Specialty Wood Products
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mycological Society of San Francisco • Jan. 2016, Vol. 67:05
The Mycological Society of San Francisco • Jan. 2016, vol. 67:05 Table of Contents JANUARY 19 General Meeting Speaker Mushroom of the Month by K. Litchfield 1 President Post by B. Wenck-Reilly 2 Robert Dale Rogers Schizophyllum by D. Arora & W. So 4 Culinary Corner by H. Lunan 5 Hospitality by E. Multhaup 5 Holiday Dinner 2015 Report by E. Multhaup 6 Bizarre World of Fungi: 1965 by B. Sommer 7 Academic Quadrant by J. Shay 8 Announcements / Events 9 2015 Fungus Fair by J. Shay 10 David Arora’s talk by D. Tighe 11 Cultivation Quarters by K. Litchfield 12 Fungus Fair Species list by D. Nolan 13 Calendar 15 Mushroom of the Month: Chanterelle by Ken Litchfield Twenty-One Myths of Medicinal Mushrooms: Information on the use of medicinal mushrooms for This month’s profiled mushroom is the delectable Chan- preventive and therapeutic modalities has increased terelle, one of the most distinctive and easily recognized mush- on the internet in the past decade. Some is based on rooms in all its many colors and meaty forms. These golden, yellow, science and most on marketing. This talk will look white, rosy, scarlet, purple, blue, and black cornucopias of succu- at 21 common misconceptions, helping separate fact lent brawn belong to the genera Cantharellus, Craterellus, Gomphus, from fiction. Turbinellus, and Polyozellus. Rather than popping up quickly from quiescent primordial buttons that only need enough rain to expand About the speaker: the preformed babies, Robert Dale Rogers has been an herbalist for over forty these mushrooms re- years. He has a Bachelor of Science from the Univer- quire an extended period sity of Alberta, where he is an assistant clinical profes- of slower growth and sor in Family Medicine. -
Research Article Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species
Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 346508, 12 pages http://dx.doi.org/10.1155/2015/346508 Research Article Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species S. K. Sharma1 and N. Gautam2 1 Department of Plant Pathology, CSK, Himachal Pradesh Agriculture University, Palampur 176 062, India 2Centre for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Bathinda 151 001, India Correspondence should be addressed to N. Gautam; [email protected] Received 8 May 2015; Accepted 11 June 2015 Academic Editor: Miroslav Pohanka Copyright © 2015 S. K. Sharma and N. Gautam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the peopleof northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds. -
422 Part 180—Tolerances and Ex- Emptions for Pesticide
Pt. 180 40 CFR Ch. I (7–1–16 Edition) at any time before the filing of the ini- 180.124 Methyl bromide; tolerances for resi- tial decision. dues. 180.127 Piperonyl butoxide; tolerances for [55 FR 50293, Dec. 5, 1990, as amended at 70 residues. FR 33360, June 8, 2005] 180.128 Pyrethrins; tolerances for residues. 180.129 o-Phenylphenol and its sodium salt; PART 180—TOLERANCES AND EX- tolerances for residues. 180.130 Hydrogen Cyanide; tolerances for EMPTIONS FOR PESTICIDE CHEM- residues. ICAL RESIDUES IN FOOD 180.132 Thiram; tolerances for residues. 180.142 2,4-D; tolerances for residues. Subpart A—Definitions and Interpretative 180.145 Fluorine compounds; tolerances for Regulations residues. 180.151 Ethylene oxide; tolerances for resi- Sec. dues. 180.1 Definitions and interpretations. 180.153 Diazinon; tolerances for residues. 180.3 Tolerances for related pesticide chemi- 180.154 Azinphos-methyl; tolerances for resi- cals. dues. 180.4 Exceptions. 180.155 1-Naphthaleneacetic acid; tolerances 180.5 Zero tolerances. for residues. 180.6 Pesticide tolerances regarding milk, 180.163 Dicofol; tolerances for residues. eggs, meat, and/or poultry; statement of 180.169 Carbaryl; tolerances for residues. policy. 180.172 Dodine; tolerances for residues. 180.175 Maleic hydrazide; tolerances for resi- Subpart B—Procedural Regulations dues. 180.176 Mancozeb; tolerances for residues. 180.7 Petitions proposing tolerances or ex- 180.178 Ethoxyquin; tolerances for residues. emptions for pesticide residues in or on 180.181 Chlorpropham; tolerances for resi- raw agricultural commodities or proc- dues. essed foods. 180.182 Endosulfan; tolerances for residues. 180.8 Withdrawal of petitions without preju- 180.183 Disulfoton; tolerances for residues. -
