINOSYL-ELLAGIC-ACID 1 4-EPIABIETIC-ACID 1 4-EPIABIETOL 1 4-HYDROXY-3(3-METHYL-2-BUTENYL)BENZOIC-ACID-METHYL-ESTER 2 4-HYDROXY-3,5-BIS(3-METHYL-2-BUTENYL)-BENZOIC-ACID 1 4-HYDROXY-3,5-BIS(3-METHYL-2-BUTENYL)BENZOIC-ACID-METHYL-ESTER 1 4-HYDROXY-3-(3-METHYL-2-BUTENYL)-5-(3-METHYL-2-BUTENYL)-BENZOIC-ACID 1 4-HYDROXY-3-(ISOPENTEN-2-YL)-ACETOPHENONE 1 4-HYDROXY-3-METHOXYFLAVONE 2 4-HYDROXY-TRITRIACONTANE-16,18-DIONE 1 4-HYDROXYBENZOYL-ERYTHRITOL 1 4-HYDROXYHOMOPTEROCARPIN 1 4-KETOPINORESINOL 1 4-METHOXY-3,5-BIS(3-METHYL-2-BUTENYL)BENZOIC-ACID 2 4-METHOXYBRASSININ 1 4-METHYL-6-ACETOXYHEXANAL 1 4-METHYL-CATECHOL 1 4-O-CAFFEOYLQUINIC-ACID 1 4-O-METHYL-GLUCURONOXYLAN 2 4-PENTENYL-ISOTHIOCYANATE 1 4-TERPINEOL 3 4-VINYL-GUAIACOL 2 5'-METHOXYHYDNOCARPIN 1 5,4'-DIHYDROXY-3,7,3'-TRIMETHOXYFLAVONE 1 5,4'-DIHYDROXY-6,7,8,3'-TETRAMETHOXYFLAVONE 1 5,6,7,8-TETRAMETHOXYFLAVONE 1 5,6-DEHYDROKAWAIN 1 10 Chemical Activity Count 5,7,2',6'-TETRAHYDROXYFLAVONE 1 5,7,4'-TRIHYDROXY-6,8-DIPRENYLISOFLAVONE 1 5,7,4'-TRIHYDROXY-8-METHOXYFLAVONE 1 5,7-DIHYDROXY-2-METHYLCHROMONE-8-C-BETA-GLUCOPYRANOSIDE 2 5,7-DIHYDROXY-3,8-DIMETHOXYFLAVONE 1 5,7-DIHYDROXY-FLAVONE 1 5,7-DIHYDROXYCHROMONE 1 5,7-DIHYDROXYCOUMARIN-7-METHYL-ETHER 1 5,7-DIMETHOXYFLAVONE 1 5,8-DIHYDROXY-6,7-DIMETHOXY-FLAVANONE 1 5,8-DIHYDROXYBENZOPYRANONE 1 5-(HEPTADEC-12-ENYL)-RESORCINOL 1 5-BETA-HYDROXYECDYSTERONE 2 5-DEOXYINGENOL-ESTER 1 5-DEOXYKIEVITONE 1 5-HEXYL-CYCLOPENTA-1,3-DIONE 1 5-HYDROXY-7,4-DIMETHOXYFLAVONE
Recommended publications
  • The Cyanogenic Polymorphism in Trifolium Repens L
    Heredity66 (1991) 105—115 Received 16 May 1990 Genetical Society of Great Britain The cyanogenic polymorphism in Trifolium repens L. (white clover) M. A. HUGHES Department of Biochemistry and Genetics, The Medical School, The University, Newcastle upon Tyne NE2 4HH Thecyanogenic polymorphism in white clover is controlled by alleles of two independently segregating loci. Biochemical studies have shown that non-functional alleles of the Ac locus, which controls the level of cyanoglucoside produced in leaf tissue, result in the loss of several steps in the biosynthetic pathway. Alleles of the Li locus control the synthesis of the hydrolytic enzyme, linamarase, which is responsible for HCN release following tissue damage. Studies on the selective forces and the distribution of the cyanogenic morphs of white clover are discussed in relation to the quantitative variation in cyanogenesis revealed by biochemical studies. Molecular studies reveal considerable restriction fragment length polymorphism for linamarase homologous genes. Keywords:cyanogenesis,polymorphism, Trifolium repen, white clover. genetics to plant taxomony. This review discusses the Introduction extensive and diverse ecological genetic studies in rela- Theterm cyanogenesis describes the release of hydro- tion to the more recent biochemical and molecular cyanic acid (HCN), which occurs when the tissues of studies of cyanogenesis in white clover. some plant species are damaged. The first report of cyanogenesis in Trifolium repens (white clover) was by Mirande (1912) and this was shortly followed by a Biochemistry paper which demonstrated that the species was poly- Theproduction of HCN by higher plants depends morphic for the character, with both cyanogenic and upon the co-occurrence of a cyanogenic glycoside and acyanogenic plants occurring in the same population catabolic enzymes.
