Volcano-Air-Sea Interactions in a Coastal Tuff Ring, Jeju Island, Korea

Total Page:16

File Type:pdf, Size:1020Kb

Volcano-Air-Sea Interactions in a Coastal Tuff Ring, Jeju Island, Korea Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Accepted Manuscript Geological Society, London, Special Publications Volcano-air-sea interactions in a coastal tuff ring, Jeju Island, Korea Young Kwan Sohn, Chanwoo Sohn, Woo Seok Yoon, Jong Ok Jeong, Seok- Hoon Yoon & Hyeongseong Cho DOI: https://doi.org/10.1144/SP520-2021-52 To access the most recent version of this article, please click the DOI URL in the line above. When citing this article please include the above DOI. Received 15 March 2021 Revised 23 May 2021 Accepted 31 May 2021 © 2021 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Manuscript version: Accepted Manuscript This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the book series pertain. Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record once published for full citation and copyright details, as permissions may be required. Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Volcano-air-sea interactions in a coastal tuff ring, Jeju Island, Korea Young Kwan Sohn1,*, Chanwoo Sohn2, Woo Seok Yoon3, Jong Ok Jeong4, Seok- Hoon Yoon3, Hyeongseong Cho1 1 Department of Geology and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea 2 Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea 3 Department of Earth and Marine Sciences, Jeju National University, Jeju 63243, Republic of Korea 4 Center for Research Facilities, Gyeongsang National University, Jinju 52828, Republic of Korea *Correspondence: [email protected] Abstract: The Holocene tuff ring of Songaksan, Jeju Island, Korea, is intercalated with wave-worked deposits at the base and in the middle parts of the tuff sequence, which are interpreted to have resulted from fair-weather wave action at the beginning of the eruption and storm wave action during a storm surge event in the middle of the eruption, respectively. The tuff ring is overlain by another marine volcaniclastic formation, suggesting erosion and reworking by marine processes because of post-eruption changes of the sea level. Dramatic changes of the chemistry, accidental componentry, and ash-accretion texture of the pyroclasts are also observed between the tuff beds deposited before and after the storm invasion. The ascent of a new magma batch, related to the chemical change, could not be linked with either the Earth and ocean tides or the meteorological event. However, the changes of the pyroclasts texture suggest a sudden change of the diatreme fill from waterACCEPTED-undersaturated to supersaturated because MANUSCRIPT of an increased supply of external water into the diatreme. Heavy rainfall associated with the storm is inferred to have changed the water saturation in the diatreme. Songaksan demonstrates that there was intimate interaction between the volcano and the environment. Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 (Introduction) Surtseyan and phreatomagmatic eruptions, produced by magma-water interactions in either surface or subsurface environments are one of the commonest eruption styles on Earth (White and Houghton, 2000; Houghton et al., 2015). These eruptions commonly last days to months (Simkin and Siebert, 1984; Simkin and Siebert, 2000) and result in accumulation of tephra rings or cones around the vent that are tens of meters to over a hundred meters high. The deposition rate of tephra is therefore incomparable with that of ordinary sedimentary deposits. Because of the high sedimentation rates, some volcaniclastic deposits contain the records of the Earth-surface processes and environments in unusual detail (Sohn et al., 2002; Jeong et al., 2008; Sohn and Yoon, 2010; Sohn and Sohn, 2019b). Craters in maar-diatreme volcanoes also act as new accommodation space for sediment accumulation where unusual details of the changing environments can be preserved (White, 1989; White, 1990; White, 1992). These studies suggest that much more information can be drawn from the study of Surtseyan and phreatomagmatic deposits, regarding a variety of processes acting on the Earth’s surface. In this paper, we introduce a coastal tuff ring or maar-diatreme volcano, named Songaksan, in Jeju Island, Korea (Fig. 1), which has been studied by one of the authors (YKS) since the late 1980s, together with some other examples of hydrovolcanic deposits on the island. Past and ongoing studies of this volcano suggest that the volcano preserves the geological records of marine and atmospheric