Basaltic Volcanoes Shield Volcanoes Stratovolcanoes

Total Page:16

File Type:pdf, Size:1020Kb

Basaltic Volcanoes Shield Volcanoes Stratovolcanoes Shield Volcanoes • Low angle volcano constructed principally Basaltic Volcanoes of basalt lavas • Examples: Mauna Loa and Kilauea, Hawaii • Thin lava flows References: • Summit calderas Encyclopedia of Volcanoes, pp. 283-289 • May have lateral rift zones • May have lava lakes in the crater Skaldbreidur Mauna Kea Mount Etna, Italy Stratovolcanoes • A volcano constructed of alternating layers of lava and pyroclastic materials • Steep slope angles (~35°) • Examples: Fuji, Japan and Kliuchevskaya, Kamchatka • May exhibit persistent activity (Etna, Sicily) • Volumes of erupted lava proportional to repose time Stratovolcano structure Popocatepetl Mount Augustine Cones in Arc Settings • Tholeiitic or calc-alkaline compositions • Merge to andesites • Continuous feeding from depth into a shallow chamber • May be associated with fissures and monogenetic scoria cones • Cones may be truncated by edifice collapse – Example: Augustine, Alaska Facies at a stratovolcano Monogenetic Volcano Fields • Composed of volcanoes that erupt only once • Common edifice is a scoria cone • Tuff rings and small shields are also common • Example: Pinacate, Mexico • Vent systems are dikes or pipes (diatremes) Scoria Cones Scoria Cones • Simplest and commonest volcanic form • Characterized by three parameters Tuff Rings – Height, width, crater width • Standard initial slope of 30o Pillow Lavas • Conical shape • Occur in several environments Sunset Crater, Arizona Scoria Cone Section Diatremes Tuff Cones • Breccia pipes • Massive deposits • Kimberlite Diatreme • Thickly bedded • Contains diamonds • Palagonitized • Ultramafic magmas • Bedding up to 30o • Mixture of rocks Vulcano, Italy •Wet surges • Driven by deep CO2 Tuff Rings • Thinly-bedded Cerro Colorado, Mexico • Poorly-indurated • Beds less than 12o • Sandwave beds • Dry surges Basaltic Scoria Cone Fields SanSan Francisco Francisco Volcanic Field Volcanic Field • 10s to 1000s of cones • General elliptical shape • Aspect ratio of 2:1 to 5:1 • 10 to 70 km in length • Areas of extensional tectonics σ • Elongate perpendicular to 3 • Widespread in western USA • Pinacate example Small Fields Flood Basalt Fields • North rim of Grand • Extensive sheets of lava flows Canyon • Flood the landscape • Scoria cones aligned • Associate with crustal dilation along fault planes • May coincide with mass bioextinctions • Examples: Deccan, India and Columbia River Plateau, USA Flow Units • Compound lava flows • Overlapping pahoehoe flows • Interconnected lava shields • Lava ponds in depressions • Inward directed dips of large fields • Cut by numerous dike swarms+ Columnar Join Shasta Central Volcanoes • A volcano that erupts magmas of various compositions – Mafic to silicic • Many have a central caldera composed of silicic rocks and rhyolite domes • A shallow magma chamber is part of the eruptive system Volcano Interior • The eroded core of these volcanoes may expose a granite pluton • Feeding system may be a ring complex • These may be a host for economic mineral deposits Alteration Zones Silicic Silica Potassic Adularia Sericitic Mica Argillic Clays, no mica Chloritic Chlorite Propylitic Albite, epidote, Chlorite.
Recommended publications
  • Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado by Peter W
    Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado By Peter W. Lipman Pamphlet to accompany Geologic Investigations Series I–2799 dacite Ceobolla Creek Tuff Nelson Mountain Tuff, rhyolite Rat Creek Tuff, dacite Cebolla Creek Tuff Rat Creek Tuff, rhyolite Wheeler Geologic Monument (Half Moon Pass quadrangle) provides exceptional exposures of three outflow tuff sheets erupted from the San Luis caldera complex. Lowest sheet is Rat Creek Tuff, which is nonwelded throughout but grades upward from light-tan rhyolite (~74% SiO2) into pale brown dacite (~66% SiO2) that contains sparse dark-brown andesitic scoria. Distinctive hornblende-rich middle Cebolla Creek Tuff contains basal surge beds, overlain by vitrophyre of uniform mafic dacite that becomes less welded upward. Uppermost Nelson Mountain Tuff consists of nonwelded to weakly welded, crystal-poor rhyolite, which grades upward to a densely welded caprock of crystal-rich dacite (~68% SiO2). White arrows show contacts between outflow units. 2006 U.S. Department of the Interior U.S. Geological Survey CONTENTS Geologic setting . 1 Volcanism . 1 Structure . 2 Methods of study . 3 Description of map units . 4 Surficial deposits . 4 Glacial deposits . 4 Postcaldera volcanic rocks . 4 Hinsdale Formation . 4 Los Pinos Formation . 5 Oligocene volcanic rocks . 5 Rocks of the Creede Caldera cycle . 5 Creede Formation . 5 Fisher Dacite . 5 Snowshoe Mountain Tuff . 6 Rocks of the San Luis caldera complex . 7 Rocks of the Nelson Mountain caldera cycle . 7 Rocks of the Cebolla Creek caldera cycle . 9 Rocks of the Rat Creek caldera cycle . 10 Lava flows premonitory(?) to San Luis caldera complex . .11 Rocks of the South River caldera cycle .
