Great Brome (Bromus Diandrus)

Total Page:16

File Type:pdf, Size:1020Kb

Great Brome (Bromus Diandrus) BBBeeesssttt MMMaaannnaaagggeeemmmeeennnttt PPPrrraaaccctttiiiccceeesss fffooorrr DDDrrryyylllaaannnddd CCCrrroooppppppiiinnnggg SSSyyysssttteeemmmsss Great Brome (Bromus diandrus) Great brome (Bromus diandrus) is an annual grass weed widely distributed across southern Australia. It can cause enormous problems for landholders across the mid and lower Murrumbidgee catchment. A population of 100 plants/m2 causes an average yield loss of 30% in wheat crops due to its high level of competitiveness for water, nutrients and space (Gill, Poole & Holmes 1987). The seeds can contaminate wool and injure livestock through penetration of eyes, mouths, feet and intestines. It also hosts a range of cereal diseases. (Figures 1 & 2) Photo: Sheldon Navie Figure 2. Bromus diandrus infestation Legislation Great brome is not declared noxious in the Murrumbidgee catchment under the Noxious Weeds Act 1993. Taxonomy Great brome is the accepted common name for Bromus diandrus but it is also known as ripgut brome, ripgut grass, giant brome, slands grass, jabbers and Kingston grass. Bromus diandrus is one of 130 species in the Bromus L. genus, all of which are simply known as brome grass. Bromus rigidus is another common species in Australia. Its accepted common name is rigid brome Photo: Sheldon Navie but it may also be known as ripgut brome, brome grass and even great brome. Figure 1. Bromus diandrus inflorescence Origin and Introduction KEY POINTS Great brome is native to the Mediterranean region of • Great brome is an increasing problem in the Turkey, Cyprus, Egypt and Iraq but now infests other Murrumbidgee catchment and should not be Mediterranean areas of Europe, Africa, Britain, North overlooked. America, South Africa, Australia, New Zealand, South • New herbicides are available for control of Korea, Japan and Russia. great brome in wheat. Great brome was introduced into Australia around • Aim for 2 consecutive years of weed control 1875 as a contaminant of crop seeds, forages and to deplete the weed seed-bank. wool, attached to livestock or in ship ballasts (Cooper & Moekerk 2000). Distribution • the easy removal of other grass weeds has allowed great brome to proliferate Great brome quickly became naturalized across southern • the adoption of minimum and no-till farming systems Australia due to its aggressive nature and pre-adaptation has caused an increase in great brome populations to Australia’s temperate climate. It is distributed from south-east Queensland to south-west Western Australia • sheep numbers in the Murrumbidgee catchment (Figure 3). It is adapted to a range of climatic conditions have declined allowing annual grasses including great and soil types from acidic to alkaline and sandy to loamy. brome to set seed freely; and It is found in crops, pastures, fallows, roadsides, • the overall area cropped in the Murrumbidgee wastelands, national parks and reserves and coastal sand catchment has increased. dunes. Identification Great brome leaves are rough, hairy, dull and often have visible purple stripes along the leaf veins. The leaf sheath is tubular, the ligule is prominent and membranous, and the stems are hairy (Figure 4). The inflorescence is a loose, nodding panicle with long stalked spikelets (Figure 5). Figure 3. Estimated distribution of great brome in Australia (Kon & Blacklow 1995). Biology and Ecology Great brome is a major weed in the Murrumbidgee catchment because: • it is among the most competitive of all grass weeds and Photo: Sheldon Navie small populations in a wheat crop can cause large yield losses Figure 4. Bromus diandrus stem • it effectively competes with crop plants for nitrogen and phosphorous • each plant can produce more than 3000 seeds • the seeds contaminate grain, wool, animal skins and meat, and injure livestock by penetrating skin, eyes, feet and intestines • the plant hosts a number of cereal diseases including take-all (Gaeumannomyces graminis), ergot (Claviceps purpurea) and cereal cyst nematode (Heterodera avenai), all of which can cause significant losses in cereal crops • the plant sheds a large proportion of seed before harvest • it is drought tolerant Photo: Sheldon Navie • it has a higher tolerance of phosphorous deficiency and better responsiveness to added