Geologic Map of Delta 30' X 60' Quadrangle

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of Delta 30' X 60' Quadrangle 113 00' 33 R 10 W 3 -Cpm 4 R 9 W p-Cm - R 8 W 45' 35 Qla P Cp Qla Qvb 3 B Qla QTlf Qlm 5 6 R 7 W Qla Qaf1 3 R 5 W 3 Qpm Qed R 6 W 7 30' 8 3 A Qaf1 -Cp Qla Qaf1 Qes Qlm Qlf Qpm R 4 W 9 15' Qlg Qed Qed Qlf Qla Qaf1 Qed Qed Qla Qpm Qed Qed P Qlm QTlf Qlm Qed p-Cc Qaf2 Qaf Qlf Qed Qdf Tdr Qaf1 1 Qed Qed -Cpm p-Cm Qla Qla Qla Qlf Qed Qed p-Cm Tdi Qaf1 Qla Qed Qed p-Cc B Qdf Trk Qaf2 Qlm Qaf1 Qed 85 86 -Cdh -Cp Qed Qaf1 Qaf1 30 Qaf Qlf Qed Qed -Cp Tdr 1 Qed B Qla Qpm Qdf B -Cpm -Cpm P Qlf Qed Qal -Cdh -Cp Qlm Qla 1 p-Cm -Cp Qaf1 Qed Qlf Qal - Qed 2 -Cpm Cdh ? Qdf Qdf Qdg p-Cc -Cdh Qla Qla Qlf/Qal /QTlf Qdg/Qdf Qal2 60 -Cum -Cp 25 3 Qed p-Ci 45 -Cww - Qla Qed Qed Qed Qdf -Cp Cpm -Cpm Qed Qdg Kc Qla Qpm Qed -Cpm 87 -Cdh -Cdh Qaf1 Qed Qdg -Cdh -Cp Qpm -Cww Qla Qdg Qes Qdf B -Cp Qed Qed Qed Qdf Qaf1 - P Cp B Qdg 20 -Cww Qla Qpm Qes p-Cm -Cp -Cww 30 Qaf -Cum Qaf 1 2 -Cp Qla Qed Qal2 -Cdh -Cdh -Cdh Qed Qes p-Cm Qed Qed Qaf1 -Cpm -Cmp Qla P Qed Qal1 -Cww Qms Qla 78-1 -Cp Kc -Cdh Qed Qed Qdf - p-Cm -Cww 86 39 30' Qaf2 -Cmp Cmp -Cww -Cum 80 B Qaf1 Qlm Qed Tdr Qed 64 Tdr Qaf Qlg Qdf Qdf Qdf 60 2 Qal2 Qaf1 Qlg Qed p-Cm Qaf2 Qla P Qal Tdr Qlg Qaf Qla 1 R 3 W 40 Qla 1 Qes Qed 1 825 R 2 W 41 1 850 000 FEET 112 00' T 15 S -Cww QTaf QTas Qdf 39 30' Qlm Qed Qaf -Cdh QTaf Qdf 1 -Cum Qaf1 Qdf 15 Tf Qaf2 Qaf Qaf1 ? QTaf Qac 2 Qaf -Cp QTaf Qlg Tdr 2 Qal p-Cc Qms Qaf1 B Tbsk 1 85 QTaf QTaf Qdf Tf B Qlg Qdf TKn Qaf Qdf Qal Qes Qal2 Qla p-Cc Qaf2 Qms 1 Tf Qaf Tdr Qla Qla 2 Qes Qed QTas 2 Qaf1 -Cdh QTaf Qaf Qed p-Cm - Tf Qlg Qaf2 1 Tbsk -Cp Cww QTaf - 40 TKn QTaf QTaf QTaf Qaf1 Qed -Cpm Tf Qlm Qal2 Qed B 40 B T 15 S Qed 70 B QTaf Tdr p-Cp Qaf 80 Tf 2 p-Cm 21 QTaf Qal1 Qal1 Qac Qaf1 Qed -Cp 33 QTaf Tf Tf Qlm Qla Qed Qac Qaf2 Kc QTaf 4370000mN Tdr Tbsk Qdg/Qdf 40 Tf 437 Qla Qed -Cdh Tf Qaf2 Tld Qaf1 30 -Cww QTaf P QTaf B Qed p-Cc QTaf Qal1 42 Qdf 15 Tdr Tld Tbsk - 70 Qla Qal Cdh 50 Tf QTaf Qaf2 2 75 38 Qdf Qla Qla Tld Qal Qaf Qac QTaf QTaf Tg 2 35 1 -Cum 61 Qlg Qed Qsm Qac p-Cm B Tbsk Qal Qal B -Cp -Cdh 43 Qlg Qlm 2 Qed 2 TKn Qaf Qdf B Tld Tld 72 Tf 1 A' Qla Tbsk Qlg 42 65 70 Qaf2 Qaf1 p-Ci -Cpm -Cp 45 Tf B Qlg Qll Qdg/Qdf QTas QTaf Tld 55 36 Tld Qal2 70 40 QTaf Qaf2 