Morris Key Report on Beneficial Alcohol to Root Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Alcohol Textbook 4Th Edition
TTHEHE AALCOHOLLCOHOL TEXTBOOKEXTBOOK T TH 44TH EEDITIONDITION A reference for the beverage, fuel and industrial alcohol industries Edited by KA Jacques, TP Lyons and DR Kelsall Foreword iii The Alcohol Textbook 4th Edition A reference for the beverage, fuel and industrial alcohol industries K.A. Jacques, PhD T.P. Lyons, PhD D.R. Kelsall iv T.P. Lyons Nottingham University Press Manor Farm, Main Street, Thrumpton Nottingham, NG11 0AX, United Kingdom NOTTINGHAM Published by Nottingham University Press (2nd Edition) 1995 Third edition published 1999 Fourth edition published 2003 © Alltech Inc 2003 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers. ISBN 1-897676-13-1 Page layout and design by Nottingham University Press, Nottingham Printed and bound by Bath Press, Bath, England Foreword v Contents Foreword ix T. Pearse Lyons Presient, Alltech Inc., Nicholasville, Kentucky, USA Ethanol industry today 1 Ethanol around the world: rapid growth in policies, technology and production 1 T. Pearse Lyons Alltech Inc., Nicholasville, Kentucky, USA Raw material handling and processing 2 Grain dry milling and cooking procedures: extracting sugars in preparation for fermentation 9 Dave R. Kelsall and T. Pearse Lyons Alltech Inc., Nicholasville, Kentucky, USA 3 Enzymatic conversion of starch to fermentable sugars 23 Ronan F. -
Effects of Polyols on the Processing and Qualities of Wheat Tortillas'
BREADMAKING Effects of Polyols on the Processing and Qualities of Wheat Tortillas' E. L. SUHENDRO, 2 R. D. WANISKA,2 L. W. ROONEY, 2 and M. H. GOMEZ 3 ABSTRACT Cereal Chem. 72(l):122-127 Effects of polyols on processing of hot-press wheat tortillas were evalu- Doughs containing 6% polyols, except maltitol, were stickier and less ated. Hot-press wheat tortillas with 0, 2, 4, or 6% glycerol were prepared machinable than control doughs. Tortillas prepared from 10.2% protein from wheat flour of 10.2, 11.0, or 11.5% protein content. Tortillas with flour with or without polyols were less rollable during storage compared 2, 4, or 6% propylene glycol, sorbitol, or maltitol were prepared from to those prepared from higher protein flours. Tortillas containing glycerol the 11.0% protein flour. Farinograph and alveograph values, dough mixing had less moisture, higher liquid content, and improved shelf-stability, characteristics and machinability, rollability over time, sensory evaluation, except when prepared from low protein flour. Water activity decreased water holding capacity, total liquid content, and water activity were deter- with increasing polyol level. Propylene glycol and glycerol were more mined. Low protein (10.2%) flour required less water, shorter mixing effective in decreasing water activity than sorbitol and maltitol. Formulas time, and yielded tortilla doughs that were less machinable compared containing 4% polyols and Ž11.0% protein flour had good machinability to other flours. Water absorption decreased with increasing polyol level. and yielded acceptable tortillas with improved rollability during storage. The increased production of wheat tortillas in the United States Propylene glycol (J.T. -
Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content. -
Production of Arabitol from Glycerol: Strain Screening and Study of Factors Affecting Production Yield
