Morels (Morchella Spp.)

Total Page:16

File Type:pdf, Size:1020Kb

Morels (Morchella Spp.) Natural Product Radiance, Vol. 5(4), 2006, pp. 306-310 Green page: Article Morels (Morchella spp.) in Kumaun Himalaya Chandra Singh Negi Department of Zoology Government Post Graduate College, Pithoragarh Uttaranchal-262 502, India E-mail: [email protected]. Received 9 December 2004; Accepted 28 March 2006 2 Abstract delectable of mushrooms . Occurrence of 18 species of Morchella are reported Morels, also known as sponge mushrooms, belong to the genus Morchella Dill. The from 28 countries, wherein altogether 14 present paper deals with the most commonly exploited species of this genus in the Darma valley, species are reported to be edible or used district Pithoragarh, Kumaun Himalaya with an aim to improve upon the knowledge base about as food, and 5 are used medicinally3. They these macrofungi for further exploration. are highly prized for their culinary uses, Keywords: Morels, Morchella spp., Kumaun Himalaya, Edible fungi, Medicinal fungi, Sponge particularly as a gourmet food and are Mushrooms. used in gravies, sauces and soups. Morels 7 IPC code; Int. cl. — A01G 1/04, A61K 35/84, A23L 1/00 are not only delicious; they are also healthy and nutritious food. They contain Introduction symbiotic relationships (mycorrhizas) 42 percent protein on a dry weight basis, with trees, which enable them to grow in are low in calories and rich in minerals4. Wild edible fungi have been nutrient deficient soils. Needless to say This apart, its metabolites have varied collected and consumed by people for health of the forest wherein these species uses, viz. as adaptogens and thousands of years. The archaeological of wild fungi grow is inadvertently related immunostimulants and are considered to record reveals edible species associated to the health of the forests. Income from be one of the most useful antitumour with people living 13,000 years ago in wild edible fungi is an important source agents for clinical uses. It has been Chile. China features prominently in the of revenue for rural communities, estimated that total world production of early and later historical records of wild especially in developing countries like morels is about 150 tonnes dry weight, edible fungi. The Chinese have for India. This apart, where market for the equivalent to 1.5 million tonnes of fresh centuries valued many species, not only same are not available, they form a morels. India and Pakistan are the major for nutrition and taste but also for their significant source of dietary input or producing countries, each producing healing properties. These values and nutrition. traditions are as strong today as they were Morels centuries ago and are confirmed by the (Morchella spp.) huge range of wild fungi collected from are saprophytic fungi forests and fields and marketed widely1. that are found in It is not surprising that today China is the both conifer and leading exporter of cultivated mushrooms. broad-leaved In addition to being an important source temperate forests. All of food, many of the fungal species have species are edible wide use as medicine thus, wild useful and delicious with the fungi contribute towards diet, income and possible exception of human health. In addition many of the truffles which are species play a vital ecological role through considered the most Morchella esculenta 306 Natural Product Radiance - Green page: Article about 50 tonnes of dry morels, all of which Even the number of morel species is a M. elata Fr.), M. deliciosa (Fr.) Jct., is exported5. It is important to take note matter of debate. Though Morchella as M. angusticeps Peck, M. crassipes of the fact that the most common of all a genus is fairly easy to recognize, species (Vent.) Pers. and M. semilibera the morels, Morchella esculenta differentiation within the genus is (DC.)Fr. (Table 1). Fortunately for (Linn.) Pers. is said to be poisonous if markedly difficult, and a variable number amateur mycologists, morel species can eaten raw6. of species are recognized by various at least be grouped by colour, either workers. The genus Morchella was yellow or black. Morchella has a wide Characteristic features of reviewed in India by Waraitchi in the year distribution in India and is very common Morels 1976, who presented a key for all the in the temperate zones or forests in species known from India. According to Himachal Pradesh, Punjab, Jammu & Despite an extensive body of him, six species under the genus have Kashmir and Uttaranchal. literature and intense interest, the been identified, which include M. In general, the mushrooms taxonomy of morels, is poorly known. esculenta, M. conica (Pers.) Fr. (syn. produced by the morel fungi has a Table 1 : Characteristic features of common edible species of genus Morchella17 Species Habitat Characteristic features Morchella On the ground in oak or Pileus with conspicuous ridges and in age obtusely conic with a flaring margin, pits semilibera beech woods and usually elongated, dull yellowish brown, the ribs of the pits discolouring darker than ( DC.) Fr. fruiting about a week before the depressions; stipe 8-10 cm long, 1-2 cm thick at apex, in age clavate and up to the larger morels appear. 