nitrogen than wheat Figure 5. Bromus diandrus inflorescence • few management tools are available for great brome All Bromus species appear very similar in the seedling control in cereals and vegetative stages. Great brome seedlings can be • there is a poor understanding of the ecology and confused with wild oats as they both possess hairs on population dynamics of great brome their leaves and stems. (Table 1) Table 1. Distinguishing characteristics of Bromus diandrus (Cooper & Moerkerk 2000; Kon & Blacklow 1988). Bromus diandrus Height 30-90cm Leaves 10mm wide, stout, erect, long/dense hairs Ligule Prominent, membranous Panicle Loose and nodding,150-200mm long Spikelet branches Longer than spikelets, sometimes exceeding 20mm Awn length 35-55mm Abscission scar Circular Lemma callus Short (≤1mm), spherical with rounded tip Chromosome number 2n=56 Seed dormancy and germination The hot, dry conditions found at the soil surface are unfavourable for germination and this could be the Great brome seeds are inherently dormant at seed shed. underlying reason great brome has increased under They remain dormant in high temperatures over summer no-till systems. Seeds lie dormant on the soil surface but regain germinability when conditions become until being buried at sowing, placing them in a favourable. Most seeds will germinate after rain the favourable environment for germination thus following autumn as rainfall is the biggest determinant of promoting in-crop emergence. germination (Figure 5). Those which don’t can remain viable in the soil for up to 2 years, less if exposed to a Seeds will germinate over a range of temperatures but humid environment and more on non-wetting soils. the optimum is 20°C. 100 Emergence (%) 80 60 40 20 0 M A MJ J ASON Month Figure 5. Emergence pattern of great brome over time. Seedling establishment to the soil surface until culm elongation in spring (Figure 6). Seedling establishment is rapid and uniform and it takes only 2 days to complete 50% emergence. However The efficient fibrous rooting system helps plants establishment can be protracted due to emergence from survive periods of moisture stress. It is concentrated in varying soil depths (ideal depth is 1cm) or dormancy the top 15cm of the soil profile. enforced by the seed remaining on the soil surface. Establishment is more rapid and uniform under wheat stubble than bare soil as the wheat stubble microenvironment accelerates release from dormancy. Great brome plants can produce many tillers (>50) when plant density is low and nutrient status is high. It has a prostrate growth habit with tillers being strongly oppressed Seed production and dispersal Great brome produces up to 3380 seeds per plant but this is highly variable (Kon & Blacklow 1995). Seed shed occurs 26 days after anthesis. Seeds are dispersed by wind, animals, machines, clothes and as crop seed contaminants. (Figure 7) Figure 7. Bromus diandrus seed (Wilding, Barnett & Amor 1998) Management Despite the major impact great brome has on farming systems in southern Australia, it is a manageable weed. The development and implementation of a clear and well defined integrated weed management (IWM) plan is vital to achieve effective control and delay the development of herbicide resistance. The plan should include cultural, biological and chemical techniques Photo: Sheldon Navie from across the tactic groups listed below (Table 2): Figure 6. Bromus diandrus showing prostrate growth habit 1) Deplete the weed seed-bank 2) Kill existing weeds Flowering 3) Prevent seed set 4) Prevent seeds entering seed-bank Great brome flowers after vernalisation (low 5) Prevent introduction from external sources. temperatures) or short photoperiods followed by long photoperiods. Populations vary in time to flowering in response to the growing season length. Flowering can occur any time between August and November. Table 2. The tactic groups, techniques and their effectiveness for great brome management (Bowcher, Gill & Moore 2005). Tactic Likely Control Control Range Tactic Group (%) (%) 1 Burning residues 70 60-80 1 Autumn tickle 50 20-60 1 Delayed sowing 70 30-90 2 Knockdown (non-selective herbicide) 80 30-99 2 Pre-emergent herbicide 80 40-90 2 Post-emergent (selective) 90 75-99 3 Pasture spray-topping 75 50-90 3 Silage and hay 60 40-80 3 Grazing 50 20-80 4 Residue collection at