Qla Tld Qed Qed Qlg p-Cp p-Cm QTaf Qaf1 Qed Qaf Qaf2 Tf Tf Qdf P Trk P 2 Qaf1 Qla -Cpm QTaf Qdf Tld Qed Qal 60 35 QTaf QTas 2 Qlg 70 Qdf Qaf1 Qlg Qlm Qlm 9 Qal2 B p-Cb 40 QTaf Qaf2 Qla P QTaf 16 p-Cm TKn B QTas Qes 6 Qla Qal2 Tfc 21 QTaf Qaf1 Tr Tr Qdf Tld Tld Tld Trk P QTaf Qes Tdr 56 33 Qed Qsm Tfc QTaf Qdf QTlf 20 P Tfc Tfc B B Qll Qal1 B 11 Qed Toc Tf 8 Qaf1 Tld Tdr P 11 Qlf p-Cp Tfc QTas Qes Tld Qla Tr -Ct p-Cm Kc Qlg Qlm 40 Tf Qdf Qdf 81 70 Qaf Qdf Tdr QTlf 2 QTaf QTaf Tf 400 5 P Tr Tr Qaf2 p-Cp 55 QTas Qaf1 Qlm Tr 42 -Cpm Kc Kc 56 Qal Tld Qll 8 P Qed -Cpm p-Cm QTas 1 T 16 S Tld 30 70 23 QTaf QTaf 400 000 QTlf Tr Tr Qaf1 Qes p-Cc QTaf Tdr Qlg Tr Qed Qlg QTaf FEET Qlk 74 74 Tr p-Ci Tf B Qla Tr Tr Qal1 Tf Qdf Tdc Qlm Tld 30 P p-Cb 50 Qaf Tld 56 Tr Qaf1 77 52 Tf 1 10 Qdf P Qla Toc Tf QTaf QTas 81-3 B Tdr Qlk Qlm Qal1 Qac p-Cc B Qla Qla Qal2 -Cpm 60 QTaf 30 38 45 p-Cc B Qed B -Ct Kc 6 Tr 3 p-Ci p-Ci Qac Qal1 Tld Qla Tf Qdf Qlg Qlg Toc QTaf B B 70 Qal1 Qaf2 Qla Qla 4 Qal1 Qac Tld 9 Toc B Qlg Qal Qlm Qes 2 30 30 QTaf TKn 25 QTas T 16 S Qaf1 Qaf Qal1 Qal Qaf2 20 p-Cp p-Cc QTas 1 Qdg/Qdf 2 Qed Qla p-Cm 48 45 QTaf Qal2 TKn Qlf Qaf1 Toc Qac Qac Qdf Tld P Qac 75 QTaf Qvb3 Qal2 p-Cm 53 TKn 30 Qal1 QTas QTas Qdf Qed B Qed 30 Qal Qaf1 - QTaf 1 Qdg/Qdf B pCb 4 B Toc -Cpm QTas Qla Qaf1 Qed -Ct p-Ci QTas P Qla p-Cp p-Ci B Qaf 9 Qlm Qal2 Qaf2 2 Qaf Qed Qac -Cop Kc 1 Qaf2 Toc 20 QTaf 20 Qlf Qaf1 B Qlg Qla Qal 65 25 Kc 43 B Qlm 1 p-Cp 30 Kc QTaf QTas 43 6 Qlm Qlf Qed Qed QTas 6 Qla Qaf1 QTaf QTas Qac Qlm Toc Qaf1 Qal B 70 Tf Tld Tld QTlf 2 Qaf2 Kc QTaf QTaf Qed p-Cp Qlm Toc -Cop QTas Qdf Qla QTlf Qal - 65 QTaf Tf Tld Qdg/Qdf 2 Cum Qaf Trk Tld QTlf 2 QTaf 20 QTas - 80 B B P pCp 20 - Kc Qaf p-Cp Cpm B QTaf Qla Qed 1 p-Cp - QTaf Qal1 QTlf Qaf pCp p-Cm Kc p-Cm Qla 1 B Qaf p-Ci Qdf Trk Qal2 Qaf2 2 p-Cp Kc Tf Qal2 P p-Cc QTas Qaf -Ct Op 30 375 1 - 11 QTaf Tf B QTaf Tf QTaf Qed Qed Qlg -Cop p-Cc Cpm p-Ci QTaf Qlg B QTlf Tqb - p-Cm Qal Toc Ct 1 QTas Qlg Qed 15 Dgu QTaf 375 QTlf Qlg p-Cp p-Cc p-Cm 25 -Ct QTaf QTaf Qal1 Qed Tcb p-Ci - Kc Qds Qla QTlf pCi Tf QTlf p-Cp p-Cp Dc B Tqb p-Cc p-Cc Kc Dss B Tf Qed - Tf Qaf1 Qaf2 25 pCm 16 Qlm Qed p-Cm Kc QTaf Tf Qdf Tqb 30 -Ct Dgu QTaf P Qed Kc QTaf QTlf Qal Qed Qes QTaf 2 Tqb Tqb p-Ci B Qla Tqb p-Cc p-Cm 15 Qla Qed Qed 25 Tf QTaf T 17 S