4 cm thick at the base, pallid to yellowish, at times with pinkish discolouration in age, ribbed near the apex, granular furfuraceous. Morchella On sandy soils in woods. Pileus 1-5 cm high, narrowly conic, pallid to greyish young but the borders of the pits angusticeps Peck Widely distributed and often darkening finally to black. Heads with greatly elongated pits; stipe equal, nearly as thick (Black morel) associated with Populus spp. as the head, pallid to buff in large forms, the pits blackish like the ribs by maturity. Morchella On the ground in grassy places, Pits or depressions of the pileus grey to fuscous, ridges pallid; fruit bodies typically deliciosa (Fr.) Jct. usually at the edge of woods, small. Pileus 2-3 cm long, pit elongated, ridges much lighter than the pits, irregularly (Delicious morel) widely distributed but rare. anastomosing; stipe up to 2/3 times as thick as the pileus, often enlarged at the base and somewhat lacunose, whitish or yellowish. Morchella On the ground in open places, Pits large and shallow, ridges thin; stipe enlarged and at times lacunose at the base. crassipes ( Vent.) at the edge of woods. Pileus sub-conic, usually elongated and 6-12 cm long and 5-6 cm broad or at times Pers. larger; pits roundish or irregularly elongated; ribs irregularly anastomosing, edges sharp; stipe stout, up to 10-11 cm long, 4 cm at apex and 5-7 cm at base, yellowish or whitish. Morchella Usually in or near lightly Pileus not distinctly longitudinally ridged, up to 7-9 cm long and 4-5 cm wide, pits esculenta( Linn.) burned grassy areas and rounded, irregular or at times longitudinally elongated, yellowish, becoming light Pers. swampy ground. brownish when dry, ridges irregularly anastomosing, edges rounded, lighter than the pits; (Common morel) stipe only slightly enlarged at the base. Morchella conica On soil, in open forest, Pileus can be up to 4-10 cm but may occasionally be larger; cone to spindle-shaped (Pers.) Fr. syn. often a year or two after with pronounced vertical ridges with cross-connections, producing a series of rectangular M. elata Fr. a forest fire. hollows up to 1cm long; honey coloured with ridges darkening to brown with age; (White morel) stipe 2-4 cm, hollow, circular, often enlarged at base or top, white to yellow with a rough surface. Vol 5(4) July-August 2006 307 Green page: Article characteristic appearance, although the in the same places at about the same time. can easily be avoided with a little mushrooms of several closely related fungi In false morels the fruit bodies are study10. have somewhat similar appearances. They wrinkled rather than honeycombed. look like a pine-cone perched on a stem. Ptychoverpa bohemica (Krombh.) Medicinal uses The fertile cap (pine-cone portion) is Boud. has irregular wrinkles running honeycombed with pits and ridges. The more or less vertically down the brown Medicinal mushrooms have been cap and stem are hollow and the cap rises head and has a pale tan stalk. This species used as a dietary supplement or medicinal continuously from the stem. The stem has caused gastro-intestinal problems for food throughout the world for over 2,000 colour ranges from white to pale brown, a number of people who have consumed years. In the late 1980s, their extractable and the colour of the cap ranges from pale it and so it should be avoided. The real ingredients received great attention as yellow-brown through tan, brown and killer, however, and the best known of the products for improving biological grey-brown. The pits are typically the same false morels is Gyromitra esculenta function. There is intense industrial colour as the ridges or slightly darker7. (Pers.) Fr. The head of this species has a interest currently in a novel class of The optimum growth is obtained in the brain-like appearance. Over the years compounds extractable either from the temperate coniferous forests preferably in hundreds of people have died after eating loamy soils rich in humus. After the onset it. False morels contain a toxin called mycelium or fruiting body of mushrooms. of rainy season, the hyphal mass, till now gyromitrin which is converted to a Compounds extracted from these and buried in the humus layer (the duff), chemical called mono methyl hydrazine others called “mushroom nutriceuticals” grows out into the open forming the or MMH, which is toxic. MMH is water exhibit either medicinal and/or tonic fruiting body — the ascocarp (or the soluble with a low boiling point and qualities and have immense potential as apothecium), which varies from 2-15cm volatilizes off below 90oC.