harvest 40 10-75 An integral component of the great brome IWM plan and Group A herbicides can be used followed by should be a robust crop rotation ensuring at least 2 Clearfield® wheat where the Midas® herbicide can be consecutive years of great brome control. For example, a used. Pastures may be substituted for canola in lower break crop such as lupins or canola where the triazines rainfall areas where grazing and spray-topping may be available Clearfield® varieties and the cost of Midas® used. ($36/ha). Monza™ and Atlantis® also only give suppression rather than complete control. Chemical Options A trial conducted in 2003 at Mannum, South Australia, Until recently, there were very few herbicide options for to evaluate the efficacy of different herbicides for great great brome control in cereal crops. The following 3 brome control showed Midas® alone or in a mix with hebicides (all Group B) are now registered: trifluralin to be the most effective treatment (Table 3) (Kleemann & Gill 2003a). An equivalent trial 1. Midas® (MCPA/imazapic/imazapyr) for use in Clearfield conducted in the same year at Warooka on the Yorke wheat varieties only (CLF Janz and CLF Stiletto) Peninsula of South Australia (without the metribuzin 2. Monza™ (Sulfosulfuron) treatments) showed similar results with Midas® at 3. Atlantis® (Mesosulfuron-methyl). 900ml/ha the most effective treatment followed by Midas® 900ml/ha + trifluralin 1.2L/ha (Kleemann & Gill Limitations imposed by these herbicides include plant 2003b). back restrictions (especially in low rainfall areas), few Table 3.
Recommended publications
  • Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument
    Schmidt, Drost, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2006-1163 Southwest Biological Science Center Open-File Report 2006-1163 November 2006 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument By Cecilia A. Schmidt, Charles A. Drost, and William L. Halvorson Open-File Report 2006-1163 November, 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 Note: This document contains information of a preliminary nature and was prepared primarily for internal use in the U.S. Geological Survey. This information is NOT intended for use in open literature prior to publication by the investigators named unless permission is obtained in writing from the investigators named and from the Station Leader. Suggested Citation Schmidt, C. A., C. A. Drost, and W. L. Halvorson 2006. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument. USGS Open-File Report 2006-1163.
    [Show full text]
  • Biology of Bromus Rigidus : Interference in Winter Wheat, Seed
    AN ABSTRACT OF THE THESIS OF Jean Ann Gleichsner for the degree of Doctor of Philosophy inCrop Sciencepresented on June 27, 1988 . Title: Biology of Bromus rigidus: Interference in Winter Wheat, Seed Longevity in the Soil, and Vernalization Requirements for Flowering Abstract approved:!Redacted for Privacy / 1 Arnold P. Appleby Greenhouse and field studies were conducted to examine various biological aspects of ripgut brome (Bromus rigidus Roth). A field experiment was conducted to measure the grain yield of winter wheat (Triticum aestivum L. Stephens') at various ripgut brome and wheat plant densities. Wheat yield decreased as ripgut brome density increased at all wheat seeding rates (56, 112, 168, and 224 kg/ha). Grain yield was unaffected by wheat seeding rate in the absence of brome. Increasing seeding rates above 112 kg/ha to reduce wheat yield loss caused by ripgut brome is ineffective. In the field, both surface-sown and buried (1 to 30 cm) ripgut brome seed were depleted within 15 months. Persistence of surface-sown seed declined slowly during the first year, falling from 83 to 62 to 23% after 1, 9, and 12 months, respectively. Seed covered by soil, however, germinated more rapidly, with less than 10% of the initial population ungerminated after 1 month at all depths. The mode of seed disappearance was closely related to whether or not seed were covered with soil. Seed loss at depths of 1 to 30 cm was primarily due to germination in situ, with little effect from viability loss or enforced or induced dormancy. In contrast, the persistence of surface-sown seed was due primarily to induced dormancy for up to 12months, with nonviability loss and enforced dormancy becoming important thereafter.