Qed Qed Toc 60 30 32 Qal 2 Qes Qed Tqb Tqb Qms p-Cc Qla Qes Tqb Qaf2 Qac Tf Tf Tf 15 Qal p-Cb p-Ci p-Cb Tf Qlm Qla 2 Qed B 20 -Ct -Cop Dss Qac Qed Toc Tcb Tqb -Ct Qaf2 p-Ci 31 22 Qaf1 Tf 20 Tf Qes Tcb 70 p-Cb Tf Qed P Qlg Op p-Cc 30 Tf Qal2 Qes Qla Tqb Qlm Qla Tqb -Cum Qac TKn TKn Qal1 Tf -Ct Qac TKn Qes Toc 45 Qed Tcb 22 25 26 10 Toc Toc Dgu 30 Tf B Qaf2 -Ct p-Cb 20 Tf Qed Qes Qes B Toc Tcb 18 TKn Qac Tf 20 2 TKn TKn T 17 S Toc Tcb - TKn Qaf1 Qed Qed Tcb Cop 9 25 Qed Qed Toc -Cop p-Ci Qed Qal p-Cb Dss Sl Qla 2 Qac Qlf Qed Op p-Cc 15 Qed Qes -Cop Dss Kc 10 Qed Qed Toc 80 p-Ci Qed P Tcb TKn Qed Qed B p-Ci 12 Toc Toc Qed -Cum Dss Qac Qed Sl Qes - Qed Qed Qes p-Ci 35 pCm Qed Qlg Qaf2 60 p-Cb QTlf Toc 35 Qaf QTlf Qed Qed Qed p-Cp Dss Dss 1 TKn Qes Qes 80 Kc Qed -Cop p-Cb 350 Qed Qal2 - Qac Qaf1 Cpm 12 Qac 43 Qed Qed Qed TKn 5 Qlg Toc -Cop Qla Qed Qed Qed 12 Sl 350 Qed Qed -Cop p-Cb Qac Qed P Qlg Dss Qlf p-Ci Qac Sl Qac 12 Qed Toc Dss Qed Toc Qed Qed Qes p-Cc 20 -Cop 30 Sl Qlg 75 Qed p-Ci Qac Sl Qal2 Qed Toc 35 Qla Qal2 Toc Dss Toc 30 Sl Qac Qed Qed Qed Qed Qes Toc 37 Qla Qes QTt -Cop -Cum p-Cc 30 Sl Tf Qal Qed Qed 2 Qed -Ct Qed B Qes Qlf QTt -Cum p-Cp Qaf Qed Sl 1 Qed Qal2 p-Ci QTaf Qla p-Cc Qlf Qed 10 p-Cp Qla 30 p-Cc Sl Ofh Qlf Qed Qed Qed Qal Oe Qal 2 Qed Toc -Ct 30 p-Cc 1 15' Toc Qed Qed P -Cop - Dss Op Tf Qal2 Qal2 Qed 81-1 pCi Qed Qlf Qaf1 Oe Qed Qed Qes -Cum p-Cm p-Cc Qac Qal2 Qal2 Qed 12 Qaf Qes Op 1 Qed Qed Qed -Ct p-Ci p-Cp Qaf T 18 S Qed Toc Op 1 10 Op p-Cb Ofh B p-Cm Qed Qes Qaf p-Cb Oe 7 Qla Qed Qes 2 15 Qla Qed Qed Qed Qed Qed Qed p-Cc QTaf 15' Qal Qed Qes p-Cp p-Cc Sl Op Qed Qal2 2 12 6 Qac Qaf1 Qms p-Cb Qac 3 Qed Qed Qed Toc Qes Toc Oe Oe Qal2 Qlf Qed Qed p-Cp Ofh Op Qal Qed Qed Op Oe TKn 2 Qed Qaf Toc Qaf1 Qed Qed 2 Qaf2 Op Qed Qed Qed Qes Qes Qal2 Qed B Op Qed P Qac Ofh QTaf Qed Qed Qaf1 -Ca T 18 S Qal2 Qed Qes Qed Toc P 12 Op Qed Qed QTln Qes Qlm 30 Oe Qaf1 Qal P Qlm Qed -Ca 60 2 Op 5 325 Qlf Qed Qed -Ca 34 Qal2 Qaf QTlf Qed QTln 2 Toc 30 42 Qms 3 Tf B' Qal1 Qed Qed Qed - Op Qes 325 Qes Toc Cox Op Qac QTaf Qlf Kc Qaf1 Qal Qed Op Toc 8 Qal 2 Qed Qes Qla -Ca Op 2 Qed -Ca Op -Ca Oe 10 Tf Qac Qal2 Qed Qes -Ca 34 -Ca -Ca Qms Ofh Kc TKn Toc 6 Qlm B p-Cp Dss Toc 45 27 Qac 25 Op Toc 20 Qaf1 Qed Qed Qaf1 Oe 20 Qed -Ca -Ca Toc 5 Qlf P Qlf/Qvb3 Sl -Ca