    [Show full text]
  • Chronic Cassava Toxicity
    4/63 7L ARCHIV NESTEL C-010e 26528 II Chronic Cassava Toxicity Proceedings of an interdisciplinary workshop London, England, 29-30 January 1973 Editors: Barry Nestel and Reginald Maclntyre INTERNATIONAL CENTRE DE RECHERCHES DEVELOPMENT POUR LE DEVELOPPEMENT RESEARCH CENTRE INTERNATIONAL Oawa, Canada 1973 IDRC-OlOe CHRONIC CASSAVA TOXICITY Proceedings of an interdisciplinary workshop London, England, 29-30 January 1973 Editors: BARRY NESTEL AND REGINALD MACINTYRE 008817 UDC: 615.9:547.49 633.68 © 1973 International Development Research Centre Head Office: Box 8500, Ottawa, Canada. K1G 3H9 Microfiche Edition S 1 Contents Foreword Barry Nestel 5-7 Workshop Participants 8-10 Current utilization and future potential for cassava Barry Nestel 11-26 Cassava as food: toxicity and technology D. G. Coursey 27-36 Cyanide toxicity in relation to the cassava research program of CIAT in Colombia James H. Cock 37-40 Cyanide toxicity and cassava research at the International Institute of Tropical Agriculture, Ibadan, Nigeria Sidki Sadik and Sang Ki Hahn 41-42 The cyanogenic character of cassava (Manihor esculenta) G. H. de Bruijn 43-48 The genetics of cyanogenesis Monica A. Hughes 49-54 Cyanogenic glycosides: their occurrence, biosynthesis, and function Eric E. Conn 55-63 Physiological and genetic aspects of cyanogenesis in cassava and other plants G. W. Butler, P. F. Reay, and B. A. Tapper 65-71 Biosynthesis of cyanogenic glucosides in cassava (Manihot spp.) Frederick Nartey 73-87 Assay methods for hydrocyanic acid in plant tissues and their application in studies of cyanogenic glycosides in Manihot esculenta A. Zitnak 89-96 The mode of cyanide detoxication 0.