    [Show full text]
  • Wild Plants of Big Break Regional Shoreline Common Name Version
    Wild Plants of Big Break Regional Shoreline Common Name Version A Photographic Guide Sorted by Form, Color and Family with Habitat Descriptions and Identification Notes Photographs and text by Wilde Legard District Botanist, East Bay Regional Park District New Revised and Expanded Edition - Includes the latest scientific names, habitat descriptions and identification notes Decimal Inches .1 .2 .3 .4 .5 .6 .7 .8 .9 1 .5 2 .5 3 .5 4 .5 5 .5 6 .5 7 .5 8 .5 9 1/8 1/4 1/2 3/4 1 1/2 2 1/2 3 1/2 4 1/2 5 1/2 6 1/2 7 1/2 8 1/2 9 English Inches Notes: A Photographic Guide to the Wild Plants of Big Break Regional Shoreline More than 2,000 species of native and naturalized plants grow wild in the San Francisco Bay Area. Most are very difficult to identify without the help of good illustrations. This is designed to be a simple, color photo guide to help you identify some of these plants. This guide is published electronically in Adobe Acrobat® format so that it can easily be updated as additional photographs become available. You have permission to freely download, distribute and print this guide for individual use. Photographs are © 2014 Wilde Legard, all rights reserved. In this guide, the included plants are sorted first by form (Ferns & Fern-like, Grasses & Grass-like, Herbaceous, Woody), then by most common flower color, and finally by similar looking flowers (grouped by genus within each family). Each photograph has the following information, separated by '-': COMMON NAME According to The Jepson Manual: Vascular Plants of California, Second Edition (JM2) and other references (not standardized).
    [Show full text]
  • Oregon City Nuisance Plant List
    Nuisance Plant List City of Oregon City 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Acer platanoides Norway Maple Acroptilon repens Russian knapweed Aegopodium podagraria and variegated varieties Goutweed Agropyron repens Quack grass Ailanthus altissima Tree-of-heaven Alliaria officinalis Garlic Mustard Alopecuris pratensis Meadow foxtail Anthoxanthum odoratum Sweet vernalgrass Arctium minus Common burdock Arrhenatherum elatius Tall oatgrass Bambusa sp. Bamboo Betula pendula lacinata Cutleaf birch Brachypodium sylvaticum False brome Bromus diandrus Ripgut Bromus hordeaceus Soft brome Bromus inermis Smooth brome-grasses Bromus japonicus Japanese brome-grass Bromus sterilis Poverty grass Bromus tectorum Cheatgrass Buddleia davidii (except cultivars and varieties) Butterfly bush Callitriche stagnalis Pond water starwort Cardaria draba Hoary cress Carduus acanthoides Plumeless thistle Carduus nutans Musk thistle Carduus pycnocephalus Italian thistle Carduus tenufolius Slender flowered thistle Centaurea biebersteinii Spotted knapweed Centaurea diffusa Diffuse knapweed Centaurea jacea Brown knapweed Centaurea pratensis Meadow knapweed Chelidonium majou Lesser Celandine Chicorum intybus Chicory Chondrilla juncea Rush skeletonweed Cirsium arvense Canada Thistle Cirsium vulgare Common Thistle Clematis ligusticifolia Western Clematis Clematis vitalba Traveler’s Joy Conium maculatum Poison-hemlock Convolvulus arvensis Field Morning-glory 1 Nuisance Plant List
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Native Perennial and Non-Native Annual Grasses Shape Pathogen Community Composition and Disease Severity in a California Grassland”, Kendig Et Al
