United States Patent (19) 4,731,488

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 4,731,488 United States Patent (19) 11 Patent Number: 4,731,488 Shimasaki et al. 45) Date of Patent: Mar. 15, 1988 54, WAPOR-PHASE HYDROGEN TRANSFER 4,255,283 3/1981 Bartek et al. ........................ 502/202 REACTION OF CARBONYL COMPOUND 4,407,732 10/1983 Kehl .................................... 502/208 4,418,005 11/1983 Dodd et al. ..................... 502/340 X WTH ALCOHOL 4,471,070 9/1984 Siefert et al. ................... 502/341X (75) Inventors: Yuuji Shimasaki, Suita; Youichi Hino, Sakai; Michio Ueshima, FOREIGN PATENT DOCUMENTS Takarazuka, all of Japan 5549322 10/1978 Japan ................................... 502/.340 73 Assignee: Nippon Shokubai Kagaku Kogyo Co., 727209 8/1977 U.S.S.R. .............................. 502/.340 Ltd., Osaka, Japan OTHER PUBLICATIONS (21) Appl. No.: 873,447 . Selective Reduction of Unsaturated Aldehydes and Ketones by Vapor-Phase Hydrogen Transfer Reaction, (22 Filed: Jun. 6, 1986 Ballard et al., Shell Development Co., Emeryville, Related U.S. Application Data Calif., pp. 754-763, Mar. 16, 1956. 62 Division of Ser. No. 802,183, Nov. 25, 1985, aban Primary Examiner-J. E. Evans doned. Attorney, Agent, or Firm-Sherman and Shalloway 30 Foreign Application Priority Data (57) ABSTRACT Nov. 27, 1984 JP Japan ................................ 59-2486.50 A catalyst for vapor-phase hydrogen transfer reaction Apr. 8, 1985 JP Japan .................................. 60-72698 between a carbonyl compound having an alkenyl or aryl group and a primary or secondary alcohol, said 51 Int. Cl." .................... C07C29/136; CO7C29/14; catalyst having a composition represented by the fol C07C 33/03; CO7C 33/22 52 U.S. C. .................................... 568/648; 502/202; lowing general formula 502/242; 502/303; 502/341; 568/813; 568/814; 568/825; 568/881 MgaxiY-Od 58) Field of Search ............... 568/814, 880, 881, 846, 568/825, 813 wherein X represents at least one element selected from 56) References Cited the group consisting of boron, aluminum, silicon, phos phorus, titanium, vanadium, iron, yttrium, zirconium, U.S. PATENT DOCUMENTS niobium, tin, antimony, lead, bismuth, lanthanum and l,844,963 2/1932 Larson ............................ 502/243 X cerium, Y represents at least one element selected from l,866,246 7/1932 Beekley ........................... 502/242 X 2,369,074 2/1945 Pitzer ..... ... 502/25 X the group consisting of alkali metals and alkaline earth 2,633,475 3/1953 Mattern ...... a ... 502/340 X metals excepting magnesium, O represents oxygen, and 2,767,221 10/1956 Ballard et al. .................... 502/38 X a, b, c and d represent the atomic ratios of the individual 2,889,266 6/1959 Baker et al. ..................... 502/202 X elements, and when a is 1, b represents a number of 0.01 2,932,673 4/1960 Melik et al. ... 502/340 X to 0.5, c represents a number of 0 to 0.5, and d is a 3,551,497 12/1970 Wymore......... ... 568/814 X number determined by the atomic valences and atomic 3,901,947 8/1975 Enomoto et al. ... 502/304X ratios of the individual elements. 3,962,134 6/1976 Cobb .............. .502/202 4,072,727 2/1978 Vanderspurt ... ... 502/243 X 4,096, 193 6/1978 Vanderspurt ................... 502/340 X 8 Claims, No Drawings 4,731,488 1. 