A Case for the Commercial Harvest of Wild Edible Fungi in Northwestern Ontario
Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2020 A case for the commercial harvest of wild edible fungi in Northwestern Ontario Campbell, Osa http://knowledgecommons.lakeheadu.ca/handle/2453/4676 Downloaded from Lakehead University, KnowledgeCommons A CASE FOR THE COMMERCIAL HARVEST OF WILD EDIBLE FUNGI IN NORTHWESTERN ONTARIO by Osa Campbell FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO May 2020 i A CASE FOR THE COMMERCIAL HARVEST OF WILD EDIBLE FUNGI IN NORTHWESTERN ONTARIO by Osa Campbell An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University 2020 ------------------------------------------ ----------------------------------- Dr. Leonard Hutchison Dr. Lada Malek Major Advisor Second Reader ii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Signature: _____________________________ Date: _____________________________ iii A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific forestry. The reader should be aware that opinions and conclusions expressed in this document ae those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or of Lakehead University. -
Front Matter Edition 2003
Edition 2003 WELCOME to Ethnobotanical Leaflets. Here you will find links to various ethnobotanical projects and organizations around the world. Take time and enjoy our Web Journal. As always, manuscript contributions from our readers are welcome. -- Web Journal -- Ethnobotanical Studies Of Chandigarh Region by Amrit Pal Singh A Potential Anticancer Withanolide from Withania somnifera (L.) Dun. by Amrit Pal Singh Hepatotprotective Natural Products by Samir Malhotra and Amrit Pal Singh Glycyrrhizin-A Review by Amrit Pal Singh Studies on collection and marketing of Morchella (Morels) of Utror-Gabral Valleys, District Swat, Pakistan by Muhammad Hamayun and Mir Ajab Khan Ethnobotanical Resources of Manikhel Forests, Orakzai Tirah, Pakistan by Habib Ahmad, Samiullah Khan, Ahmad Khan and Muhammad Hamayun Salicin - A Natural Analgesic by Amrit P. Singh Distribution of Steroid-like Compounds in Plant Flora by Amrit P. Singh and A.S. Sandhu Potential and Market Status of Mushrooms as Non-Timber Forest Products in Pakistan by Abdul Latif , Zabta Khan Shinwari and Shaheen Begum Hypericin - A Napthodianthrone from Hypericum perforatum by Dr Amrit Pal Singh, MD Ethnobotanical Studies of some Useful Shrubs and Trees of District Buner, NWFP, Pakistan, by Muhammad Hamayun Marketing of medicinal plants of Utror-Gabral Valleys, Swat, Pakistan, by Muhammad Hamayun, Mir Ajab Khan and Shaheen Begum Common medicinal folk recipes of District Buner, NWFP, Pakistan, by Muhammad Hamayun, Ambara Khan and Mir Ajab Khan The Role of Natural Products in Pharmacotherapy of Alzheimer’s Disease, by Dr. Amrit Pal Singh, MD Pharmacological considerations of Tylophora asthmatica, by Dr. Amrit Pal Singh, MD Barley; The Versatile Crop, by Brian Young The Brazil Nut (Bertholletia excelsa), by Tim Hennessey Ephedra (Ma Huang), by Erica McBroom Ephedra: Asking for Trouble?, by Scot Peterson Ginkgo biloba, by Kelly Westall Cyperus papyrus: From the Nile to Modern Times, by Matt Burmeister The Miraculous Reishii: Mushroom or Medicine?, by Dylan Kosmar St. -
A Case of the Yellow Morel from Israel Segula Masaphy,* Limor Zabari, Doron Goldberg, and Gurinaz Jander-Shagug