    Supplementary Materials for “Native perennial and non-native annual grasses shape pathogen community composition and disease severity in a California grassland”, Kendig et al. Table S1. Total abundance of grass species in the observational and manipulated studies. Study Year Grass species Abundance Host group observational 2015 Avena barbata 2114 non-native annual observational 2015 Avena fatua 1865 non-native annual observational 2015 Brachypodium distachyon 2801 non-native annual observational 2015 Bromus diandrus 2429 non-native annual observational 2015 Bromus hordeaceus 9112 non-native annual observational 2015 Bromus sterilis 178 non-native annual observational 2015 Elymus glaucus 72 native perennial observational 2015 Festuca myuros 116 non-native annual observational 2015 Festuca perennis 652 other grass (non-native perennial) observational 2015 Phalaris aquatica 88 other grass (non-native perennial) observational 2015 Stipa pulchra 127 native perennial observational 2016 Avena sp.1 1076 non-native annual observational 2016 Brachypodium distachyon 1533 non-native annual observational 2016 Bromus diandrus 983 non-native annual observational 2016 Bromus hordeaceus 3235 non-native annual observational 2016 Elymus glaucus 70 native perennial observational 2016 Stipa pulchra 84 native perennial observational 2016 unidentified grass 160 other grass manipulated 2016 Avena sp.1 1559 non-native annual manipulated 2016 Brachypodium distachyon 5941 non-native annual manipulated 2016 Bromus diandrus 854 non-native annual manipulated 2016 Bromus hordeaceus 15076 non-native annual manipulated 2016 Elymus glaucus 1325 native perennial manipulated 2016 Festuca myuros 199 non-native annual manipulated 2016 Gastridium phleoides 15 non-native annual manipulated 2016 Stipa pulchra 286 native perennial 1Identified Avena sp. at JRBP include A. barbata and A.
    [Show full text]
  • Pollen Morphology of Poaceae (Poales) in the Azores, Portugal
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/283696832 Pollen morphology of Poaceae (Poales) in the Azores, Portugal ARTICLE in GRANA · OCTOBER 2015 Impact Factor: 1.06 · DOI: 10.1080/00173134.2015.1096301 READS 33 4 AUTHORS, INCLUDING: Vania Gonçalves-Esteves Maria A. Ventura Federal University of Rio de Janeiro University of the Azores 86 PUBLICATIONS 141 CITATIONS 43 PUBLICATIONS 44 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Maria A. Ventura letting you access and read them immediately. Retrieved on: 10 December 2015 Grana ISSN: 0017-3134 (Print) 1651-2049 (Online) Journal homepage: http://www.tandfonline.com/loi/sgra20 Pollen morphology of Poaceae (Poales) in the Azores, Portugal Leila Nunes Morgado, Vania Gonçalves-Esteves, Roberto Resendes & Maria Anunciação Mateus Ventura To cite this article: Leila Nunes Morgado, Vania Gonçalves-Esteves, Roberto Resendes & Maria Anunciação Mateus Ventura (2015) Pollen morphology of Poaceae (Poales) in the Azores, Portugal, Grana, 54:4, 282-293, DOI: 10.1080/00173134.2015.1096301 To link to this article: http://dx.doi.org/10.1080/00173134.2015.1096301 Published online: 04 Nov 2015. Submit your article to this journal Article views: 13 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgra20 Download by: [b-on: Biblioteca do conhecimento
    [Show full text]
  • INVASIVE SPECIES Grass Family (Poaceae) Wild Oats Are Annuals
    A PROJECT OF THE SONOMA-MARIN COASTAL PRAIRIE WORKING GROUP INVASIVE SPECIES I NVASIVE A NNUAL P LANTS WILD OATS (AVENA FATUA) AND SLENDER WILD OATS (AVENA BARBATA) - NON-NATIVE Grass Family (Poaceae) Wild oats are annuals. WILD OATS: Are native to Eurasia and North Africa. WILD OAT ECOLOGY Is often dominant or co-dominant in coastal prairie (Ford and Hayes 2007; Sawyer, et al. 2009), Occurs in moist lowland prairies, drier upland prairies and open woodlands (Darris and Gonzalves 2008), Species Interactions: The success of Avena lies in its superior competitive ability: o It has a dense root system. The total root length of a single Avena plant can be from 54.3 miles long (Pavlychenko 1937) to, most likely, twice that long (Dittmer 1937). Wild oats (Avena) in