2 invention is disclosed, for example, in U.S. Pat. No. WAPOR-PHASE HYDROGEN TRANSFER 2,767,221. According to this method, acrolein is reacted REACTION OF CARBONYL COMPOUND WITH with ethanol using a catalyst comprising magnesium ALCOHOL oxide and zinc oxide to produce allyl alcohol (in a yield 5 of 71.7% based on the consumed acrolein) and acetalde This application is a division of application Ser. No. hyde. In this method, however, the conversion of the 802,183, filed Nov. 25, 1985, now abandoned. unsaturated aldehyde is low, and the primary or second This invention relates to a catalyst for use in a vapor ary alcohol must be used in a large excess relative to the phase hydrogen transfer reaction between a carbonyl unsaturated aldehyde. In addition, a tendency to a de compound having an alkenyl or aryl group and a pri 10 crease in yield is observed after this catalyst is used for mary or secondary alcohol, for example, schematically ten and several hours. Because of these disadvantages, shown below. the method of the above U.S. patent does not prove to be satisfactory from a practical viewpoint. Generally, the production of an alcohol by hydroge Ra-C=O + Re-CHOH-CR-CHOH + R-C=O 15 nating a carbonyl compound having an alkenyl or aryl k d k d group in the vapor phase has the following problems. (I) (II) (III) (IV) (1) Since the alkenyl group is more easily hydroge nated than the carbonyl group, a large amount of a wherein R and R both represent a substituent having saturated aldehyde or saturated alcohol forms as a by an alkenyl or aryl group, or one of them is a substituent 20 product. having an alkenyl or aryl group and the other is hydro (2) When an aldehyde having an aryl group is used as gen, and each of Re and R represents hydrogen, an the carbonyl compound, side reactions such as the hy alkyl, hydroxyalkyl, alkenyl, phenyl or substituted drogenation of the aryl group or the hydrogenolysis of phenyl group. 25 the starting aldehyde occur, and it is difficult to obtain Alcohols of formula (III) that can be produced by the desired alcohol in a high yield. this reaction have a wide range of applications, and are (3) In particular, when an alpha,beta-unsaturated useful, for example, as important raw materials or inter carbonyl compound is used as the starting material, the mediates in the fields of perfumes, medicines and poly selective hydrogenation of the carbonyl group becomes S. With regard to the production of alcohols (III) by 30 more difficult because of conjugation between its olefin selective hydrogenation of the carbonyl groups of car bond and the carbonyl group. To increase the selectiv bonyl compounds of formula (I), the Nagase et al. ity for an alphabeta-unsaturated alcohol, relatively method comprising hydrogenating the carbonyl com mild reaction conditions are required. This inevitably pound in ethanol using a catalyst prepared by adding a leads to a low conversion. Furthermore, even under the trivalent iron compound to a Raney-type catalyst com 35 mild reaction conditions, the amount of saturated alde posed of silver and zinc Chem. Lett, 1615, (1983)), and hyde and saturated alcohol as by-products are still a method comprising hydrogenating the carbonyl com large, and the yield of the desired alcohol is low. pound in the presence of a rhodium catalyst and an It is an object of this invention therefore to provide a amine Bull. Chem. Soc, Jap., 50 (8), 2148, (1977), for catalyst which can be used, without the inconveniences example, have been known heretofore. These methods of the prior art discussed above, in a reaction of selec are carried out under an elevated pressure of 50 to 80 tive catalytic hydrogenation of the carbonyl group of a kg/cm-G, and moreover, the resulting alcohols should carbonyl compound having an alkenyl or aryl group be separated from the solvent or the amine after the using a primary or secondary alcohol as a hydrogen reaction. Hence, these methods require many process source (vapor phase hydrogen transfer reaction). steps and much labor, and raise many problems in econ 45 The vapor-phase hydrogen transfer reaction is a reac omy and productivity from the viewpoint of industrial tion whereby the starting carbonyl compound is con production. verted to an alcohol by hydrogenation and the starting On the other hand, a method of selectively hydroge alcohol is converted to an aldehyde or ketone by dehy nating the carbonyl