Recommended publications
  • Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella Esculenta
    molecules Article Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta Syed Lal Badshah 1,* , Anila Riaz 1, Akhtar Muhammad 1, Gülsen Tel Çayan 2, Fatih Çayan 2, Mehmet Emin Duru 2, Nasir Ahmad 1, Abdul-Hamid Emwas 3 and Mariusz Jaremko 4,* 1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; [email protected] (A.R.); [email protected] (A.M.); [email protected] (N.A.) 2 Department of Chemistry and Chemical Processing Technologies, Mu˘glaVocational School, Mu˘glaSıtkı Koçman University, 48000 Mu˘gla,Turkey; [email protected] (G.T.Ç.); [email protected] (F.Ç.); [email protected] (M.E.D.) 3 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 4 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia * Correspondence: [email protected] (S.L.B.); [email protected] (M.J.) Abstract: Mushroom polysaccharides are active medicinal compounds that possess immune-modulatory and anticancer properties. Currently, the mushroom polysaccharides krestin, lentinan, and polysac- Citation: Badshah, S.L.; Riaz, A.; charopeptides are used as anticancer drugs. They are an unexplored source of natural products with Muhammad, A.; Tel Çayan, G.; huge potential in both the medicinal and nutraceutical industries. The northern parts of Pakistan have Çayan, F.; Emin Duru, M.; Ahmad, N.; a rich biodiversity of mushrooms that grow during different seasons of the year. Here we selected an Emwas, A.-H.; Jaremko, M. Isolation, edible Morchella esculenta (true morels) of the Ascomycota group for polysaccharide isolation and Characterization, and Medicinal characterization.
    [Show full text]
  • El Género Morchella Dill. Ex Pers. En Illes Balears
    20210123-20210128 El género Morchella Dill. ex Pers. en Illes Balears (1) JAVIER MARCOS MARTÍNEZ C/Alfonso IX, 30, Bajo derecha. 37500. Ciudad Rodrigo, Salamanca, España. Email: [email protected] (2) GUILLEM MIR Solleric, 76. E-07340 Alaró, Mallorca, Illes Balears, España. E-mail: [email protected] (3) GUILHERMINA MARQUES CITAB, Universidade de Trás-os-Montes e Alto Douro, Departamento de Agronomía, 5001-801. Vila Real, Portugal. Email: [email protected] Resumen: MARCOS, J.; MIR, G. & G. MARQUES (2021). El género Morchella Dill. ex Pers. en Illes Balears. Se realiza una revisión de las especies del género Morchella recolectadas hasta la fecha en las Illes Balears, aportando nuevas citas, fotografías, descripciones macroscópicas y microscópicas, ecología y distribución de las especies. Además, para confirmar la identidad de las especies, se identificaron algunas muestras mediante análisis molecular. Destacan dos especies que son nuevas para el catálogo micológico de las Islas: M. galilaea Masaphy & Clowez y M. rufobrunnea Guzman & F. Tapia y dos nuevas para el catálogo de la isla de Mallorca: M. dunalii Boud. y M. dunensis (Castañera, J.L. Alonso & G. Moreno) Clowez. Palabras clave: Ascomycotina, Morchella, Islas Baleares, España. Abstract: MARCOS, J.; MIR, G. & G. MARQUES (2021). The genus Morchella Dill. ex Pers. in Balearic Island. The species of the genus Morchella collected to date in the Balearic Islands are reviewed, providing new appointments, photographies, macroscopics and microscopic descriptions, ecology and distributions of the species. Additionally in order to confirm the identity of the species some samples were identified by molecular analysis. Two species are new appointments for mycologic catalogue of the Islands: M.