Marin coastal grassland. o It produces allelopathic compounds, Photo by D. (Immel) Jeffery, 2010. chemicals that inhibit the growth of other adjacent plant species. o It has long-lived seeds that can survive for as long as 10 years in the soil (Whitson 2002). Citation: Jeffery (Immel), D., C. Luke, K. Kraft. Last modified February 2020. California’s Coastal Prairie. A project of the Sonoma Marin Coastal Grasslands Working Group, California. Website: www.cnga.org/prairie. Coastal Prairie Described > Species: Invasives: Page 1 of 18 o Pavlychenko (1937) found that, although Avena is a superior competitor when established, it is relatively slow (as compared to cultivated cereal crops wheat, rye and barley) to develop seminal roots in the early growth stages. MORE FUN FACTS ABOUT WILD OATS Avena is Latin for “oat.” The cultivated oat (Avena sativa), also naturalized in California) is thought to be derived from wild oats (Avena fatua) by early humans (Baum and Smith [2011]).
    [Show full text]
  • Vegetation Classification for San Juan Island National Historical Park
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science San Juan Island National Historical Park Vegetation Classification and Mapping Project Report Natural Resource Report NPS/NCCN/NRR—2012/603 ON THE COVER Red fescue (Festuca rubra) grassland association at American Camp, San Juan Island National Historical Park. Photograph by: Joe Rocchio San Juan Island National Historical Park Vegetation Classification and Mapping Project Report Natural Resource Report NPS/NCCN/NRR—2012/603 F. Joseph Rocchio and Rex C. Crawford Natural Heritage Program Washington Department of Natural Resources 1111 Washington Street SE Olympia, Washington 98504-7014 Catharine Copass National Park Service North Coast and Cascades Network Olympic National Park 600 E. Park Ave. Port Angeles, Washington 98362 . December 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • (Largeflower Triteleia): a Technical Conservation Assessment
    Triteleia grandiflora Lindley (largeflower triteleia): A Technical Conservation Assessment © 2003 Ben Legler Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project January 29, 2007 Juanita A. R. Ladyman, Ph.D. JnJ Associates LLC 6760 S. Kit Carson Cir E. Centennial, CO 80122 Peer Review Administered by Society for Conservation Biology Ladyman, J.A.R. (2007, January 29). Triteleia grandiflora Lindley (largeflower triteleia): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/ projects/scp/assessments/triteleiagrandiflora.pdf [date of access]. ACKNOWLEDGMENTS The time spent and the help given by all the people and institutions mentioned in the References section are gratefully acknowledged. I would also like to thank the Colorado Natural Heritage Program for their generosity in making their files and records available. I also appreciate access to the files and assistance given to me by Andrew Kratz, USDA Forest Service Region 2. The data provided by the Wyoming Natural Diversity Database and by James Cosgrove and Lesley Kennes with the Natural History Collections Section, Royal BC Museum were invaluable in the preparation of the assessment. Documents and information provided by Michael Piep with the Intermountain Herbarium, Leslie Stewart and Cara Gildar of the San Juan National Forest, Jim Ozenberger of the Bridger-Teton National Forest and Peggy Lyon with the Colorado Natural Heritage Program are also gratefully acknowledged. The information provided by Dr. Ronald Hartman and B. Ernie Nelson with the Rocky Mountain Herbarium, Teresa Prendusi with the Region 4 USDA Forest Service, Klara Varga with the Grand Teton National Park, Jennifer Whipple with Yellowstone National Park, Dave Dyer with the University of Montana Herbarium, Caleb Morse of the R.L.