    [Show full text]
  • The Role of Phytotoxic and Antimicrobial Compounds of Euphorbia Gummifera in the Cause and Maintenance of the Fairy Circles of Namibia
    The role of phytotoxic and antimicrobial compounds of Euphorbia gummifera in the cause and maintenance of the fairy circles of Namibia by Nicole Galt Submitted in partial fulfillment of the requirements for the degree Magister Scientiae Department of Plant and Soil Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J.J.M. Meyer March 2018 i The role of phytotoxic and antimicrobial compounds of Euphorbia gummifera in the cause and maintenance of the fairy circles of Namibia by Nicole Galt Department of Plant and Soil Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J.J.M. Meyer Degree: MSc Medicinal Plant Science Abstract Fairy circles (FC) are unexplained botanical phenomena of the pro-Namib desert and parts of the West Coast of South Africa. They are defined as circular to oval shaped anomalies of varying sizes that are left bereft of vegetation. Even though there are several distinctly different hypotheses that have aimed to explain the origin of fairy circles, none have done so to satisfaction of the scientific community. The aim of this study was to determine if phytotoxic and antibacterial properties of a co-occurring Euphorbia species, E. gummifera plays a role in the creation of fairy circles. Representative soil samples (from inside-, outside fairy circles and underneath dead E. gummifera plants) and plant samples (aerial ii parts of E. gummifera and intact grasses, Stipagrostis uniplumis) were collected from the area. The collected samples were used for a several biological assays. A soil bed bio-assay was done using the three collected soil types.
    [Show full text]
  • Flavonoids and Isoflavonoids Biosynthesis in the Model
    plants Review Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration Margarita García-Calderón 1, Carmen M. Pérez-Delgado 1, Peter Palove-Balang 2, Marco Betti 1 and Antonio J. Márquez 1,* 1 Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; [email protected] (M.G.-C.); [email protected] (C.M.P.-D.); [email protected] (M.B.) 2 Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +34-954557145 Received: 28 April 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase.
    [Show full text]
  • The Response of Cyanogenic and Acyanogenic Phenotypes of Trifolium Repens to Soil Moisture Supply W
    THE RESPONSE OF CYANOGENIC AND ACYANOGENIC PHENOTYPES OF TRIFOLIUM REPENS TO SOIL MOISTURE SUPPLY W. FOULDS Science Department, Dudley CollegeofEducation and J. P. GRIME DepartmentofBotany, University of Sheffield Received14.vi.71 I. INTRODUCTION THE legumes Trjfolium repens L. and LotuscorniculatusL. are represented in many parts of the world by populations in which some or all of the plants are capable of releasing hydrocyanic acid under certain conditions. For both species, there is evidence (Barber, 1955; Jones, 1962) that cyanogenic individuals are less susceptible to grazing by small herbivores. Cyanogenesis is determined by two independent genes designated Ac and Li (Corkill, 1942; Atwood and Sullivan, 1943). The gene Ac is dominant and is responsible for the production of two cyanogenic glucosides, lotaus- tralin and linamarin, which occur in the proportion 4 : 1 (Melville and Doak, 1940). Modifying genes determine the quantity of glucoside produced (Corkill, 1940). The cyanogenic glucosides can be hydrolysed by the - glucosidase,linamarase (Coop, 1940) the production of which is governed by the dominant gene Li. Hydrolysis yields acetone (from linamarin), methyl-ethyl-ketone (from lotaustralin), glucose, hydrogen cyanide and water. Hughes (1968) maintains that two -glucosidases occur in Trjfolium repens, one, linamarase of high activity, the other of low activity. Corkill (1940) showed that individual plants may contain both enzyme and glucoside (AcLi), enzyme only (acLi), glucoside only (Acli) or neither (acli). Daday (1954a, b, 1958) measured the contribution of each of the four phenotypes to populations of Trfo1ium repens sampled on a world scale and found that high frequencies of both Ac and Li genes were associated with warm winter conditions.