    [Show full text]
  • 2. Typification of Gyromitra Fastigiata and Helvella Grandis
    Preliminary phylogenetic and morphological studies in the Gyromitra gigas lineage (Pezizales). 2. Typification of Gyromitra fastigiata and Helvella grandis Nicolas VAN VOOREN Abstract: Helvella fastigiata and H. grandis are epitypified with material collected in the original area. Matteo CARBONE Gyromitra grandis is proposed as a new combination and regarded as a priority synonym of G. fastigiata. The status of Gyromitra slonevskii is also discussed. photographs of fresh specimens and original plates illustrate the article. Keywords: ascomycota, phylogeny, taxonomy, four new typifications. Ascomycete.org, 11 (3) : 69–74 Mise en ligne le 08/05/2019 Résumé : Helvella fastigiata et H. grandis sont épitypifiés avec du matériel récolté dans la région d’origine. 10.25664/ART-0261 Gyromitra grandis est proposé comme combinaison nouvelle et regardé comme synonyme prioritaire de G. fastigiata. le statut de Gyromitra slonevskii est également discuté. Des photographies de spécimens frais et des planches originales illustrent cet article. Riassunto: Helvella fastigiata e H. grandis vengono epitipificate con materiale raccolto nelle rispettive zone d’origine. Gyromitra grandis viene proposta come nuova combinazione e ritenuta sinonimo prioritario di G. fastigiata. Viene inoltre discusso lo status di Gyromitra slonevskii. l’articolo viene corredato da foto di esem- plari freschi e delle tavole originali. Introduction paul-de-Varces, alt. 1160 m, 45.07999° n 5.627088° e, in a mixed for- est, 11 May 2004, leg. e. Mazet, pers. herb. n.V. 2004.05.01. During a preliminary morphological and phylogenetic study in the subgenus Discina (Fr.) Harmaja (Carbone et al., 2018), especially Results the group of species close to Gyromitra gigas (Krombh.) Quél., we sequenced collections of G.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • 422 Part 180—Tolerances and Ex- Emptions for Pesticide
    Pt. 180 40 CFR Ch. I (7–1–16 Edition) at any time before the filing of the ini- 180.124 Methyl bromide; tolerances for resi- tial decision. dues. 180.127 Piperonyl butoxide; tolerances for [55 FR 50293, Dec. 5, 1990, as amended at 70 residues. FR 33360, June 8, 2005] 180.128 Pyrethrins; tolerances for residues. 180.129 o-Phenylphenol and its sodium salt; PART 180—TOLERANCES AND EX- tolerances for residues. 180.130 Hydrogen Cyanide; tolerances for EMPTIONS FOR PESTICIDE CHEM- residues. ICAL RESIDUES IN FOOD 180.132 Thiram; tolerances for residues. 180.142 2,4-D; tolerances for residues. Subpart A—Definitions and Interpretative 180.145 Fluorine compounds; tolerances for Regulations residues. 180.151 Ethylene oxide; tolerances for resi- Sec. dues. 180.1 Definitions and interpretations. 180.153 Diazinon; tolerances for residues. 180.3 Tolerances for related pesticide chemi- 180.154 Azinphos-methyl; tolerances for resi- cals. dues. 180.4 Exceptions. 180.155 1-Naphthaleneacetic acid; tolerances 180.5 Zero tolerances. for residues. 180.6 Pesticide tolerances regarding milk, 180.163 Dicofol; tolerances for residues. eggs, meat, and/or poultry; statement of 180.169 Carbaryl; tolerances for residues. policy. 180.172 Dodine; tolerances for residues. 180.175 Maleic hydrazide; tolerances for resi- Subpart B—Procedural Regulations dues. 180.176 Mancozeb; tolerances for residues. 180.7 Petitions proposing tolerances or ex- 180.178 Ethoxyquin; tolerances for residues. emptions for pesticide residues in or on 180.181 Chlorpropham; tolerances for resi- raw agricultural commodities or proc- dues. essed foods. 180.182 Endosulfan; tolerances for residues. 180.8 Withdrawal of petitions without preju- 180.183 Disulfoton; tolerances for residues.