Appl Microbiol Biotechnol (2011) 90:257–267 DOI 10.1007/s00253-010-3015-3 APPLIED MICROBIAL AND CELL PHYSIOLOGY Production of arabitol from glycerol: strain screening and study of factors affecting production yield Srujana Koganti & Tsung Min Kuo & Cletus P. Kurtzman & Nathan Smith & Lu-Kwang Ju Received: 26 August 2010 /Revised: 10 November 2010 /Accepted: 15 November 2010 /Published online: 3 December 2010 # Springer-Verlag 2010 Abstract Glycerol is a major by-product from biodiesel Keywords Arabitol . Xylitol . Biodiesel . Glycerol . production, and developing new uses for glycerol is Osmotolerant yeast . Debaryomyces hansenii imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 Introduction yeast strains, many osmotolerant, were first screened in this study. No strains were found to produce large amounts of Biodiesel motor fuel produced from renewable sources such xylitol as the dominant metabolite. Some produced polyol as vegetable oil and animal fat is an attractive alternative to mixtures that might present difficulties to downstream petroleum-derived fuel (Krawczyk 1996). In biodiesel separation and purification. Several Debaryomyces hansenii production using transesterification of triglycerides, glycerol strains produced arabitol as the predominant metabolite is the major by-product produced: About 1 kg of glycerol is with high yields, and D. hansenii strain SBP-1 (NRRL Y- formed for every 9 kg of biodiesel produced (Dasari et al. 7483) was chosen for further study on the effects of several 2005). Biodiesel consumption in the USA has increased growth conditions. The optimal temperature was found to dramatically from 75 million gallons in 2005 to 450 million be 30°C. -
Sweet Sensations by Judie Bizzozero | Senior Editor
[Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named. -
Microbial Production of Xylitol from D-Arabitol by Gluconobacter Oxydans
Advances in Biological Sciences Research, volume 3 International Conference on Biological Engineering and Pharmacy (BEP 2016) Microbial Production of Xylitol from D-arabitol by Gluconobacter Oxydans Huanhuan ZHANG Junhua YUN School of Food & Biological Engineering School of Food & Biological Engineering Jiangsu University Jiangsu University Zhenjiang, China Zhenjiang, China e-mail: [email protected] e-mail: [email protected] Tinashe Archbold MAGOCHA Miaomiao YANG School of Food & Biological Engineering School of Food & Biological Engineering Jiangsu University Jiangsu University Zhenjiang, China Zhenjiang, China e-mail: [email protected] e-mail: [email protected] Yanbo XUE Xianghui QI* School of Food & Biological Engineering School of Food & Biological Engineering Jiangsu University Jiangsu University Zhenjiang, China Zhenjiang, China e-mail: [email protected] e-mail: [email protected] Abstract—Xylitol, a five carbon sugar alcohol, has numerous there have no any microbe can transform glucose to xylitol applications in the fields of food and pharmaceuticals. directly in the nature. G.oxydans can produce xylitol from Gluconobacter oxydans contains two enzymes which are D-arabitol based on two simple steps including two key membrane-bound D-arabitol dehydrogenase and soluble enzymes (ArDH and XDH) in the metabolic pathway. This xylitol dehydrogenase enabling the production of xylitol from review introduces the research of xylitol production from D-arabitol. This review provides comprehensive insights D-arabitol by G. oxydan based on the special mechanisms, regarding properties of key enzymes and advances of xylitol and the biotransformation process of D-arablitol to xylitol, production of G. oxydans by microbial methods. and some achievements of microbial production of xylitol from D-arabitol by G.oxydans. -
UNITED STATES PATENT OFFICE 2,128,946 TETRAPHOSPHORCAC) ESTERS Morris B