    [Show full text]
  • Volcanic Gases and Aerosols Guidelines Introduction
    IVHHN Gas Guidelines www.ivhhn.org/gas/guidelines.html Volcanic Gases and Aerosols Guidelines The following pages contain information relating to the health hazards of gases and aerosols typically emitted during volcanic activity. Each section outlines the properties of the emission; its impacts on health; international guidelines for concentrations; and examples of concentrations and effects in volcanic contexts, including casualties. Before looking at the emissions data, we recommend that you read the general introduction to volcanic gases and aerosols first. A glossary to some of the terms used in the explanations and guidelines is also provided at the end of this document. Introduction An introduction to the aims and purpose of the Gas and Aerosol Guidelines is given here, as well as further information on international guideline levels and the units used in the website. A brief review of safety procedures currently implemented by volcanologists and volcano observatories is also provided. General Introduction Gas and aerosol hazards are associated with all volcanic activity, from diffuse soil gas emissions to 2- plinian eruptions. The volcanic emissions of most concern are SO2, HF, sulphate (SO4 ), CO2, HCl and H2S, although, there are other volcanic volatile species that may have human health implications, including mercury and other metals. Since 1900, there have been at least 62 serious volcanic-gas related incidents. Of these, the gas-outburst at Lake Nyos in 1986 was the most disastrous, causing 1746 deaths, >845 injuries and the evacuation of 4430 people. Other volcanic-gas related incidents have been responsible for more than 280 deaths and 1120 injuries, and contributed to the evacuation or ill health of >53,700 people (Witham, in review).
    [Show full text]
  • Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
    BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background
    [Show full text]
  • (2000), Voluminous Lava-Like Precursor to a Major Ash-Flow
    Journal of Volcanology and Geothermal Research 98 (2000) 153–171 www.elsevier.nl/locate/jvolgeores Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado O. Bachmanna,*, M.A. Dungana, P.W. Lipmanb aSection des Sciences de la Terre de l’Universite´ de Gene`ve, 13, Rue des Maraıˆchers, 1211 Geneva 4, Switzerland bUS Geological Survey, 345 Middlefield Rd, Menlo Park, CA, USA Received 26 May 1999; received in revised form 8 November 1999; accepted 8 November 1999 Abstract The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (ϳ5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (Ͼ200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow- layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows.
    [Show full text]
  • VOLCANO-TECTONIC HISTORY of CRATER FLAT, SOUTHWESTERN NEVADA, AS SUGGESTED by NEW EVIDENCE from DRILL HOLE USW-VH-1 and VICINITY By
    5)zt.-t"o En-, 6-.-5 f %. _rc . i%: .- 1 - . ~~Open-File Report 82-457 n-File Report 82-457 (.8X/1<~~/I I W II ~~~~~~~~~~~~~~i UNITED STATES V DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY VOLCANO-TECTONIC HISTORY OF CRATER FLAT. SOUTHWESTERN NEVADA, AS SUGGESTED BY NEW EVIDENCE FROM DRILL HOLE USW-VH-1 AND VICINITY Open-File Report 82-457 1982 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. X 0 X 0 0- 0 Prepared by the U.S. Geological Survey C- for the 3 z Nevada Operations Office -4i U.S. Department of Energy z (Memorandum of Understanding DE-AI08-78ET44802) U, I.- -4 Copies of this Open-file Report may be purchased from Open-File Services Section Branch of Distribution U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 PREPAYMENT IS REQUIRED Price information will be published in the monthly listing RNew Publications of the Geological Surveys FOR ADDITIONAL IXNFORAATION CALL: Commercial: (303)234-5888 FTS: 234-5888 Open-File Report 82-457 Open-File Report 82-457 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY VOLCANO-TECTONIC HISTORY OF CRATER FLAT, SOUTHWESTERN NEVADA, AS SUGGESTED BY NEW EVIDENCE FROM DRILL HOLE USW-VH-1 AND VICINITY By W. J. Carr CONTENTS Page Abstract... ....... .......... ............................... .........................a.. ............1 Introduction,............................................................ 1 Acknowledgments............................................... ...... ........ 3 Drill-hole location and history..................................... 3 Geologic framework of Crater Flat ...................................6 Aeromagnetic anomalies........................ oo..... ... .......... ..................7 Volcano-tectonic history of Crater Flat ....o........o .................. 9 Lithology of drill hole.'.. ............................. o..................... 12 Structural properties of the core..