processes in unusual detail, including fair-weather to stormy-weather sea levels, tides, waves, and post-eruption sea-level changes. The volcano also experienced dramatic changes in eruption behavior during a storm event, possibly having a connection with the processes in the sea and the atmosphere. Songaksan is thus regarded to be an example of a coastal volcano, which underwent volcano-air-sea interactions during the eruption. In this paper, we review the previous and ongoing research of this volcano in terms of the interactions between the volcano and the environment, especially ocean tides and storms. TerminologyACCEPTED MANUSCRIPT Using the classic distinction between maars and tuff rings based on the position of the crater floor relative to the pre-eruption surface (Lorenz, 1973; Fisher and Schmincke, 1984; Cas and Wright, 1987), Songaksan is a maar or a maar-diatreme volcano (White and Ross, 2011). We cannot see the crater floor of the tephra ring at Songaksan because it is filled by later scoria cones and ponded lava (Fig. 1c). However, sea cliff exposures show clearly that the inner Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 crater wall of the tephra ring extends below the pre-eruption surface (Fig. 2) (also see Fig. 3a of Sohn et al., 2002). The abundance of accidental materials in the tephra ring also argues for the formation of a diatreme beneath the crater of Songaksan, which is estimated to be over 500 m deep (Go et al., 2017). It should be noted that the crater of a tuff ring at or above the pre-eruption surface is not the evidence for the absence of a diatreme in the subsurface because the crater of a tuff ring can be filled by later volcanic deposits. We are doubtful whether a ‘true’ tuff ring does exist in nature, which was produced by explosions entirely above the pre-eruption surface and is therefore devoid of a diatreme in the subsurface. A ‘true’ tuff ring should be devoid of accidental particles excavated explosively from the country rocks if the explosions persisted above the pre-eruption surface without diatreme formation throughout the eruption. But the authors are not aware of any ‘true’ tuff ring that is composed solely of juvenile tephra. We presume that tuff rings also have diatremes in the subsurface and can be included in the category of maar-diatreme volcanoes. Therefore, we do not consider maars and tuff rings to be distinct volcano types. In addition, the term ‘tuff ring’ has been used for decades for Songaksan, and we prefer to use the term ‘Songaksan tuff ring’ here for historical continuity. Volcaniclastic terms are used according to the definition of White and Houghton (2006), which was slightly modified by Sohn and Sohn (2019a) regarding the secondary volcaniclastic deposits. A concise summary of the volcaniclastic terminology is given in FigureACCEPTED 3. MANUSCRIPT Geological setting Jeju Island is an intraplate alkali basaltic volcano, 7433 km in area, and the highest peak (Mt. Hallasan) rises to 1950 m a.s.l. The island was built on the ca. 100 m-deep continental shelf of the southeastern Yellow Sea, ca. 650 km away from the nearest subduction zone of the Nankai Trough (Brenna et al., 2015; Koh et al., 2017) (Fig. 1a). The surface of the island is covered by shield-forming, basaltic to trachytic lavas and hundreds of monogenetic volcanic cones that have formed throughout the Quaternary (Brenna et al., 2012a; Brenna et al., 2012b; Koh et al., 2013) (Fig. 1b), whereas the Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 subsurface geology is characterized by extensive hydrovolcanic deposits and quartzose shelf sediments that accumulated under the influence of fluctuating Quaternary sea levels (Sohn et al., 2008). Songaksan is the youngest volcanic center on the island, which formed along the present shoreline after the Holocene transgression, ~3.7 ka BP (Sohn et al., 2002; Cheong et al., 2007; Ahn et al., 2015; Sohn et al., 2015). The volcano consists of a basaltic tephra ring with a rim diameter of 800 m, a nested scoria cone and a ponded lava (trachybasalt) inside the crater (Sohn et al., 2002) (Fig. 1c). The accidental componentry of the tephra ring suggests that the volcano is underlain by a diatreme as deep as ~600 m (Go et al., 2017). Vertical crustal motion is regarded to have been negligible in the southeastern Yellow Sea area because the area is located in an intraplate setting that is tectonically more stable than other regions in East Asia (Hamdy et al., 2005). The tide is semidiurnal, and the tidal range is 1.7 m at the southern coast of the island.