group of such a carbonyl com drogenation, and has the dual advantage that useful pound as that of formula (I) by vapor-phase hydrogena 50 aldehydes and ketones can be simultaneously produced tion reaction would be very advantageous in regard to by properly varying the type of the starting alcohol. productivity. Such a method is described in the prior Examples of suitable carbonyl compounds having an literature. For example, German Pat. No. 1,230,012 alkenyl or aryl group are shown below without any describes a method in which crotonaldehyde is con intention of limiting the invention thereto. Examples of verted to crotyl alcohol at a temperature of 200 C. and 55 a pressure of 15 atmospheres by using a catalyst com carbonyl compounds having an alkenyl group are unsat prising cadmium, copper and magnesium. U.S. Pat. urated aliphatic aldehydes or ketones having 3 to 10 Nos. 4,072,727 and 4,096,193 describe a method in carbon atoms such as (a) acrolein, (b) methacrolein, (c) which acrolein is converted to allyl alcohol at a temper crotonaldehyde, (d) methyl vinyl ketone, (e) seneci ature of 100 to 200 C. and a pressure of 250 psi to 2,500 oaldehyde, (f) 3-buten-1-one, (g) ethyl vinyl ketone and psi using a catalyst comprising silver and cadmium. (h) 5-hexen-2-one. They will respectively be converted These methods, however, require relatively high pres to the corresponding alcohols, i.e. (a) allyl alcohol, (b) sures. Furthermore, because the olefin bond portion of methallyl alcohol, (c) crotyl alcohol, (d) 3-buten-2-ol, the starting carbonyl compound is hydrogenated at a (e") 3-methyl-2-buten-1-ol, (f) 3-buten-1-ol, (g) 1-pent high ratio, the selectivity of the desired alcohol is insuf 65 en-3-ol and (h') 5-hexen-2-ol. ficient, and the method is far from being satisfactory. Examples of suitable carbonyl compounds having an One known method for hydrogen transfer reaction aryl group are aromatic aldehydes or ketones repre between an aldehyde and an alcohol as in the present sented by the following formula 3 4,731,488 4.
Recommended publications
  • Hydrogenation of Styrene Oxide to 2-Phenylethanol Over Nanocrystalline Ni Prepared by Ethylene Glycol Reduction Method
    Hindawi Publishing Corporation International Journal of Chemical Engineering Volume 2014, Article ID 406939, 6 pages http://dx.doi.org/10.1155/2014/406939 Research Article Hydrogenation of Styrene Oxide to 2-Phenylethanol over Nanocrystalline Ni Prepared by Ethylene Glycol Reduction Method Sunil K. Kanojiya,1 G. Shukla,1 S. Sharma,1 R. Dwivedi,2 P. Sharma,2 R. Prasad,2 M. Satalkar,3 and S. N. Kane3 1 IPCA Laboratories Ltd., Indore 452003, India 2 School of Chemical Sciences, DA University, Indore 452001, India 3 Magnetic Materials Laboratory, School of Physics, DA University, Indore 452001, India Correspondence should be addressed to R. Prasad; [email protected] Received 14 February 2014; Accepted 20 May 2014; Published 17 July 2014 Academic Editor: Moshe Sheintuch Copyright © 2014 Sunil K. Kanojiya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Nanocrystalline nickel prepared by glycol reduction method and characterized by XRD and magnetic measurements has been used as a catalyst for hydrogenation of styrene oxide to 2-phenylethanol. Effect of process variables such as particle size of the catalyst, temperature, and pressure have been optimized to achieve a maximum conversion of 98% of styrene oxide with 99% selectivity towards 2-phenylethanol. The structure of the transition state has been computed employing density functional theory −1 and using Gaussian 09 suite. The enthalpy of reaction (Δ) and activation energy ()arecalculatedtobe85.3kcal⋅mol and −1 123.03 kcal⋅mol , respectively. A tentative mechanism for the reaction is proposed according to which atomized hydrogen and styrene oxide react together over the catalyst surface to produce 2-phenylethanol.