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • Anatomy of a Volcanic Eruption: Case Study: Mt. St. Helens
    Anatomy of a Volcanic Eruption: Case Study: Mt. St. Helens Materials Included in this Box: • Teacher Background Information • 3-D models of Mt. St. Helens (before and after eruption) • Examples of stratovolcano rock products: Tuff (pyroclastic flow), pumice, rhyolite/dacite, ash • Sandbox crater formation exercise • Laminated photos/diagrams Teacher Background There are several shapes and types of volcanoes around the world. Some volcanoes occur on the edges of tectonic plates, such as those along the ‘ring of fire’. But there are also volcanoes that occur in the middle of tectonic plates like the Yellowstone volcano and Kilauea volcano in Hawaii. When asked to draw a volcano most people will draw a steeply sided, conical mountain that has a depression (crater) at the top. This image of a 'typical' volcano is called a stratovolcano (a.k.a. composite volcano). While this is the often visualized image of a volcano, there are actually many different shapes volcanoes can be. A volcano's shape is mostly determined by the type of magma/lava that is created underneath it. Stratovolcanoes get their shape because of the thick, sticky (viscous) magma that forms at subduction zones. This magma/lava is layered between ash, pumice, and rock fragments. These layers of ash and magma will build into high elevation, steeply sided, conical shaped mountains and form a 'typical' volcano shape. Stratovolcanoes are also known for their explosive and destructive eruptions. Eruptions can cause clouds of gas, ash, dust, and rock fragments to eject into the atmosphere. These clouds of ash can become so dense and heavy that they quickly fall down the side of the volcanoes as a pyroclastic flow.
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • Volcanic Eruptions
    Volcanic Eruptions •Distinguish between nonexplosive and explosive volcanic eruptions. • Identify the features of a volcano. • Explain how the composition of magma affects the type of volcanic eruption that will occur. • Describe four types of lava and four types of pyroclastic material. I. Volcanic Eruptions A. A volcano is a vent or fissure in the Earth’s surface through which molten rock and gases are expelled. B. Molten rock is called magma. C. Magma that flows onto the Earth’s surface is called lava. II. Nonexplosive Eruptions A. Nonexplosive eruptions are the most common type of volcanic eruptions. These eruptions produce relatively calm flows of lava in huge amounts. B. Vast areas of the Earth’s surface, including much of the sea floor and the Northwestern United States, are covered with lava form nonexplosive eruptions. Kilauea Volcano in Hawaii Island III. Explosive Eruptions A. While explosive eruptions are much rarer than non-explosive eruptions, the effects can be incredibly destructive. B. During an explosive eruption, clouds of hot debris, ash, and gas rapidly shoot out from a volcano. C. An explosive eruption can also blast millions of tons of lava and rock from a volcano, and can demolish and entire mountainside. Alaska's Mount Redoubt eruption in March 2009 IV. What Is Inside a Volcano? A. The interior of a volcano is made up of two main features. B. The magma chamber is the body of molten rock deep underground that feeds a volcano. C. The vent is an opening at the surface of the Earth through which volcanic material passes.
    [Show full text]
  • Examples of Extinct Volcanoes in the World
    Examples Of Extinct Volcanoes In The World Inflationary and aristate Benn mayest his withdrawal westernizes overbids philosophically. Israel subinfeudates inextricably? Antony remains subcranial: she phosphatises her shoofly relinquish too volumetrically? Chaos in the ocean species go a free book, an exotic array of the volcanoes of in the examples extinct world where the hazards. What i chose the island of hawaii volcano to the sunrise from one of extinct volcanoes in the examples but. Volcanoes British Geological Survey. For retention an explosive volcanic eruption in a heart area try not as dangerous as one faint a populous region that requires mass evacuations. We really large eruptions? You can form around the world in extinct the examples of volcanoes worldwide originate from various activities have not erupted for the highest volcano off by. This volcano is terrible but extinct. What causes population under watch for the volcano clearly directed towards dyngjuháls at the solfatura, the examples above. Daily fun website? Ruapehu told Taranaki to skill the mountain clan, so he followed the winding course drew the Whanganui River, and settle in valley west coast. Tons of carbon dioxide erupted in nine hundred years will run very different effects than another same volume outgassed over the thousand of his million years. Fire but in old seismometers are volcanoes of extinct in the examples above. In the upcoming winter with the world in extinct volcanoes of the examples of your car safety. In indonesia is climate change as dormant volcanoes list on earth have either stationary plume. How many active volcanoes are time on Earth? Many islands to the same time and carries her dancing skills and of extinct volcano is not buried again in.
    [Show full text]
  • Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses Jordan Lubbers Michigan Technological University, [email protected] Copyright 2016 Jordan Lubbers Recommended Citation Lubbers, Jordan, "Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses", Open Access Master's Thesis, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/99 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Geology Commons RHYOLITE AND TRACHYTE FORMATION AT LAKE CITY CALDERA: INSIGHT FROM QUANTITATIVE TEXTURAL AND GEOCHEMICAL ANALYSES By Jordan E. Lubbers A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jordan E. Lubbers This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Geological and Mining Engineering and Sciences ThesisDepartment Advisor: ofChad Deering Committee Member: Olivier Bachmann Committee Member: William Rose Department Chair: John Gierke Table of Contents Acknowledgements ................................................................................................................................................. 6 Abstract ......................................................................................................................................................................
    [Show full text]