    [Show full text]
  • PHYSIOLOGICAL STUDIES on the CYANOGENIC GLUCOSIDES in LOTUS ARABICUS L. Very Little Work Relating to the Physiological Studies O
    PHYSIOLOGICAL STUDIES ON THE CYANOGENIC GLUCOSIDES IN LOTUS ARABICUS L. YASH PAL ABROL Division of I!lant Physiology and Phytotron, Indian A,£;ricultural Research Institute, Delhi-12 SuMMARY Observations on the occurrence of cyanogenic glucosides, linamarin and lotaustralin, in Lotus arabicus L., are reported. During the vegetative stage, a major portion of the cyanogens is localised in the leaves. With the onset of flowering, cyanogen content on per plant basis shows a sharp decrease but flower buds and flowers have a high content. Experiments on feeding carbon-14 labelled L-valine and L-isoleucine to flower buds reveals that the compounds are synthesised in these parts. lYiature seeds do not contain any detectable amounts of the cyanogens. I:-!TRODUCTION Very little work relating to the physiological studies on cyanogenic glucosides in higher plants has been reported. This is very likely due to the predominant view held until recently that a very small number of plants are cyanophoric and that cyano­ genic glucosides are inert end products of metabolism (Robinson, 1930). Work of physiological nature is however of interest in view of the recent observations that cyanogenic glucosidcs arc widely distributed (Dilleman, 1958; Hegnaucr, 1964), HCN is metabolised by seedlings of cyanophoric as well as non-cyano­ phoric plants (Blumenthal-Goldschmidt, Butler and Conn, 1963 Tschiersch, 1964; Nigam and Ressler, 1964), cyanogenic gluco­ sides are metabolically active rather than inert end products (Abrol, Uribe and Conn, 1965; Abrol and Conn, 1966; Abrol, Conn and Stoker, 1966) and are very likely involved in the synthesis of various neurotoxic and neurolathvritic amino acids (Ressler, 1962 ; Tschiersch, 1964).
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • CYP79A118 Is Associated with the Formation of Taxiphyllin in Taxus Baccata
    Plant Mol Biol (2017) 95:169–180 DOI 10.1007/s11103-017-0646-0 CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata Katrin Luck1 · Qidong Jia2 · Meret Huber1 · Vinzenz Handrick1,3 · Gane Ka‑Shu Wong4,5,6 · David R. Nelson7 · Feng Chen2,8 · Jonathan Gershenzon1 · Tobias G. Köllner1 Received: 1 March 2017 / Accepted: 2 August 2017 / Published online: 9 August 2017 © The Author(s) 2017. This article is an open access publication Abstract plant divisions containing cyanogenic glycoside-producing Key message Conifers contain P450 enzymes from the plants has not been reported so far. We screened the tran- CYP79 family that are involved in cyanogenic glycoside scriptomes of 72 conifer species to identify putative CYP79 biosynthesis. genes in this plant division. From the seven resulting full- Abstract Cyanogenic glycosides are secondary plant com- length genes, CYP79A118 from European yew (Taxus bac- pounds that are widespread in the plant kingdom. Their bio- cata) was chosen for further characterization. Recombinant synthesis starts with the conversion of aromatic or aliphatic CYP79A118 produced in yeast was able to convert L-tyros- amino acids into their respective aldoximes, catalysed by ine, L-tryptophan, and L-phenylalanine into p-hydroxyphe- N-hydroxylating cytochrome P450 monooxygenases (CYP) nylacetaldoxime, indole-3-acetaldoxime, and phenylacetal- of the CYP79 family. While CYP79s are well known in doxime, respectively. However, the kinetic parameters of the angiosperms, their occurrence in gymnosperms and other enzyme and transient expression of CYP79A118 in Nico- tiana benthamiana indicate that L-tyrosine is the preferred Accession numbers Sequence data for genes in this article substrate in vivo.