    [Show full text]
  • Green Chemistry : Greener Alternatives to Synthetic Organic Transformations
    Green Chemistry Greener Alternatives to Synthetic Organic Transformations V.K. Ahluwalia Alpha Science International Ltd. Oxford, U.K. Contents Preface v Parti 1. Introduction 1.1-1.10 1.1 Principles of Green Chemistry 1.1 1.2 How to Plan a Green Synthesis 1.2 Part II Green Alternatives to Synthesis Organic Transformations 2. Aqueous Phase Transformations 2.1-2.48 2.1 p-Acetylaminophenol (Tylenol) 2.1 2.2 3-Aminopyridine 2.2 2.2a Anthranilic Acid 2.3 2.3 Benzilic Acid 2.3 2.4 Benzoin 2.5 2.5 Benzotriazole 2.6 2.6 2-Benzoyl-3,5-dimethylbenzofuran 2.7 2.7 n-Butyl Bromide 2.8 2.8 Tert.Butylchloride 2.8 2.9 Chalcone (Benzalacetophenone) 2.9 2.10 Cycloheptanone 2.10 2.11 2,3-Dihydroxy Anisole (Pyrigallol Monomethyl-ether) 2.12 2.12 2,4-Dihydroxybenzoic acid (P-resorcylic Acid) 2.13 2.13 3,4-Dimethoxyphenol 2.14 2.14 2,3-Dimethyl-l-phenylpyrazol-5-one 2.15 2.15 3, 5-Dimethylpyrazole 2.16 2.16 5,5-Diphenylhydantoin 2.17 2.17 Endo-cis-1,4-endoxo-A5-cyclohexene-2,3-dicarboxylic Acid 2.18 2.18 p-Ethoxyacetanilide (Phenacetin) 2.19 2.19 6-Ethoxycarbonyl-3,5-diphenyI-2-cyclohexenone 2.20 2.20 HeteroDiels-AlderAdduct 2.22 2.21 Hippuric Acid (Benzoyl Glycine) 2.22 Viii Contents 2.22 Hydantion 2.23 2.25 3-Hydroxy-3-phenyl-2-methylene Proponamide 2.24 2.24 Iodoform 2.25 2.25 Inodole 2.26 2.26 3-(p-Methoxyphenyl)-2H-1,4-Benzoxazine 2.27 2.27 3-Methylcyclopent-2-enone 2.27 2.28 2-(2'-Methlindol-3yl)-1,4-benzoquinone 2.28 2.29 2-methyl-2-(3-oxobutyl)-1,3-cyclopentanedione 2.29 2.30 P-Naphthyl Acetate 2.30 2.31 (5-Naphthyl Methyl Ether (Nerolin) 2.31 2.32
    [Show full text]
  • Inhibition of Growth, Synthesis, and Permeability in Neurospora Crassa by Phenethyl Alcohol
    JOURNAL OF BACTERIOLOGY, JUly, 1965 Vol. 90, No. I Copyright © 1965 American Society for Microbiology Printed in U.S.A. Inhibition of Growth, Synthesis, and Permeability in Neurospora crassa by Phenethyl Alcohol GABRIEL LESTER Department of Biology, Reed College, Portland, Oregon Received for publication 22 January 1965 ABSTRACT LESTER, GABRIEL (Reed College, Portland, Ore.). Inhibition of growth, synthesis, and permeability in Neurospora crassa by phenethyl alcohol. J. Bacteriol. 90: 29-37. 1965.- Inhibition of the growth of Neurospora crassa in still culture was detected at 0.05% and was complete at a level of 0.2% phenethyl alcohol (PEA). Benzyl alcohol was less in- hibitory, and 3-phenyl-1-propanol and phenol were more inhibitory, than PEA; benzyl- amine and phenethylamine were less inhibitory than the analogous hydroxylated com- pounds. Inhibition by PEA was not reversed by synthetic mixtures of purines and pyrimidines or vitamins, or by casein digests, yeast extract, or nutrient broth. The germination of conidia was inhibited by PEA, but after an exposure of 8.5 hr no loss of viability was observed. The addition of PEA to growing shake cultures caused a simul- taneous inhibition of growth and of the syntheses of ribonucleic and deoxyribonucleic acids and protein; the relationships of these compounds to mycelial dry weight and to one another were constant in growing mycelia, and PEA did not significantly affect these relationships. PEA partially inhibited the uptake of glucose, but severely re- stricted the accumulation of L-leucine, L-tryptophan, or a-aminoisobutyric acid in germinated conidia. The efflux of a-aminoisobutyric acid from germinated conidia was somewhat enhanced by PEA, but this effect was not so pronounced as the (complete) inhibition of a-aminoisobutyric acid accumulation by PEA.