The Complexity of Morchella Systematics: A Case of the Yellow Morel from Israel Segula Masaphy,* Limor Zabari, Doron Goldberg, and Gurinaz Jander-Shagug A B C Abstract Individual morel mushrooms are highly polymorphic, resulting in confusion in their taxonomic distinction. In particu- lar, yellow morels from northern Israel, which are presumably Morchella esculenta, differ greatly in head color, head shape, ridge arrangement, and stalk-to-head ratio. Five morphologically distinct yellow morel fruiting bodies were genetically character- ized. Their internal transcribed spacer (ITS) region within the nuclear ribosomal DNA and partial LSU (28S) gene were se- quenced and analyzed. All of the analyzed morphotypes showed identical genotypes in both sequences. A phylogenetic tree with retrieved NCBI GenBank sequences showed better fit of the ITS sequences to D E M. crassipes than M. esculenta but with less than 85% homology, while LSU sequences, Figure 1. Fruiting body morphotypes examined in this study. (A) MS1-32, (B) MS1-34, showed more then 98.8% homology with (C) MS1-52, (D) MS1-106, (E) MS1-113. Fruiting bodies were similar in height, approxi- both species, giving no previously defined mately 6-8 cm. species definition according the two se- quences. Keywords: ITS region, Morchella esculenta, 14 FUNGI Volume 3:2 Spring 2010 MorchellaFUNGI crassipes Volume, phenotypic 3:2 Spring variation. 2010 FUNGI Volume 3:2 Spring 2010 15 Introduction Materials and Methods Morchella sp. fruiting bodies (morels) are highly polymorphic. Fruiting bodies: Fruiting bodies used in this study were collected Although morphology is still the primary means of identifying from the Galilee region in Israel in the 2003-2007 seasons. -
Oportunidades Hortifruticolas Para
Frutas y vegetales en fresco permitidos de Colombia a los Estados Unidos Las frutas y vegetales permitidos desde Colombia alcanzan los 74 productos; 20 productos admitidos por Estados Unidos desde todos los países del mundo y 54 productos aprobados específicamente para Colombia. A continuación se enumeran cada uno de los productos con sus respectivos nombres en español, inglés, así como su nombre científico y los puertos por los cuales están permitidos. Lista de frutas y vegetales en fresco aprobados desde todos los países a los Estados 1 Unidos Puertos de Nombre en Español Nombre en Inglés Nombre Científico Entrada Carob, St. John's Todos los 1. Algarrobo Ceratonia siliqua L. Bread Puertos Bulbos de Lirio Todos los 2. Lily bulb Lilium spp. comestible Puertos Trapa natans L. var. Todos los 3. Castaña Singhara nut bispinosa (Roxb.) Makino = Puertos (Trapa bispinosa Roxb.) Castaña de agua Eleocharis dulcis (Burm. f.) Todos los 4. Chinese water chestnut (China) Trin. ex Hensch. Puertos Castaña de agua o Todos los 5. Bat nut or Devil pod Trapa bicornis Osbeck Vaina del diablo Puertos Todos los 6. Castaña de agua Water-chestnut Trapa natans L. Puertos Champiñón de pino japonés, Hongos Tricholoma matsutake (S. Todos los 7. Matsutake Matsutake, seta del Ito & S. Imai) Singer Puertos pino Morchella spp. y géneros Todos los 8. Champiñones Mushroom relacionados de hongos Puertos comestibles Coco , Cocotero, ver Coconut, see Seed Todos los 9. Cocos nucifera L. Manual de Semillas Manual Puertos Todos los 10. Coquito, chufa Cyperus corm Cyperus esculentus L. Puertos Cuiclacoche, 2 Ustilago zeae (Schwein.) Todos los 11. -
Ecology, Diversity and Seasonal Distribution of Wild Mushrooms in a Nigerian Tropical Forest Reserve
BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 285-295 DOI: 10.13057/biodiv/d190139 Ecology, diversity and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve MOBOLAJI ADENIYI1,2,♥, YEMI ODEYEMI3, OLU ODEYEMI1 1Department of Microbiology, Obafemi Awolowo University. Ile-Ife, 220282, Osun State, Nigeria 2Department of Biological Sciences, Osun State University. Oke-Baale, Osogbo, 230212, Osun State, Nigeria. Tel.: +234-0-8035778780, ♥email: [email protected], [email protected] 3Department of Molecular Medicine, University of South Florida. 4202 E Fowler Avenue, Tampa, Florida, 33620, FL, USA Manuscript received: 19 December 2017. Revision accepted: 19 January 2018. Abstract. Adeniyi M, Odeyemi Y, Odeyemi O. 2018. Ecology, diversity and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve. Biodiversitas 19: 285-295. This study investigated the ecology, diversity and seasonal distribution of wild mushrooms at Environmental Pollution Science and Technology (ENPOST) forest reserve, Ilesa, Southwestern Nigeria. Mushrooms growing in the ligneous and terrestrial habitats of the forest were collected, identified and enumerated between March 2014 and March 2015. Diversity indices including species richness, dominance, and species diversity were evaluated. Correlation (p < 0.05) was determined among climatic data and diversity indices. A total of 151 mushroom species specific to their respective habitats were obtained. The highest monthly species richness (70) was obtained in October 2014. While a higher dominance was observed in the terrestrial habitat during the rainy and dry seasons (0.072 and 0.159 respectively), species diversity was higher in the ligneous and terrestrial habitats during the rainy season (3.912 and 3.304 respectively). -
NORTHERN FOREST FORAGING GUIDE Northern Forest Foraging Guide
NORTHERN FOREST FORAGING GUIDE Northern Forest Foraging Guide • Although foraging for edible plants Ideally, people will become exceptional is permitted on most public land stewards of Ontario’s natural areas. in Ontario, obtain permission from Sustainable harvesting methods the owner before collecting plants relating to trees, shrubs, plants and on private property. Another best fungi vary, so in some cases additional practice is to obtain permission research may be required to ensure from the local First Nation sustainability. The timing of harvesting community before harvesting is also important, as some parts of on traditional territory. a plant (such as flowers or fruit) are • Management goals vary for protected not available year-round, while others areas and nature reserves. Ensure (such as tree needles) are. Not taking that wild food foraging is permitted in more than is needed at one time is also Vladimir Melnikov/Essentials Collection/ Getty Images International these areas before harvesting. important, as taking too much reduces available resources for other users and • Most importantly, take only what contributes to increased waste of these Ontario’s forests, meadows and waters provide an incredible range of nutritious you can use and use what you take. resources. Harvesting too much can and delicious edible wild plants. Ontario Nature has prepared this foraging guide Edible wild plants are a shared also impact a species’ ability to grow as an introduction to this local resource, and to encourage people to get outside resource. Users of them must take and reproduce. and experience the wonders the natural world provides. responsibility for ensuring that they will continue to thrive year after year. -
Mushroom Highlights Newsletter
April 2016 - Mushroom Highlights Newsletter for Wild Mushrooms PNW ❖ www.wildmushroomspnw.com Can Fungi Survive on Mars? An experiment conducted on the international space station found that even after 18 months on board, more than 60% of the fungi’s cells remained intact. The samples used were from the genus Cryomyces and came from remote and hostile areas on the Earth to see if they could also survive extreme environments beyond our planet, and they did. (from earthsky.org) Fungi Create Raindrops Mushroom spores are released into the atmosphere every day by the billions. This amounts to 50 million tons each year. Together with pollen, bacteria, and