    [Show full text]
  • Morel Mushrooms
    A HARVESTER'S GUIDE Morel Mushrooms IN THE NORTHWEST TERRITORIES CONTENTS Introduction .....................................................................................1 Ecology, Growing Season and Habitat .................................... 2 Identification of Morels ........................................................... 3 Harvesting .............................................................................. 5 Drying ..................................................................................... 6 Public Land, Private Property and Aboriginal Private Lands ... 7 2014 Burn Areas in the NWT ................................................... 9 Respect the Land .................................................................... 10 Forest Protection .................................................................... 10 Safety ..................................................................................... 11 Economics, Marketing and Income ......................................... 12 Government, Community and Emergency Contacts ............... 14 Authored by Walter Brown and Joachim Obst INTRODUCTION Forest fires are naturally-occurring events in the Northwest Territories (NWT) that produce a valuable renewable resource: morel mushrooms. These mushrooms flourish in burn areas after a forest fire and present NWT residents and communities with an opportunity to generate a lucrative seasonal income. The prospect of sustainable earnings from the morel mushroom harvest will likely increase in coming years as more than
    [Show full text]
  • A Case for the Commercial Harvest of Wild Edible Fungi in Northwestern Ontario
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2020 A case for the commercial harvest of wild edible fungi in Northwestern Ontario Campbell, Osa http://knowledgecommons.lakeheadu.ca/handle/2453/4676 Downloaded from Lakehead University, KnowledgeCommons A CASE FOR THE COMMERCIAL HARVEST OF WILD EDIBLE FUNGI IN NORTHWESTERN ONTARIO by Osa Campbell FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO May 2020 i A CASE FOR THE COMMERCIAL HARVEST OF WILD EDIBLE FUNGI IN NORTHWESTERN ONTARIO by Osa Campbell An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University 2020 ------------------------------------------ ----------------------------------- Dr. Leonard Hutchison Dr. Lada Malek Major Advisor Second Reader ii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Signature: _____________________________ Date: _____________________________ iii A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific forestry. The reader should be aware that opinions and conclusions expressed in this document ae those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or of Lakehead University.
    [Show full text]
  • Gyromitrin Poisoning: More Questions Than Answers
    Gyromitrin poisoning: more questions than answers Denis R. Benjamin, MD some dedicated mycophagist, who had Many of these clues to the toxin never eaten the mushroom for many years made any coherent sense, even though it “It is perhaps ironic for a mushroom, without any ill effects, would suddenly was known for some years that the toxins Gyromitra esculenta, whose very name and unaccountably take ill. This too could be destroyed by cooking.” (From means edible, to be so poisonous under was passed off as the development of an Benjamin, 1995.) certain circumstances. Surprisingly, allergy in the unfortunate individual, the toxins were only characterized as that the mushrooms had been mistaken ll the enigmas related to this recently as 1968. A number of factors for a poisonous variety, or a rotten toxin remain unresolved. The conspired against the investigators of this batch had been eaten. To compound the current literature merely repeats mushroom poison (Lincoff and Mitchel, difficulties, Gyromitra esculenta caused Awhat was published before 1990. A 1977). The first was the observation that many poisonings in Europe, while in the deluge of “cut and paste.” No meaningful only a few of the participants eating the western USA, the seemingly identical research has been done in the past same quantity of the same mushroom species appeared largely harmless. All three decades. This is due to a number would become ill. Because of this, the sorts of explanations were proposed of factors. The first was the demise of poisoning was immediately ascribed to to explain this discrepancy, including academic pharmacognosy departments, ‘allergy’ or ‘individual idiosyncrasy.’ The such fanciful ones as suggesting that responsible for investigating the biology next problematic observation was that Americans cook their vegetables better.