Qac Ofh Sl TKn Qlf Qes Ofh Toc 6 Qms 43 Toc Sl 12 43 4 Qal2 TKn 4 Qlk Qed Qvb Qlf Qaf1 Toc Dss TKn 12 Qed Qlm 3 Dss Qed P Toc -Ca Sl Sl p-Cp Toc Oe Qpm/Qlf Qpm Qes Op Sl Qac Qed Qal2 P Qed/Qlf Qed Qva Qpm Ofh Sl Dss TKn B Op 10 Qlm Qed Qed p-Cp Toc Toc Qal2 Qes Op Oe Op Toc Ofh 13 Qla Qed Sl Ofh Sl Qal Toc Dss Oe Oe Qla Qal 2 Sl 10 QTaf Qlf 2 Qpm Qaf1 Toc G Qlf Qaf TKn Qed Ofh Ofh Toc 15 Dss 18 1 - Qed Qed Toc 20 Op Cpm Qed Qvb Qlf Sl Ofh Oe Sl 15 Qed Qes 3 Qvb 25 Qaf1 QTlf Qed 3 Ofh Sl Op -Ca Ofh 12 Qed Qpm Qlg Qed Qed -Cox Oe Sl Qal Qed Qvb Toc 1 Qed 3 B Ofh 50 QTaf Qal2 Qal2 Qlf -Cht Kc Qed 25 Qed Qed Qaf1 Toc - QTaf Qed Qlf Qlm Toc Ca -Ca Sl QTaf Qed Qlf P Op Qed Qes Qes -Cox TKn Qac Qla Qed Qed Qpm Qvb Toc Sl Qal2 Qlf 3 Qes Qed Toc -Ccb QTaf T 19 S Qlg Dss QTaf 10 9 G Qva Qlf Qed G Toc -Cht Qlg Qed Qpm Qes Qlg -Ca Ofh Tf Tf Qal2 Qal2 Qla QTaf Oe Sl 11 300 Qpm Qes Qed Qaf1 18 Qaf1 -Cox 5 QTaf Qva Qes B Sl Qac Qal2 Qvb Qlm Sl Sl G 3 Qes 300 Qlf -Ccb 20 Qms Qac Qes Qls Qes Qaf2 QTaf -Ccb Op 25 Sl Qaf1 Qed Qpm Oe TKn Tf G Qaf1 Qsm P TKn Qed Qal2 Qla Qlg 20 -Ca Ofh Sl T 19 S Qes Qes Qac Qac 95-2 Qal1 Qaf1 Qes -Cox Oe Sl 81-5 Tf Qlf Qaf -Cht Qlf Qlf 1 P Sl Tf Qes Ofh 13 10 Qvb3 Qvt Qaf B Qes 1 Toc Toc -Cox -Ca Qaf1 Qdg Qaf1 Qes Qes - -Cox Ofh Qac B Ccb Qlg Qlf Qlg -Cht QTaf Qvt - Sl Qlf -Cpm Qed 30 Ca Op Qac TKn Tf Qaf Qed Qpm Qlg QTaf 10 Tf 1 Qvt Qed 15 Oe Qac 81-7 Qaf1 Qlf 15 Qlf G B QTaf 12 Qed/Qva Qes Qac Op Qlg Qlf 10 -Cop -Cox P -Cpm Qaf1 Qls Toc -Ccb -Ca G -Cpm Qes P G Qlg Qla Qpm/Qlf Qed QTaf QTlf Qes Qes Toc 14 40 Tf Qlg Qlf Qlg Tf -Cpm Qaf1 -Ct Qlg QTlf Qes Qlf -Cht Tf QTlf Qlf/Qdg Qes Qes - QTlf Qal2 Qdg Qlm Qes Ca 43 Qlf Tf Qlf -Cop 43 3 Qlf QTlf QTlf Qed Qvb Toc -Ct 24 3 Tf P 3 - Qvb Qlf B Cop Qal 3 22 1 -Cpm Qed/Qva P Qlf Qaf1 47 Qed Qal1 6 -Ct Qla Qlm Qed Toc Qlm Qlf Qed/Qva 25 Qes Tf Qes Qes Qaf1 -Ct Qac -Cpm Qlm Qlm Qes - -Cox -Cox G B Qlf - Ccb Tf Tf Qlk -Cpm Qlf/Qvb3 Qlg 12 Cop Tf QTlf P Toc TKn Qal1 Qaf2 Qlf/Qdg Qvb Qaf2 QTaf Toc Qac Qed Qlf QTlf P P 3 Qlf TKn Qaf1 QTlf 8 QTaf Qlf P Qlm Qed -Ct Qac 12 Qaf1 -Cpm -Cpm Qes Toc 25 4 Qlm Qpm/Qlf 7 Qlm 7 Qaf -Cpm Qvb 12 2 B 3 -Cht TKn Tf 275 Qaf Qla Tf 1 -Cpm -Cpm Qpm/Qlf 14 Qlm Qlf/Qdg Qlf/Qdg Qed/Qlf -Ct TKn B Qlf Qlf -Cop Qaf1 -Cpm Qlg B -Cp 7 Qed/Qlf Tf 275 QTlf P Tf Tf Qlf -Cht Kc D B -Cpm