Recommended publications
  • Volcanic Gases and Aerosols Guidelines Introduction
    IVHHN Gas Guidelines www.ivhhn.org/gas/guidelines.html Volcanic Gases and Aerosols Guidelines The following pages contain information relating to the health hazards of gases and aerosols typically emitted during volcanic activity. Each section outlines the properties of the emission; its impacts on health; international guidelines for concentrations; and examples of concentrations and effects in volcanic contexts, including casualties. Before looking at the emissions data, we recommend that you read the general introduction to volcanic gases and aerosols first. A glossary to some of the terms used in the explanations and guidelines is also provided at the end of this document. Introduction An introduction to the aims and purpose of the Gas and Aerosol Guidelines is given here, as well as further information on international guideline levels and the units used in the website. A brief review of safety procedures currently implemented by volcanologists and volcano observatories is also provided. General Introduction Gas and aerosol hazards are associated with all volcanic activity, from diffuse soil gas emissions to 2- plinian eruptions. The volcanic emissions of most concern are SO2, HF, sulphate (SO4 ), CO2, HCl and H2S, although, there are other volcanic volatile species that may have human health implications, including mercury and other metals. Since 1900, there have been at least 62 serious volcanic-gas related incidents. Of these, the gas-outburst at Lake Nyos in 1986 was the most disastrous, causing 1746 deaths, >845 injuries and the evacuation of 4430 people. Other volcanic-gas related incidents have been responsible for more than 280 deaths and 1120 injuries, and contributed to the evacuation or ill health of >53,700 people (Witham, in review).
    [Show full text]
  • VOLCANO-TECTONIC HISTORY of CRATER FLAT, SOUTHWESTERN NEVADA, AS SUGGESTED by NEW EVIDENCE from DRILL HOLE USW-VH-1 and VICINITY By
    5)zt.-t"o En-, 6-.-5 f %. _rc . i%: .- 1 - . ~~Open-File Report 82-457 n-File Report 82-457 (.8X/1<~~/I I W II ~~~~~~~~~~~~~~i UNITED STATES V DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY VOLCANO-TECTONIC HISTORY OF CRATER FLAT. SOUTHWESTERN NEVADA, AS SUGGESTED BY NEW EVIDENCE FROM DRILL HOLE USW-VH-1 AND VICINITY Open-File Report 82-457 1982 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. X 0 X 0 0- 0 Prepared by the U.S. Geological Survey C- for the 3 z Nevada Operations Office -4i U.S. Department of Energy z (Memorandum of Understanding DE-AI08-78ET44802) U, I.- -4 Copies of this Open-file Report may be purchased from Open-File Services Section Branch of Distribution U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 PREPAYMENT IS REQUIRED Price information will be published in the monthly listing RNew Publications of the Geological Surveys FOR ADDITIONAL IXNFORAATION CALL: Commercial: (303)234-5888 FTS: 234-5888 Open-File Report 82-457 Open-File Report 82-457 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY VOLCANO-TECTONIC HISTORY OF CRATER FLAT, SOUTHWESTERN NEVADA, AS SUGGESTED BY NEW EVIDENCE FROM DRILL HOLE USW-VH-1 AND VICINITY By W. J. Carr CONTENTS Page Abstract... ....... .......... ............................... .........................a.. ............1 Introduction,............................................................ 1 Acknowledgments............................................... ...... ........ 3 Drill-hole location and history..................................... 3 Geologic framework of Crater Flat ...................................6 Aeromagnetic anomalies........................ oo..... ... .......... ..................7 Volcano-tectonic history of Crater Flat ....o........o .................. 9 Lithology of drill hole.'.. ............................. o..................... 12 Structural properties of the core..