    [Show full text]
  • Front Matter Edition 2003
    Edition 2003 WELCOME to Ethnobotanical Leaflets. Here you will find links to various ethnobotanical projects and organizations around the world. Take time and enjoy our Web Journal. As always, manuscript contributions from our readers are welcome. -- Web Journal -- Ethnobotanical Studies Of Chandigarh Region by Amrit Pal Singh A Potential Anticancer Withanolide from Withania somnifera (L.) Dun. by Amrit Pal Singh Hepatotprotective Natural Products by Samir Malhotra and Amrit Pal Singh Glycyrrhizin-A Review by Amrit Pal Singh Studies on collection and marketing of Morchella (Morels) of Utror-Gabral Valleys, District Swat, Pakistan by Muhammad Hamayun and Mir Ajab Khan Ethnobotanical Resources of Manikhel Forests, Orakzai Tirah, Pakistan by Habib Ahmad, Samiullah Khan, Ahmad Khan and Muhammad Hamayun Salicin - A Natural Analgesic by Amrit P. Singh Distribution of Steroid-like Compounds in Plant Flora by Amrit P. Singh and A.S. Sandhu Potential and Market Status of Mushrooms as Non-Timber Forest Products in Pakistan by Abdul Latif , Zabta Khan Shinwari and Shaheen Begum Hypericin - A Napthodianthrone from Hypericum perforatum by Dr Amrit Pal Singh, MD Ethnobotanical Studies of some Useful Shrubs and Trees of District Buner, NWFP, Pakistan, by Muhammad Hamayun Marketing of medicinal plants of Utror-Gabral Valleys, Swat, Pakistan, by Muhammad Hamayun, Mir Ajab Khan and Shaheen Begum Common medicinal folk recipes of District Buner, NWFP, Pakistan, by Muhammad Hamayun, Ambara Khan and Mir Ajab Khan The Role of Natural Products in Pharmacotherapy of Alzheimer’s Disease, by Dr. Amrit Pal Singh, MD Pharmacological considerations of Tylophora asthmatica, by Dr. Amrit Pal Singh, MD Barley; The Versatile Crop, by Brian Young The Brazil Nut (Bertholletia excelsa), by Tim Hennessey Ephedra (Ma Huang), by Erica McBroom Ephedra: Asking for Trouble?, by Scot Peterson Ginkgo biloba, by Kelly Westall Cyperus papyrus: From the Nile to Modern Times, by Matt Burmeister The Miraculous Reishii: Mushroom or Medicine?, by Dylan Kosmar St.
    [Show full text]
  • A Case of the Yellow Morel from Israel Segula Masaphy,* Limor Zabari, Doron Goldberg, and Gurinaz Jander-Shagug
    The Complexity of Morchella Systematics: A Case of the Yellow Morel from Israel Segula Masaphy,* Limor Zabari, Doron Goldberg, and Gurinaz Jander-Shagug A B C Abstract Individual morel mushrooms are highly polymorphic, resulting in confusion in their taxonomic distinction. In particu- lar, yellow morels from northern Israel, which are presumably Morchella esculenta, differ greatly in head color, head shape, ridge arrangement, and stalk-to-head ratio. Five morphologically distinct yellow morel fruiting bodies were genetically character- ized. Their internal transcribed spacer (ITS) region within the nuclear ribosomal DNA and partial LSU (28S) gene were se- quenced and analyzed. All of the analyzed morphotypes showed identical genotypes in both sequences. A phylogenetic tree with retrieved NCBI GenBank sequences showed better fit of the ITS sequences to D E M. crassipes than M. esculenta but with less than 85% homology, while LSU sequences, Figure 1. Fruiting body morphotypes examined in this study. (A) MS1-32, (B) MS1-34, showed more then 98.8% homology with (C) MS1-52, (D) MS1-106, (E) MS1-113. Fruiting bodies were similar in height, approxi- both species, giving no previously defined mately 6-8 cm. species definition according the two se- quences. Keywords: ITS region, Morchella esculenta, 14 FUNGI Volume 3:2 Spring 2010 MorchellaFUNGI crassipes Volume, phenotypic 3:2 Spring variation. 2010 FUNGI Volume 3:2 Spring 2010 15 Introduction Materials and Methods Morchella sp. fruiting bodies (morels) are highly polymorphic. Fruiting bodies: Fruiting bodies used in this study were collected Although morphology is still the primary means of identifying from the Galilee region in Israel in the 2003-2007 seasons.