Qlm Qlf P Toc Kc Tf -Cpm Qac Qla Qlm -Cp -Cp Qvb3 C Qes -Ct Qaf1 - 9 P Qed/Qlf 16 T 20 S Qls Cpm Qaf2 Qlg Qal1 Tf -Cpm -Cpm Qaf Qal2 Toc Qlg Toc Qaf2 Tf 1 Qlf Qaf2 -Ct 15 Qla Qaf B Qed/Qlf/Qvb Qvc Qvb3 Qed Tf Qdm G Qlm 4 1 -Cpm Qll 3 Qlf Qac QTlf Tf B Qlf Qaf1 Tf Qal1 -Cop 5 -Cp P Toc Qaf1 Qla Qls B 5 Qlg Tf Qlf/Qvb P Qvb Tf -Cpm Qlf 3 3 Qlg Qaf1 76-1 B Qvb Qvb -Cdh -Cp 3 3 Qlg - Qal1 16 Qaf Tf 7 Qvb3 Cht Qlm P 2 Tf QTaf 15 Qgt -Cp 17 -Cpm Toc -Ca TKn Qlg Qaf2 P Qac Qaf1 4 -Ct Tf Qdg Qes Qvb Pc Toc -Cpm Tf - -Cpm P 3 96-1 Cp Qdg Qvb3
Recommended publications
  • Classification of Volcanic Ash Particles Using a Convolutional Neural
    Classification of volcanic ash particles using a convolutional neural network and probability Daigo Shoji1∗, Rina Noguchi2, Shizuka Otsuki3, Hideitsu Hino4 1. Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 2. Volcanic Fluid Research Center, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 3.Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 4.The Institute of Statistical Mathematics,10-3 Midori-cho, Tachikawa, Tokyo ∗ Corresponding author: [email protected] arXiv:1805.12353v1 [physics.geo-ph] 31 May 2018 1 Abstract Analyses of volcanic ash are typically performed either by qualitatively classifying ash particles by eye or by quantitatively parameterizing its shape and texture. While complex shapes can be classified through qualitative analyses, the results are subjective due to the difficulty of categorizing complex shapes into a single class. Although quantitative analyses are objective, selection of shape parame- ters is required. Here, we applied a convolutional neural network (CNN) for the classification of volcanic ash. First, we defined four basal particle shapes (blocky, vesicular, elongated, rounded) generated by different eruption mechanisms (e.g., brittle fragmentation), and then trained the CNN using particles composed of only one basal shape. The CNN could recognize the basal shapes with over 90% accuracy. Using the trained network, we classified ash particles composed of mul- tiple basal shapes based on the output of the network, which can be interpreted as a mixing ratio of the four basal shapes. Clustering of samples by the averaged probabilities and the intensity is consistent with the eruption type.