    [Show full text]
  • Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza Glabra L., Paeonia Lactiflora Pall., and Eriobotrya Japonica (Thunb.) Lindl
    Medicines 2019, 6, 43; doi:10.3390/medicines6020043 S1 of S35 Supplementary Materials: Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts Jun-Xian Zhou, Markus Santhosh Braun, Pille Wetterauer, Bernhard Wetterauer and Michael Wink T r o lo x G a llic a c id F e S O 0 .6 4 1 .5 2 .0 e e c c 0 .4 1 .5 1 .0 e n n c a a n b b a r r b o o r 1 .0 s s o b b 0 .2 s 0 .5 b A A A 0 .5 0 .0 0 .0 0 .0 0 5 1 0 1 5 2 0 2 5 0 5 0 1 0 0 1 5 0 2 0 0 0 1 0 2 0 3 0 4 0 5 0 C o n c e n tr a tio n ( M ) C o n c e n tr a tio n ( M ) C o n c e n tr a tio n ( g /m l) Figure S1. The standard curves in the TEAC, FRAP and Folin-Ciocateu assays shown as absorption vs. concentration. Results are expressed as the mean ± SD from at least three independent experiments. Table S1. Secondary metabolites in Glycyrrhiza glabra. Part Class Plant Secondary Metabolites References Root Glycyrrhizic acid 1-6 Glabric acid 7 Liquoric acid 8 Betulinic acid 9 18α-Glycyrrhetinic acid 2,3,5,10-12 Triterpenes 18β-Glycyrrhetinic acid Ammonium glycyrrhinate 10 Isoglabrolide 13 21α-Hydroxyisoglabrolide 13 Glabrolide 13 11-Deoxyglabrolide 13 Deoxyglabrolide 13 Glycyrrhetol 13 24-Hydroxyliquiritic acid 13 Liquiridiolic acid 13 28-Hydroxygiycyrrhetinic acid 13 18α-Hydroxyglycyrrhetinic acid 13 Olean-11,13(18)-dien-3β-ol-30-oic acid and 3β-acetoxy-30-methyl ester 13 Liquiritic acid 13 Olean-12-en-3β-ol-30-oic acid 13 24-Hydroxyglycyrrhetinic acid 13 11-Deoxyglycyrrhetinic acid 5,13 24-Hydroxy-11-deoxyglycyirhetinic
    [Show full text]
  • Effets Des Polyphénols De Plantes Sur La Croissance Et Certains Facteurs De
    CELINE MESSIER EFFETS DES POLYPHENOLS DE PLANTES SUR LA CROISSANCE ET CERTAINS FACTEURS DE VIRULENCE DE CANDIDA ALBICANS Mémoire présenté à la Faculté des études supérieures de l'Université Laval dans le cadre du programme des études en sciences dentaires pour l'obtention du grade de maître es sciences (M. Se.) FACULTE DE MEDECINE DENTAIRE UNIVERSITÉ LAVAL QUÉBEC 2011 ©Céline Messier, 2011 Résumé Les buts de notre projet étaient d'étudier les effets de certains polyphenols de plantes sur la croissance, la survie, la formation du biofilm et la transition blastospore-hyphe de C. albicans, une levure responsable des candidoses humaines. Ce projet a permis de démontrer que deux polyphenols naturels de la réglisse, la licochalcone A et la glabridine, ainsi qu'un polyphenol synthétisé en laboratoire, le 4-hydroxycordoin, ont des propriétés intéressantes contre certains facteurs de virulence de C. albicans. La licochalcone A et la glabridine ont montré un effet fongicide et une action synergique avec le nystatin. La licochalcone A et le 4-hydroxycordoin ont démontré une capacité d'inhiber la formation du biofilm, alors que les trois polyphenols ont montré un effet inhibiteur sur la transition blastospore-hyphe de C. albicans. Ces molécules possèdent donc un potentiel pour le traitement ou la prévention d'infections fongiques buccales à C. albicans. 11 Avant-Propos Je désire d'abord remercier mon directeur de mémoire, Dr Daniel Grenier, pour son appui, son temps et sa patience tout au long de mon projet. Je veux également mentionner l'aide reçue de mes collègues de laboratoire. D m'est aussi important de souligner l'influence de deux personnes, Dr Jean Barbeau et Mme Jacynthe Séguin, qui m'ont transmis une multitude de connaissances et leur intérêt pour la recherche en microbiologie buccale.