    [Show full text]
  • Preliminary Isozyme Evidence on the Hybrid Origin and Diploid Progenitors of Bromus Pectinatus (Poaceae) Tatjana Oja Estonian Agricultural University, Tartu, Estonia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Claremont Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 36 2007 Preliminary Isozyme Evidence on the Hybrid Origin and Diploid Progenitors of Bromus pectinatus (Poaceae) Tatjana Oja Estonian Agricultural University, Tartu, Estonia Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Oja, Tatjana (2007) "Preliminary Isozyme Evidence on the Hybrid Origin and Diploid Progenitors of Bromus pectinatus (Poaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 36. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/36 Aliso 23, pp. 468–471 ᭧ 2007, Rancho Santa Ana Botanic Garden PRELIMINARY ISOZYME EVIDENCE ON THE HYBRID ORIGIN AND DIPLOID PROGENITORS OF BROMUS PECTINATUS (POACEAE) TATJANA OJA1 Institute of Agricultural and Environmental Sciences, Estonian Agricultural University, 181 Riia, 51014 Tartu, Estonia ([email protected]) ABSTRACT Isozyme electrophoresis was used to study the origin of Bromus pectinatus (Poaceae, Pooideae). The morphological characteristics of B. pectinatus are intermediate between B. japonicus of sect. Bromus and B. tectorum of sect. Genea. Previous authors have suggested that sects. Bromus and Genea may be linked through B. pectinatus, a species that has been classified in sect. Bromus, though this placement has been questioned. Isozyme data support the allotetraploid nature of B. pectinatus and its position between sects. Bromus and Genea. Several heterozymes are consistent with the view that B. pectinatus may have arisen through polyploidization of a hybrid between B.
    [Show full text]
  • Journal of American Science 2013;9(5)
    Journal of American Science 2013;9(5) http://www.jofamericanscience.org Life forms and rangeland for many habitats of Jarjar oma in Al- Jabal Al- Akhdar on Mediterranean sea Abusaief, H. M. A. Agron. Fac. Agric., Omar Al-Mukhtar Univ. [email protected] Abstract: The present study was carried out during 2010 to 2011 to determine the important plants of in Jarjar oma in Al- Jabal Al- Akhdar-Libya, which includes about 179 species belonging to 51 families and 144 genera. They are represented by 75 perennial, 101 annual and 3 biennial species. Most characteristic families are Asteraceae containing 28 species, the dominance of Asteraceae indicates the range deterioration and dominance of unpalatable species. Fabaceae represented by 22 species, Poaceae including 18 species, Asparagaceae by 7 species, Brassicaceae by 6 species, Caryophyllaceae by 6 species, Euphorbiaceae by 6 species saline and rocky. Apiaceae, Lamiaceae and Polygonaceae including 5 species. Noticed that 56.2 % of species was annuals and 42.1 % was perennials and 1.7 % was biennials. Whereas autumn and summer increase perennials to reach 100 % more than spring and winter wherein increase annuals species to attain 55 %, to display disappear biennial in autumn and summer seasons in all habitat except rocky habitat in autumn. Out of the surveyed, Kinds of Forbs gave 109 species followed shrubs by 38 species, Grass 26 species, Trees 6 species. Of the most dominant species was broad-leaved (Forbs) plant species found in the region. According to palatability 107 species were palatable and 72 species were unpalatable. For annuals, 61 species were palatable and 40 species were unpalatable, while perennial, 44 species were palatable and 31 species were unpalatable.
    [Show full text]