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Volcanic Eruptions
    Volcanic Eruptions •Distinguish between nonexplosive and explosive volcanic eruptions. • Identify the features of a volcano. • Explain how the composition of magma affects the type of volcanic eruption that will occur. • Describe four types of lava and four types of pyroclastic material. I. Volcanic Eruptions A. A volcano is a vent or fissure in the Earth’s surface through which molten rock and gases are expelled. B. Molten rock is called magma. C. Magma that flows onto the Earth’s surface is called lava. II. Nonexplosive Eruptions A. Nonexplosive eruptions are the most common type of volcanic eruptions. These eruptions produce relatively calm flows of lava in huge amounts. B. Vast areas of the Earth’s surface, including much of the sea floor and the Northwestern United States, are covered with lava form nonexplosive eruptions. Kilauea Volcano in Hawaii Island III. Explosive Eruptions A. While explosive eruptions are much rarer than non-explosive eruptions, the effects can be incredibly destructive. B. During an explosive eruption, clouds of hot debris, ash, and gas rapidly shoot out from a volcano. C. An explosive eruption can also blast millions of tons of lava and rock from a volcano, and can demolish and entire mountainside. Alaska's Mount Redoubt eruption in March 2009 IV. What Is Inside a Volcano? A. The interior of a volcano is made up of two main features. B. The magma chamber is the body of molten rock deep underground that feeds a volcano. C. The vent is an opening at the surface of the Earth through which volcanic material passes.
    [Show full text]
  • Nicaragua's Cerro Negro Stratovolcano
    NICARAGUANICARAGUA’S’S CERROCERRO NEGRONEGRO STRASTRATOVTOVOLCANOOLCANO —— HOW DID IT BLOW ITS TOP??? 1) A stratovolcano or composite volcano 6) Large cloud of pyroclastic debris, is built of alternating layers of lava Match the explanations with the numbers on the volcano and find out. steam, and other vapors erupted and pyroclastic (ash or ejected de- from Cerro Negro. The larger, bris) deposits. These deposits accu- heavier fragments fall back on the mulate around the central vent in a cone while the smaller, lighter ash cone-shaped pile. Lava may flow from 6 fragments are carried great dis- fissures (fractures or cracks) radi- tances before they settle. ating from the central vent, whereas the multi-sized pyroclastics are B 7) A smaller cloud of darker material ejected from the main vent. 9 indicates that a localized eruption L has just occurred. 2) Steam and other vapors rising from 10 the large volcanic blocks erupted 8 from the main crater recently. Com- ) Cloud of vapors from the volcano is mostly steam and ash, but also con- pare with the older, cooler volcanic 8 tains chlorine, fluorine, sulfur, and blocks at the ends of the tracks or L 5 their acids. furrows that run down the slope of 5 the main cone. These tracks or fur- 5 9 rows were plowed by the rolling 7 9) Shadow cast by the ash and vapor blocks. Some house-size blocks now 5 cloud from the volcano (6) carried lie loosely at the bottom of the 5 by turbulent hot gasses and winds. slope. 4 When the volcanic ash settles, the 2 pyroclastic deposit that forms is 9 called an ash fall.
    [Show full text]
  • Geologic Map of Delta 30' X 60' Quadrangle