    [Show full text]
  • United States Patent (19) 11 4,267,375 Maasbol Et Al
    United States Patent (19) 11 4,267,375 Maasbol et al. 45 May 12, 1981 54 PREPARATION OF THIOETHERS OTHER PUBLICATIONS 75) Inventors: Alfred G. Maasbol, Hamburg, Fed. I. Ruderman et al., J. Amer. Chem. Soc., 71, pp. Rep. of Germany; Lothar G. Dulog, 2264-2265, (1949). St. Martens Latem, Belgium Morrisson and Boyd, Organic Chemistry, 2nd edition, (1967), pp. 29–30. 73) Assignee: s.a. Texaco Belgium in.v., Brussels, T. Todsen et al., J. Amer. Chem. Soc., 72, pp. Belgium 4000-4002, (1950). Berichte Deutsch. Chemie, vol. 1, pp. 587-591, (1935), (21) Appl. No.: 945,273 Berlin. 22 Filed: Sep. 25, 1978 D. Gregg et al., J. Org. Chem., pp. 246-252, (1950). M. Malinovskii, Epoxides and Their Derivatives, pp. Related U.S. Application Data 131-136, (1965), Jerusalem, Daniel Davey & Co. Primary Examiner-Glennon H. Hollrah 63 Continuation of Ser. No. 703,045, Jul. 6, 1976, aban Assistant Examiner-M. C. Eakin doned. Attorney, Agent, or Firm-Carl G. Ries; Robert A. 30 Foreign Application Priority Data Kulason; Carl G. Seutter Nov. 19, 1975 GB United Kingdom ............... 47582/75 57 ABSTRACT .. 51 Int. Cl. ............................................ CO7C 149/30 Thioethers may be prepared by reacting a thiol, such as thiophenol, with an alcohol (having electron donor 52 U.S. C. ......................................... 568/57; 568/58 groups in the alpha or beta position to its hydroxyl 58 Field of Search ........................ 260/609 E, 609 R group) such as phenyl-1-hydroxy-phenethylsulfide. Re 56) References Cited action is carried out in the presence of a Lewis Acid U.S. PATENT DOCUMENTS metal halide, typically zinc chloride.
    [Show full text]
  • Appendix a 1 2 Additional Figure 1. Volatile Organic Compounds (Vocs
    1 Appendix A 2 3 Additional Figure 1. Volatile organic compounds (VOCs) profiles identified by 4 means of a GC-MS analysis in cultures of S. lycopersici CIDEFI 213 strain 5 grown on PDB media. Compounds detected on un-inoculated PDB are marked 6 with red asterisk. Compounds with relative abundance >1 % are numbered in 7 each chromatogram. 1) Ethyl alcohol. 2) 2-Methyl-1-propanol. 3) Isoamyl 8 alcohol. 4) 2-methyl-1-butanol. 5) Phenethyl alcohol. 9 10 11 Additional Figure 2. Volatile organic compounds (VOCs) profiles identified by 12 means of a GC-MS analysis in cultures of S. lycopersici CIDEFI 216 strain 13 grown on PDB media. Compounds detected on un-inoculated PDB are marked 14 with red asterisk. Compounds with relative abundance >1 % are numbered in 1 15 each chromatogram. 1) Ethyl alcohol. 2) 2-Methyl-1-propanol. 3) Isoamyl 16 alcohol. 4) 2-methyl-1-butanol. 5) Phenethyl alcohol. 6) Furfuryl alcohol. 17 18 19 Additional Figure 3. Volatile organic compounds (VOCs) profiles identified by 20 means of a GC-MS analysis in cultures of F. fulva CIDEFI 300 strain grown on 21 PDB media. Compounds detected on un-inoculated PDB are marked with red 22 asterisk. Compounds with relative abundance >1 % are numbered in each 23 chromatogram. 6) Furfuryl alcohol. 7) Acetone. 8) Methyl trimethylacetate. 9) 24 Isoamyl alcohol. 10) 1-Octene. 11) 3-Hexanone, 4-methyl-. 12) Styrene. 13) 3- 25 Octanone. 14) Hexanoic acid, 2 ethyl-, methyl ester. 15) 2-Nonanone. 16) 26 Phenethyl alcohol. 17) No identified Nist05. 27 2 28 29 Additional Figure 4.