    [Show full text]
  • Poster Session Abstracts 610
    Pharmaceutical Biology Pharmaceutical Biology, 2012; 50(2): 537–610 2012 © 2012 Informa Healthcare USA, Inc. ISSN 1388-0209 print/ISSN 1744-5116 online 50 DOI: 10.3109/13880209.2012.658723 2 537 Poster Session Abstracts 610 00 00 0000 00 00 0000 UMU APPLIED FOR SCREENING HERB AND PLANT EXTRACTS OR PURE PHYTOCHEMICALS FOR ANTIMUTAGENIC ACTIVITY 00 00 0000 Monique Lacroix, Stéphane Caillet, Stéphane Lessard INRS-Institut Armand-Frappier, Laval, Quebec H7V1B7, Canada 1388-0209 Antimutagenic activities of twelve herb extracts and twenty two plant extracts or pure phytochemicals assessed using a method based on the umu test system for screening natural antimutagens. All herb extracts tested showed antimuta- 1744-5116 genic properties except for Italian parsley that had mutagenic activity. Sage, mint, vervaine and oregano were the most © 2012 Informa Healthcare USA, Inc. antimutagenic. With regard to the metabolites, those from most herb extracts showed antimutagenic properties and those from garlic and thyme showed very strong antimutagenic activities, while those from camomile, rosemary and 10.3109/13880209.2012.658723 tarragon showed mutagenic activities, and those from celeriac and sage showed very strong mutagenic activities. Among pure compounds, pycnogenol metabolites showed strong antimutagenic activities. NPHB 658723 INSECTICIDAL ACTIVITY OF DERRIS MALACCENSIS FROM FRENCH POLYNESIA Heinui Philippe,1 Taivini Teai,1 Maurice Wong,2 Christian Moretti,3 Phila Raharivelomanana1 1Université de la Polynésie Française, Laboratoire BIOTEM, Faa’a, 98702, French Polynesia, 2Service du Développement Rural, Papeete, 98713, French Polynesia, 3Institut de Recherche pour le Développement, Papeete, 98713, French Polynesia Derris malaccensis (G. Bentham) D. Prain, a tropical member of the Fabaceae growing in French Polynesia, was inves- tigated to determine concentrations of metabolites (rotenoids and flavonoids) with pesticidal potential.
    [Show full text]
  • Metabolism of the Cyanogenic Glucosides in Developing Flax: Metabolic Analysis, and Expression Pattern of Genes
    H OH metabolites OH Article Metabolism of the Cyanogenic Glucosides in Developing Flax: Metabolic Analysis, and Expression Pattern of Genes Magdalena Zuk 1,2,* , Katarzyna Pelc 1, Jakub Szperlik 1, Agnieszka Sawula 1 and Jan Szopa 2 1 Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wrocław, Poland; [email protected] (K.P.); [email protected] (J.S.); [email protected] (A.S.) 2 Linum Fundation, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland; [email protected] * Correspondence: [email protected] Received: 18 May 2020; Accepted: 12 July 2020; Published: 14 July 2020 Abstract: Cyanogenic glucosides (CG), the monoglycosides linamarin and lotaustralin, as well as the diglucosides linustatin and neolinustatin, have been identified in flax. The roles of CG and hydrogen cyanide (HCN), specifically the product of their breakdown, differ and are understood only to a certain extent. HCN is toxic to aerobic organisms as a respiratory inhibitor and to enzymes containing heavy metals. On the other hand, CG and HCN are important factors in the plant defense system against herbivores, insects and pathogens. In this study, fluctuations in CG levels during flax growth and development (using UPLC) and the expression of genes encoding key enzymes for their metabolism (valine N-monooxygenase, linamarase, cyanoalanine nitrilase and cyanoalanine synthase) using RT-PCR were analyzed. Linola cultivar and transgenic plants characterized by increased levels of sulfur amino acids were analyzed. This enabled the demonstration of a significant relationship between the cyanide detoxification process and general metabolism. Cyanogenic glucosides are used as nitrogen-containing precursors for the synthesis of amino acids, proteins and amines.
    [Show full text]