    113 00' 33 R 10 W 3 -Cpm 4 R 9 W p-Cm - R 8 W 45' 35 Qla P Cp Qla Qvb 3 B Qla QTlf Qlm 5 6 R 7 W Qla Qaf1 3 R 5 W 3 Qpm Qed R 6 W 7 30' 8 3 A Qaf1 -Cp Qla Qaf1 Qes Qlm Qlf Qpm R 4 W 9 15' Qlg Qed Qed Qlf Qla Qaf1 Qed Qed Qla Qpm Qed Qed P Qlm QTlf Qlm Qed p-Cc Qaf2 Qaf Qlf Qed Qdf Tdr Qaf1 1 Qed Qed -Cpm p-Cm Qla Qla Qla Qlf Qed Qed p-Cm Tdi Qaf1 Qla Qed Qed p-Cc B Qdf Trk Qaf2 Qlm Qaf1 Qed 85 86 -Cdh -Cp Qed Qaf1 Qaf1 30 Qaf Qlf Qed Qed -Cp Tdr 1 Qed B Qla Qpm Qdf B -Cpm -Cpm P Qlf Qed Qal -Cdh -Cp Qlm Qla 1 p-Cm -Cp Qaf1 Qed Qlf Qal - Qed 2 -Cpm Cdh ? Qdf Qdf Qdg p-Cc -Cdh Qla Qla Qlf/Qal /QTlf Qdg/Qdf Qal2 60 -Cum -Cp 25 3 Qed p-Ci 45 -Cww - Qla Qed Qed Qed Qdf -Cp Cpm -Cpm Qed Qdg Kc Qla Qpm Qed -Cpm 87 -Cdh -Cdh Qaf1 Qed Qdg -Cdh -Cp Qpm -Cww Qla Qdg Qes Qdf B -Cp Qed Qed Qed Qdf Qaf1 - P Cp B Qdg 20 -Cww Qla Qpm Qes p-Cm -Cp -Cww 30 Qaf -Cum Qaf 1 2 -Cp Qla Qed Qal2 -Cdh -Cdh -Cdh Qed Qes p-Cm Qed Qed Qaf1 -Cpm -Cmp Qla P Qed Qal1 -Cww Qms Qla 78-1 -Cp Kc -Cdh Qed Qed Qdf - p-Cm -Cww 86 39 30' Qaf2 -Cmp Cmp -Cww -Cum 80 B Qaf1 Qlm Qed Tdr Qed 64 Tdr Qaf Qlg Qdf Qdf Qdf 60 2 Qal2 Qaf1 Qlg Qed p-Cm Qaf2 Qla P Qal Tdr Qlg Qaf Qla 1 R 3 W 40 Qla 1 Qes Qed 1 825 R 2 W 41 1 850 000 FEET 112 00' T 15 S -Cww QTaf QTas Qdf 39 30' Qlm Qed Qaf -Cdh QTaf Qdf 1 -Cum Qaf1 Qdf 15 Tf Qaf2 Qaf Qaf1 ? QTaf Qac 2 Qaf -Cp QTaf Qlg Tdr 2 Qal p-Cc Qms Qaf1 B Tbsk 1 85 QTaf QTaf Qdf Tf B Qlg Qdf TKn Qaf Qdf Qal Qes Qal2 Qla p-Cc Qaf2 Qms 1 Tf Qaf Tdr Qla Qla 2 Qes Qed QTas 2 Qaf1 -Cdh QTaf Qaf Qed p-Cm - Tf Qlg Qaf2 1 Tbsk -Cp Cww QTaf - 40 TKn QTaf QTaf
    [Show full text]
  • Volcanoes: the Ring of Fire in the Pacific Northwest
    Volcanoes: The Ring of Fire in the Pacific Northwest Timeframe Description 1 fifty minute class period In this lesson, students will learn about the geological processes Target Audience that create volcanoes, about specific volcanoes within the Ring of Fire (including classification, types of volcanoes, formation process, Grades 4th- 8th history and characteristics), and about how volcanoes are studied and why. For instance, students will learn about the most active Suggested Materials submarine volcano located 300 miles off the coast of Oregon — Axial • Volcanoe profile cards Seamount. This submarine volcano is home to the first underwater research station called the Cabled Axial Seamount Array, from which researchers stream data and track underwater eruptions via fiber optic cables. Students will learn that researchers also monitor Axial Seamount using research vessels and remote operated vehicles. Objectives Students will: • Synthesize and communicate scientific information about specific volcanoes to fellow students • Will learn about geological processes that form volcanoes on land and underwater • Will explore the different methods researchers employ to study volcanoes and related geological activity Essential Questions What are the different processes that create volcanoes and how/why do researchers study volcanic activity? How, if at all, do submarine volcanoes differ from volcanoes on land? Background Information A volcano occurs at a point where material from the inside of the Earth is escaping to the surface. Volcanoes Contact: usually occur along the fault lines that SMILE Program separate the tectonic plates that make [email protected] up the Earth's crust (the outermost http://smile.oregonstate.edu/ layer of the Earth). Typically (though not always), volcanoes occur at one of two types of fault lines.