    [Show full text]
  • Oportunidades Hortifruticolas Para
    Frutas y vegetales en fresco permitidos de Colombia a los Estados Unidos Las frutas y vegetales permitidos desde Colombia alcanzan los 74 productos; 20 productos admitidos por Estados Unidos desde todos los países del mundo y 54 productos aprobados específicamente para Colombia. A continuación se enumeran cada uno de los productos con sus respectivos nombres en español, inglés, así como su nombre científico y los puertos por los cuales están permitidos. Lista de frutas y vegetales en fresco aprobados desde todos los países a los Estados 1 Unidos Puertos de Nombre en Español Nombre en Inglés Nombre Científico Entrada Carob, St. John's Todos los 1. Algarrobo Ceratonia siliqua L. Bread Puertos Bulbos de Lirio Todos los 2. Lily bulb Lilium spp. comestible Puertos Trapa natans L. var. Todos los 3. Castaña Singhara nut bispinosa (Roxb.) Makino = Puertos (Trapa bispinosa Roxb.) Castaña de agua Eleocharis dulcis (Burm. f.) Todos los 4. Chinese water chestnut (China) Trin. ex Hensch. Puertos Castaña de agua o Todos los 5. Bat nut or Devil pod Trapa bicornis Osbeck Vaina del diablo Puertos Todos los 6. Castaña de agua Water-chestnut Trapa natans L. Puertos Champiñón de pino japonés, Hongos Tricholoma matsutake (S. Todos los 7. Matsutake Matsutake, seta del Ito & S. Imai) Singer Puertos pino Morchella spp. y géneros Todos los 8. Champiñones Mushroom relacionados de hongos Puertos comestibles Coco , Cocotero, ver Coconut, see Seed Todos los 9. Cocos nucifera L. Manual de Semillas Manual Puertos Todos los 10. Coquito, chufa Cyperus corm Cyperus esculentus L. Puertos Cuiclacoche, 2 Ustilago zeae (Schwein.) Todos los 11.
    [Show full text]
  • Schauster Annie Thesis.Pdf (1.667Mb)
    UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies GENETIC AND GENOMIC INSIGHTS INTO THE SUCCESSIONAL PATTERNS AND REPRODUCTION METHODS OF FIRE-ASSOCIATED MORCHELLA A Chapter Style Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Annie B. Schauster College of Science and Health Biology May, 2020 GENETIC AND GENOMIC INSIGHTS INTO THE SUCCESSIONAL PATTERNS AND REPRODUCTION METHODS OF FIRE-ASSOCIATED MORCHELLA By Annie B. Schauster We recommend acceptance of this thesis paper in partial fulfillment of the candidate's requirements for the degree of Master of Science in Biology. The candidate has completed the oral defense of the thesis paper. Todd Osmundson, Ph.D. Date Thesis Paper Committee Chairperson Thomas Volk, Ph.D. Date Thesis Paper Committee Member Anita Davelos, Ph.D. Date Thesis Paper Committee Member Bonnie Bratina, Ph.D. Date Thesis Paper Committee Member Thesis accepted Meredith Thomsen, Ph.D. Date Director of Graduate Studies ABSTRACT Schauster, A.B. Genetic and genomic insights into the successional patterns and reproduction methods of fire-associated Morchella. MS in Biology, May 2020, 81pp. (T. Osmundson) Burn morels are among the earliest-emerging post-fire organisms in western North American montane coniferous forests, occurring in large numbers the year after a fire. Despite their significant economic and ecological importance, little is known about their duration of reproduction after a fire or the genetic and reproductive implications of mass fruiting events. I addressed these unknowns using post-fire surveys in British Columbia, Canada and Montana, USA in May/June of 2019. To assess fruiting duration, I collected specimens in second-year sites, where burn morels were collected the previous year, and identified them using DNA sequencing.
    [Show full text]