- if 3 {: 3 S ; 4 £, A2) g f sub. Patented Sep 8, 1938 2,128,946 care." UNITED STATES PATENT OFFICE 2,128,946 TETRAPHOSPHORCAC) ESTERS Morris B. Katzman, Chicago, Ill. No Drawing. Application April 9, 1937, Serial No. 135,931 23 (Claims. (C. 260-46) My invention relates to a new class of chemi More specifically, the most preferable of the cal substances. It relates more in particular to compounds of my invention may be defined as . a class of chemical, substances having the prop tetraphosphoric acid esters of polyhydroxy sub erties of interface modifiers as, for example, when stances wherein at least one hydroxy group of employed in a treating bath containing textile, the polyhydroxy substance has its hydrogen sub leather or ores. Many of the compounds of my stituted by a lipophile group. The lipophile group 5 invention are also effective to decrease the spat- nay include any organic acid group, particular tering of margarine, to increase the oiliness of ly fatty acid groups having preferably at least lubricating oils and greases, such as are derived four carbon atoms such as the fatty acid radi O from mineral oils, to act as emulsifying agents calls of the following acids: caproic acid, capric, O for cosmetic and other emulsions, to reduce vis- caprylic, valeric, butyric, abietic, naphthenic, hy cosity of chocolate and the like, to retard the droxystearic, benzoic, benzoylbenzoic, naphthoic, rancidification of oils, fats, and vitamin prepara- toluic, higher molecular weight saturated and tions which are subject to deterioration by oxi- unsaturated fatty acids including palmitic acid, dation, to act as assistants in the textile and re- Stearic, lauric, melissic, oleic, myristic, ricinoleic, 5 5 lated industries and, in general, to function linoleic acid or mixed fatty acids derived from wherever interface modification is sought or de- animal or vegetable fats and fish oils such as sired. -
Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis. -
UNITED STATES PATENT OFFICE 2,530,872 ESTERS 0F SULFUR-CONTAINING POLYCARBOXYLIC ACIDS James T
Patented Nov. 21, 1950 2,530,872 UNITED STATES PATENT OFFICE 2,530,872 ESTERS 0F SULFUR-CONTAINING POLYCARBOXYLIC ACIDS James T. Gregory, Cuyahoga Falls, and Jacob Eden Jansen, Akron, Ohio, assignors to The B. F. Goodrich Company, New York, N. Y., a corporation of New York No Drawing. Application June 18, 1947, Serial No. 755,478 3 Claims. (Cl. 260—30.8) 2 This invention relates to new compositions of primary, secondary, or tertiary mono- or poly matter, and pertains more speci?cally to new hydroxy, substituted or unsubstituted alcohol. esters of sulfur-containing polycarboxylic acids. Among these are: primary alkyl alcohols such as It is disclosed in our copending application, Se methyl alcohol, ethyl alcohol, propyl alcohol, bu rial No. 755,476, ?led June 17, 1947, that new acids tyl alcohol, amyl alcohol, hexyl alcohol, heptyl al having the general formula cohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tetradecyl alco hol, cetyl alcohol, octadecyl alcohol, and the like; Secondary alkyl alcohols such as isopropyl al wherein A is a polyvalent aliphatic radical hav ll) cohol, secondary butyl alcohol, secondary amyl ing its connecting valences on carbon atoms and alcohol, secondary hexyl alcohol, secondary octyl containing only atoms of carbon, hydrogen and alcohol, secondary nonyl alcohol and the like; sulfur or oxygen (1. e., a chalcogen occurring in Tertiary alkyl alcohols such as tertiary butyl one of the short periods of the periodic table), the alcohol, tertiary amyl alcohol, tertiary butyl car sulfur or oxygen being present in the divalent 15 bino, tertiary amyl carbinol, pinacoylyl alcohol. -
Erythritol As Sweetener—Wherefrom and Whereto?