    [Show full text]
  • Lecture 12: Volcanoes Read: Chapter 6 Homework #10 Due Thursday 12Pm
    Learning Objectives (LO) Lecture 12: Volcanoes Read: Chapter 6 Homework #10 due Thursday 12pm What we’ll learn today:! 1. Define the term volcano and explain why geologists study volcanoes! 2. Compare and contrast 3 common types of magma! 3. Describe volcanic gases and the role they play in explosive vs effusive eruptions! 4. Identify what gives a shield volcano its distinctive shape! What is causing this eruption? What factors influence its character? “A volcano is any landform from which lava, gas, or ashes, escape from underground or have done so in the past.” From Chapter 5: magma (and lava) can be felsic, intermediate, or mafic. How does magma chemistry influence the nature of volcanic eruptions? Hawaiian Volcanism http://www.youtube.com/watch?v=6J6X9PsAR5w Indonesian Volcanism http://www.youtube.com/watch?v=5LzHpeVJQuE Viscosity Viscous: thick and sticky Low viscosity High viscosity Viscosity Magma Composition (Igneous Rocks) How does magma chemistry determine lava and eruption characteristics? Felsic Intermediate Mafic less Mg/Fe content more more Si/O content less The Major 7 Types of Igneous Rocks Seven major types of igneous rocks Rhyolite Andesite Basalt Extrusive Granite Diorite Gabbro Peridotite Texture Texture Intrusive Felsic Intermediate Mafic Ultramafic Composition The Rocks of Volcanoes Seven major types of igneous rocks Rhyolite Andesite Basalt Extrusive melt at melt at low temperature high temperature Felsic Intermediate Mafic Ultramafic Composition Three Common Types of Magma: BASALTIC ANDESITIC RHYOLITIC Three Common Types of Magma: BASALTIC Basaltic lava flows easily because of its low viscosity and low gas content. Aa - rough, fragmented lava blocks called “clinker” The low viscosity is due to low silica content.
    [Show full text]
  • Classification of Volcanic Ash Particles Using a Convolutional Neural
    Classification of volcanic ash particles using a convolutional neural network and probability Daigo Shoji1∗, Rina Noguchi2, Shizuka Otsuki3, Hideitsu Hino4 1. Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 2. Volcanic Fluid Research Center, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 3.Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 4.The Institute of Statistical Mathematics,10-3 Midori-cho, Tachikawa, Tokyo ∗ Corresponding author: [email protected] arXiv:1805.12353v1 [physics.geo-ph] 31 May 2018 1 Abstract Analyses of volcanic ash are typically performed either by qualitatively classifying ash particles by eye or by quantitatively parameterizing its shape and texture. While complex shapes can be classified through qualitative analyses, the results are subjective due to the difficulty of categorizing complex shapes into a single class. Although quantitative analyses are objective, selection of shape parame- ters is required. Here, we applied a convolutional neural network (CNN) for the classification of volcanic ash. First, we defined four basal particle shapes (blocky, vesicular, elongated, rounded) generated by different eruption mechanisms (e.g., brittle fragmentation), and then trained the CNN using particles composed of only one basal shape. The CNN could recognize the basal shapes with over 90% accuracy. Using the trained network, we classified ash particles composed of mul- tiple basal shapes based on the output of the network, which can be interpreted as a mixing ratio of the four basal shapes. Clustering of samples by the averaged probabilities and the intensity is consistent with the eruption type.