    [Show full text]
  • Chemicals That Form Explosive Levels of Peroxides Without Concentration (Safe Storage Time After Opening - 3 Months) Chemical CAS # Synonym State Ref
    Group A- Chemicals that form explosive levels of peroxides without concentration (Safe storage time after opening - 3 months) Chemical CAS # Synonym State Ref. 000106- Butadiene(1,3) 1,3-Butadiene gas 4 99-0 000126- 2-Chloro-1,3- Chloroprene (1,3) liquid 4 99-8 butadiene 000821- Divinyl acetylene 1,5-Hexadien- 3-yne liquid 5 08-9 000108- Isopropyl ether liquid 5 20-3 000116- Tetrafluoroethylene gas 4 14-3 000109- Vinyl ether Divinyl ether liquid 5 93-3 000075- 1,1- Vinylidene chloride liquid 5 35-4 Dichloroethylene Group B-Chemicals that form explosive levels of peroxides on concentration (Safe storage time after opening - 12 months) Chemical CAS # Synonym State Ref. 000105- Acetal liquid 5 57-7 000075- Acetaldehyde liquid 4 07-0 000100- Benzyl alcohol liquid 4 51-6 000078- 2-Butanol liquid 4 92-2 000108- Cyclohexanol liquid 4 93-0 000110- Cyclohexene liquid 5 83-8 000822- 2-Cyclohexen-1-ol liquid 4 67-3 000142- Cyclopentene liquid 5 29-0 000091- Decahydronaphthalene liquid 4 17-8 000460- Diacetylene gas 5 12-8 000077- Dicyclopentadiene liquid 5 73-6 Diethylene glycol 000111- Diglyme liquid 5 dimethyl ether 96-6 000123- Dioxane 1,4-Dioxane liquid 5 91-1 Ethylene glycol 000110- Glyme liquid 5 dimethyl ether 71-4 000060- Ethyl ether Diethyl ether liquid 5 29-7 000110- Furan liquid 5 00-9 000589- 4-Heptanol liquid 4 55-9 000626- 2-Hexanol liquid 4 93-7 000098- Isopropyl benzene Cumene liquid 5 82-8 000074- Methyl acetylene Propyne gas 5 99-7 000123- 3-Methyl-1-butanol Isoamyl alcohol liquid 4 51-3 000096- Methyl cyclopentane liquid 5 37-7
    [Show full text]
  • CHM205 Chemicals by Experiment Tuesday, November 17, 2015 3:14:15 PM Experiment Title Chemical Name Concentration Acetaminophen Synthesis Acetic Anhydride Liquid
    CHM205 Chemicals by Experiment Tuesday, November 17, 2015 3:14:15 PM Experiment Title Chemical Name Concentration Acetaminophen Synthesis Acetic anhydride liquid Acetaminophen Synthesis p-aminophenol solid Alcohols to Alkyl chlorides 2-pentanol liquid Alcohols to Alkyl chlorides Hydrochloric acid 12 M Alcohols to Alkyl chlorides Sodium carbonate solid Alcohols to Alkyl chlorides Hydrobromic acid 48% w/v Alcohols to Alkyl chlorides Sodium sulfate anhydrous solid Alcohols to Alkyl chlorides sec-phenethyl alcohol liquid Alcohols to Alkyl chlorides Benzyl alcohol liquid Alcohols to Alkyl chlorides t-butanol liquid Alcohols to Alkyl chlorides 1-pentanol liquid Alcohols to Alkyl chlorides Sodium carbonate 10% w/v Diels Alder Reaction 2,3-dimethyl-1,3-butadiene liquid Diels Alder Reaction Maleic anhydride solid Diels Alder Reaction Ethanol 95% Liquid Diels Alder Reaction Hexane liquid Diels Alder Reaction Cyclohexane liquid Diels Alder Reaction Calcium chloride solid Esterification methanol liquid Esterification Sodium carbonate 10% w/v Esterification 1-propanol liquid Esterification 1-butanol liquid Esterification trans-cinnamic acid solid Esterification Isoamyl alcohol liquid Esterification Isopropyl alcohol liquid Esterification Benzyl alcohol liquid Esterification Sulfuric acid conc. 18 M Esterification 1-pentanol liquid Esterification Isobutyl alcohol liquid Esterification Ethanol 95% liquid Page 1 of 3 Experiment Title Chemical Name Concentration Extraction of Beta Carotene Cyclohexane liquid Extraction of Beta Carotene Beta carotene UV
    [Show full text]
  • Phenethyl Alcohol Is an Effective Non-Traditional Preservative Agent for Cosmetic Preparations