other biological particles, they serve as nuclei for cloud formation, and therefore rain. (extracted from NAMA March/April 2016 – Elio Schaechter) How Fast and How Far Can a Spore Fly? On the underside of some mushroom caps there are gills or pores. Because of internal pressure from maturing spores and humidity, the contents of asci (tubes where spores are formed) can simultaneously eject spores into the air with an initial velocity of close to 7 feet/second. This is sustained only for a brief time or the spores would hit the opposite gills. Since they cannot overcome the viscosity of air, they drop vertically to be caught by air current and may be carried a long distance. Sphaerobolus stellatus (Cannonball Fungus) can travel over a 20 foot horizontal and a 7 foot vertical distance. (extracted from NAMA March/April 2016 – Elio Schaechter) When is a Mushroom Important? You found a mushroom and just can’t identify it. -
Molecular Phylogeny and Morphology Reveal Three New Species of Cantharellus Within 20 M of One Another in Western Wisconsin, USA
Mycologia, 105(2), 2013, pp. 447–461. DOI: 10.3852/12-181 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular phylogeny and morphology reveal three new species of Cantharellus within 20 m of one another in western Wisconsin, USA Matthew J. Foltz morphological and DNA data have shown that C. Kathryn E. Perez1 cibarius in the United States is a species complex that Thomas J. Volk requires further taxonomic attention (Feibelman et Department of Biology, University of Wisconsin-La al. 1994, Dunham et al. 2003, Moncalvo et al. 2006, Crosse, 1725 State Street, La Crosse, Wisconsin 54601 Arora and Dunham 2008, Buyck and Hofstetter 2011). In this study we continue efforts to document North American Cantharellus diversity. Abstract: Three new species, Cantharellus phasmatis, In the past 50 years, several advancements in Cantharellus flavus and Cantharellus spectaculus, all taxonomy of Cantharellus have been made from previously considered Cantharellus cibarius, are de- morphological data. Smith (1968) described C. scribed in this study. The circumscription of these cibarius var. cibarius from Michigan, which he three species from C. cibarius and other Cantharellus believed to be the same as C. cibarius from Europe. species is supported by morphological differences Some of the key diagnostic features from this and nuclear DNA sequence data (nLSU, ITS, TEF1). description are the ‘‘egg-yellow or paler’’ hymenium, All were found under Quercus spp. in a small plot in the ‘‘pale-ochraceous’’ spore print and the incurved- Hixon Forest Park in La Crosse, Wisconsin, empha- margin becoming plane-to-wavy and finally broadly sizing the need for further taxonomic study of even infundibuliform. -
Morchella Esculenta</Em>
Journal of Bioresource Management Volume 3 Issue 1 Article 6 In Vitro Propagation of Morchella esculenta and Study of its Life Cycle Nazish Kanwal Institute of Natural and Management Sciences, Rawalpindi, Pakistan Kainaat William Bioresource Research Centre, Islamabad, Pakistan Kishwar Sultana Institute of Natural and Management Sciences, Rawalpindi, Pakistan Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Biodiversity Commons, and the Biology Commons Recommended Citation Kanwal, N., William, K., & Sultana, K. (2016). In Vitro Propagation of Morchella esculenta and Study of its Life Cycle, Journal of Bioresource Management, 3 (1). DOI: https://doi.org/10.35691/JBM.6102.0044 ISSN: 2309-3854 online This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. In Vitro Propagation of Morchella esculenta and Study of its Life Cycle © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited. Journal of Bioresource Management does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved. For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or Journal of Bioresource Management’s prior written permission.