    [Show full text]
  • Types of Volcanoes Educational Series #9
    South Carolina Geological Survey Types of Volcanoes Educational Series #9 Most people have never seen a real volcano but have learned about them through movies or books. So when most people think of a volcano, they usually conjure up the Hollywood version: a huge, menacing conical mountain that explodes and spews out masses of lava which falls on rampaging dinosaurs, screaming cave people, or fleeing mobs of betogaed Romans - depending on their favorite volcano disaster movie. While those types of volcanoes do indeed exist, they represent only one "species" in a veritable zoo of volcano shapes and sizes. Composite Volcanoes The most majestic of the volcanoes are composite Fissure Volcano volcanoes, also known as strato-volcanoes. Composite volcanoes are tall, symetrically Fissure volcanoes have no central crater at all. Instead, shaped, with steep sides, sometimes rising 10,000 giant cracks open in the ground and expel vast quantities feet high. They are built of alternating layers of of lava. This lava spreads far and wide to form huge pools lava flows, volcanic ash, and cinders. that can cover almost everything around. When these pools of lava cool and solidify, the surface Famous composite volcanoes include Mount Fuji remains mostly flat. Since the source cracks in Japan, Mount Shasta and Mount Lassen in are usually buried, there is often nothing California, Mount St. Helens and Mount Rainier in "volcano-like" to see - only a flat plain. Washington State, Mount Hood in Oregon, and Mount Etna in Italy. A fissure eruption occured at the Los Pilas volcano in Nicaragua in 1952. Shield Volcanoes Shield volcanoes can grow to be very big.
    [Show full text]
  • And Glaciovolcanic Basaltic Tuffs: Modes of Alteration and Relevance for Mars
    Icarus 309 (2018) 241–259 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Spectroscopic examinations of hydro- and glaciovolcanic basaltic tuffs: Modes of alteration and relevance for Mars ∗ W.H. Farrand a, , S.P. Wright b, T.D. Glotch c, C. Schröder d, E.C. Sklute e, M.D. Dyar e a Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA b Planetary Science Institute, 1700 East Ft. Lowell, Suite 106, Tucson, AZ 85719, USA c Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences Building, Stony Brook, NY 11794, USA d Department of Biological and Environmental Sciences, University of Stirling, FK9 4LA Scotland, UK e Department of Astronomy, Mount Holyoke College, 206 Kendade, South Hadley, MA 01075, USA a r t i c l e i n f o a b s t r a c t Article history: Hydro- and glaciovolcanism are processes that have taken place on both Earth and Mars. The amount Received 14 July 2017 of materials produced by these processes that are present in the martian surface layer is unknown, but Revised 22 December 2017 may be substantial. We have used Mars rover analogue analysis techniques to examine altered tuff sam- Accepted 8 March 2018 ples collected from multiple hydrovolcanic features, tuff rings and tuff cones, in the American west and Available online 10 March 2018 from glaciovolcanic hyaloclastite ridges in Washington state and in Iceland. Analysis methods include Keywords: VNIR-SWIR reflectance, MWIR thermal emissivity, thin section petrography, XRD, XRF, and Mössbauer Mars, surface spectroscopy.
    [Show full text]
  • Mount Mazama and Crater Lake: Growth and Destruction of a Cascade Volcano
    U.S. GEOLOGICAL SURVEY and the NATIONAL PARK SERVICE—OURVOLCANIC PUBLIC LANDS Mount Mazama and Crater Lake: Growth and Destruction of a Cascade Volcano or more than 100 years, F scientists have sought to unravel the remarkable story of Crater Lake’s formation. Before Crater Lake came into existence, a cluster of volcanoes dominated the landscape. This cluster, called Mount Mazama (for the Portland, Oregon, climbing club the Mazamas), was destroyed during an enormous explosive eruption 7,700 years ago. So much molten rock was expelled that the summit area collapsed during the eruption to form a large volcanic depression, or caldera. Subsequent smaller eruptions occurred as water began to fill the caldera to eventually form the The cataclysmic eruption deepest lake in the United States. of Mount Mazama 7,700 Decades of detailed scientific years ago began with a towering column of pumice studies of Mount Mazama and and ash, as depicted in this new maps of the floor of Crater painting by Paul Rockwood (image courtesy of Crater Lake reveal stunning details of Lake National Park Museum and Archive Collections). the volcano’s eruptive history and After the collapse of the identify potential hazards from summit of the volcano, the caldera filled with water to future eruptions and earthquakes. form Crater Lake. (Photo by Willie Scott, USGS) formation of Crater Lake and with it the Applegate and Garfield Peaks. During the When Clarence Dutton of the U.S. demise of Mount Mazama. growth of Mount Mazama, glaciers repeatedly Geological Survey (USGS) visited Crater carved out classic U-shaped valleys.
    [Show full text]