    Online - 2455-3891 Vol 10, Issue 8, 2017 Print - 0974-2441 Research Article PHENETHYL ALCOHOL IS AN EFFECTIVE NON-TRADITIONAL PRESERVATIVE AGENT FOR COSMETIC PREPARATIONS SASITHORN SIRILUN1, CHAIYAVAT CHAIYASUT1, BHAGAVATHI SUNDARAM SIVAMARUTHI1, SARTJIN PEERAJAN2, NAPHATSORN KUMAR3, PERIYANAINA KESIKA1* 1Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand. 2Health Innovation Institute, Chiang Mai 50200, Thailand. 3School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. Email: [email protected]; [email protected] Received: 19 March 2017, Revised and Accepted: 26 April 2017 ABSTRACT Objective: Preservatives are used in the cosmetic products to protect the potential growth of microbes, therefore, to prolong the shelf life of products, and to protect the consumer from infections. However, several preservatives can cause various health problems, and the safety profiles of those preservatives are still unclear. Many natural substances are used in the cosmetic products to substitute the traditional preservatives. The present study deals with the evaluation of conservative nature of phenethyl alcohol (PEA) in three cosmetic formulations (emulsion, cleansing, and conditioner). Methods: Three different concentrations of PEA (0.3%, 1%, and 2.5%) were used in cosmetic formulations. The physical appearance of the formulas was assessed manually, and the antimicrobial nature of PEA and PEA-containing cosmetic formulations was evaluated by agar well plate assay. Results: The use of PEA has not affected the physical appearance and quality of the formulations, except the high concentration of PEA in the cleansing solution, which reduced the foam formation. The minimal required concentration of PEA in emulsions and cleansings was 1.0% and 2.5% in the conditioners.
    [Show full text]
  • Conversion of Alcohols Into Amines by Borrowing Hydrogen
    University of Bath PHD Conversion of Alcohols into Amines by Borrowing Hydrogen Hamid, Malai Award date: 2008 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 03. Oct. 2021 Conversion of Alcohols into Amines by Borrowing Hydrogen Malai Haniti Sheikh Abdul Hamid A thesis submitted for the degree of Doctor of Philosophy Department of Chemistry University of Bath November 2008 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • Catalysed Nucleophilic Addition of Alcohols to Cyclopropenes
    Chapter 3 – Gold(I)-Catalysed Nucleophilic Addition of Alcohols to Cyclopropenes Acknowledgment: Results presented in this chapter was carried out together with J.T. Bauer, who performed the reactions in Table 1 (Entries 1-11) and Table 4. All other reactions presented in this chapter were the work of the author. Development of Gold-Catalysed Reactions – Gold(I)-Catalysed Nucleophilic Addition of Alcohols to Cyclopropenes 3.1 Introduction Since the 1850’s when Alexander Williamson first developed the synthesis of ethers1 the process has become vital in both research and industry alike. Although the Williamson ether synthesis reaction is the most widely used in the formation of ethers, the harsh basic conditions and often high temperatures can lead to undesirable side reactions. Further complications can arise upon the use of more sterically encumbered reagents which will either prove to be unreactive, or when attempting to form tertiary ethers, the elimination pathway is more highly favoured.2, 3 Figure 1 Tertiary Alkyl Allylic Ether Thus, alkyl-tertiary allylic ethers (3.1, Figure 1) are difficult to make via conventional methods. Although tertiary allylic alcohols are easy to access (via vinyl Grignard addition to ketones, for example), attempted etherification of the corresponding sterically hindered alkoxides (with an alkyl halide) tends to lead to the elimination rather than the substitution pathway. Figure 2 Vinylglycidol A possible route to access tert-allylic ethers was devised by Trost et. al. as they were attempting to enantioselectively