Applied Microbiology and Biotechnology (2018) 102:587–595 https://doi.org/10.1007/s00253-017-8654-1 MINI-REVIEW Erythritol as sweetener—wherefrom and whereto? K. Regnat1 & R. L. Mach1 & A. R. Mach-Aigner1 Received: 1 September 2017 /Revised: 12 November 2017 /Accepted: 13 November 2017 /Published online: 1 December 2017 # The Author(s) 2017. This article is an open access publication Abstract Erythritol is a naturally abundant sweetener gaining more and more importance especially within the food industry. It is widely used as sweetener in calorie-reduced food, candies, or bakery products. In research focusing on sugar alternatives, erythritol is a key issue due to its, compared to other polyols, challenging production. It cannot be chemically synthesized in a commercially worthwhile way resulting in a switch to biotechnological production. In this area, research efforts have been made to improve concentration, productivity, and yield. This mini review will give an overview on the attempts to improve erythritol production as well as their development over time. Keywords Erythritol . Sugar alcohols . Polyols . Sweetener . Sugar . Sugar alternatives Introduction the range of optimization parameters. The other research di- rection focused on metabolic pathway engineering or genetic Because of today’s lifestyle, the number of people suffering engineering to improve yield and productivity as well as to from diabetes mellitus and obesity is increasing. The desire of allow the use of inexpensive and abundant substrates. This the customers to regain their health created a whole market of review will present the history of erythritol production- non-sugar and non-caloric or non-nutrient foods. An impor- related research from a more commercial viewpoint moving tant part of this market is the production of sugar alcohols, the towards sustainability and fundamental research. -
Lansoprazole Delayed Release Orally Disintegrating Tablets,116 15 Mg
45 14 5 Proposed Draft Labeling 4188168 ID: Reference NDA 208025 Lansoprazole Delayed Release Orally Disintegrating Tablets,116 15 mg 14 Tablets (Inner Carton) 14.5 sorbitol, sucralose, sugar spheres, talc, titanium dioxide, triethyl citrate triethyl dioxide, titanium talc, spheres, sugar sucralose, sorbitol, you develop a rash or joint pain joint or rash a develop you diarrhea get you I I polysorbate 80, propylene glycol, silicon dioxide, sodium stearyl fumarate, fumarate, stearyl sodium dioxide, silicon glycol, propylene 80, polysorbate you need to take more than 1 course of treatment every 4 months 4 every treatment of course 1 than more take to need you I 8U174 00 V5 EXP Batch No. maize maltodextrin, maltitol, mannitol, meglumine, microcrystalline cellulose, cellulose, microcrystalline meglumine, mannitol, maltitol, maltodextrin, maize you need to take this product for more than 14 days 14 than more for product this take to need you I copovidone, crospovidone, flavor, hypromellose, hypromellose phthalate, phthalate, hypromellose hypromellose, flavor, crospovidone, copovidone, Stop use and ask a doctor if doctor a ask and use Stop your heartburn continues or worsens or continues heartburn your I Inactive ingredients Inactive ascorbic acid, cetyl alcohol, colloidal silicon dioxide, dioxide, silicon colloidal alcohol, cetyl acid, ascorbic methotrexate (arthritis medicine) (arthritis methotrexate I I atazanavir (medicine for HIV infection) HIV for (medicine atazanavir I protect product from moisture from product protect I tacrolimus or mycophenolate mofetil (immune system medicines) system (immune mofetil mycophenolate or tacrolimus I keep product out of high heat and humidity and heat high of out product keep (68-77°F) 20-25°C at store I I theophylline (asthma medicine) (asthma theophylline I keep the carton and package insert. -
Valorization Studies on Ice-Cream Wastewater and Whey Permeate
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2020 Valorization Studies on Ice-Cream Wastewater and Whey Permeate Maryam Enteshari South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Dairy Science Commons, and the Food Chemistry Commons Recommended Citation Enteshari, Maryam, "Valorization Studies on Ice-Cream Wastewater and Whey Permeate" (2020). Electronic Theses and Dissertations. 4189. https://openprairie.sdstate.edu/etd/4189 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. VALORIZATION STUDIES ON ICE-CREAM WASTEWATER AND WHEY PERMEATE BY MARYAM ENTESHARI A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Biological Sciences Specialization in Dairy Science South Dakota State University 2020 ii DISSERTATION ACCEPTANCE PAGE Maryam Enteshari This dissertation is approved as a creditable and independent investigation by a candidate for the Doctor of Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. Sergio Martinez-Monteagudo Advisor Date Vikram Mistry Department Head Date Dean, Graduate School Date iii This dissertation is dedicated to my amazing mother who sacrificed her entire life for my success and encouraged me to pursue my dreams and finish Ph.D.