    [Show full text]
  • Powerful Promoters for Ring-Opening Reactions of Epoxides with Carbon Nucleophiles
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2021, part iii, 0-0 Organic Chemistry to be inserted by editorial office Fluorinated alcohols: powerful promoters for ring-opening reactions of epoxides with carbon nucleophiles Taylor L. Dover and Frank E. McDonald* Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, GA 30322, USA Email: [email protected] In honor of the 70th birthday of our colleague and mentor, Professor Lanny S. Liebeskind Received mm-dd-yyyy Accepted mm-dd-yyyy Published on line mm-dd-yyyy Dates to be inserted by editorial office Abstract Ring-opening reactions of epoxides with carbon nucleophiles are valuable transformations for constructing functionalized carbon-carbon bonds. Epoxide ring-opening methods typically require Lewis acidic additives and/or strong nucleophiles to overcome the activation barrier for these reactions. Fluorinated alcohol solvents present a desirable alternative, enhancing the efficacy of these reactions with weak and neutral carbon nucleophiles by promoting electrophilic activation of the epoxide. We present here a thorough review of the literature regarding epoxide ring-opening reactions with carbon nucleophiles in fluorinated alcohol solvents, concluding with a few recent examples with aziridines. Keywords: Carbon nucleophiles, epoxides, fluorinated alcohols, ring-opening DOI: https://doi.org/10.24820/ark.5550190.p011.449 Page 1 ©AUTHOR(S) Arkivoc 2021, iii, 0-0 Dover, T. L. et al. Table of Contents 1. Introduction 1.1 General 1.2 Properties of fluorinated alcohol solvents 2. Ring-opening Reactions with Neutral Carbon Nucleophiles, with Fluorinated Alcohol Solvents as Substitutes for Lewis acid Promoters or Catalysts 2.1 Intermolecular carbon-carbon bond-forming reactions 2.2 Intramolecular carbon-carbon bond-forming reactions 3.
    [Show full text]
  • Food and Drug Administration, HHS § 172.515
    Food and Drug Administration, HHS § 172.515 Common name Scientific name Limitations Sandalwood, white (yellow, or East Indian) ... Santalum album L. Sandarac ........................................................ Tetraclinis articulata (Vahl.), Mast .............................. In alcoholic beverages only Sarsaparilla ..................................................... Smilax aristolochiaefolia Mill., (Mexican sarsaparilla), S. regelii Killip et Morton (Honduras sarsaparilla), S. febrifuga Kunth (Ecuadorean sarsaparilla), or undetermined Smilax spp. (Ecuadorean or Central American sarsaparilla). Sassafras leaves ............................................ Sassafras albidum (Nutt.) Nees ................................. Safrole free Senna, Alexandria .......................................... Cassia acutifolia Delile. Serpentaria (Virginia snakeroot) .................... Aristolochia serpentaria L ........................................... In alcoholic beverages only Simaruba bark ................................................ Simaruba amara Aubl ................................................. Do. Snakeroot, Canadian (wild ginger) ................ Asarum canadense L. Spruce needles and twigs .............................. Picea glauca (Moench) Voss or P. mariana (Mill.) BSP. Storax (styrax) ................................................ Liquidambar orientalis Mill. or L. styraciflua L. Tagetes (marigold) ......................................... Tagetes patula L., T. erecta L., or T. minuta L. (T. As oil only glandulifera
    [Show full text]