    [Show full text]
  • And Glaciovolcanic Basaltic Tuffs: Modes of Alteration and Relevance for Mars
    Icarus 309 (2018) 241–259 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Spectroscopic examinations of hydro- and glaciovolcanic basaltic tuffs: Modes of alteration and relevance for Mars ∗ W.H. Farrand a, , S.P. Wright b, T.D. Glotch c, C. Schröder d, E.C. Sklute e, M.D. Dyar e a Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA b Planetary Science Institute, 1700 East Ft. Lowell, Suite 106, Tucson, AZ 85719, USA c Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences Building, Stony Brook, NY 11794, USA d Department of Biological and Environmental Sciences, University of Stirling, FK9 4LA Scotland, UK e Department of Astronomy, Mount Holyoke College, 206 Kendade, South Hadley, MA 01075, USA a r t i c l e i n f o a b s t r a c t Article history: Hydro- and glaciovolcanism are processes that have taken place on both Earth and Mars. The amount Received 14 July 2017 of materials produced by these processes that are present in the martian surface layer is unknown, but Revised 22 December 2017 may be substantial. We have used Mars rover analogue analysis techniques to examine altered tuff sam- Accepted 8 March 2018 ples collected from multiple hydrovolcanic features, tuff rings and tuff cones, in the American west and Available online 10 March 2018 from glaciovolcanic hyaloclastite ridges in Washington state and in Iceland. Analysis methods include Keywords: VNIR-SWIR reflectance, MWIR thermal emissivity, thin section petrography, XRD, XRF, and Mössbauer Mars, surface spectroscopy.
    [Show full text]
  • Volcano-Air-Sea Interactions in a Coastal Tuff Ring, Jeju Island, Korea
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Accepted Manuscript Geological Society, London, Special Publications Volcano-air-sea interactions in a coastal tuff ring, Jeju Island, Korea Young Kwan Sohn, Chanwoo Sohn, Woo Seok Yoon, Jong Ok Jeong, Seok- Hoon Yoon & Hyeongseong Cho DOI: https://doi.org/10.1144/SP520-2021-52 To access the most recent version of this article, please click the DOI URL in the line above. When citing this article please include the above DOI. Received 15 March 2021 Revised 23 May 2021 Accepted 31 May 2021 © 2021 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Manuscript version: Accepted Manuscript This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the book series pertain. Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record once published for full citation and copyright details, as permissions may be required.
    [Show full text]
  • Pluvial Lakes in the Great Basin of the Western United States-A View From
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262806093 Pluvial lakes in the Great Basin of the western United States—a view from the outcrop Article in Quaternary Science Reviews · August 2014 DOI: 10.1016/j.quascirev.2014.04.012 CITATIONS READS 28 172 4 authors, including: Marith C. Reheis United States Geological Survey 119 PUBLICATIONS 3,485 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: fun in retirement! View project Tephrochronology Project View project All content following this page was uploaded by Marith C. Reheis on 26 April 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Quaternary Science Reviews 97 (2014) 33e57 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Pluvial lakes in the Great Basin of the western United Statesda view from the outcrop Marith C. Reheis a,*, Kenneth D. Adams b, Charles G. Oviatt c, Steven N. Bacon b a U.S. Geological Survey, MS-980, Federal Center Box 25046, Denver, CO 80225, USA b Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA c Department of Geology, Kansas State University, 108 Thompson Hall, Manhattan, KS 66506, USA article info abstract Article history: Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and Received 1 March 2013 drainage-basin change at multiple time scales extending back to the Miocene.
    [Show full text]
  • Pleistocene Volcanism and Shifting Shorelines at Lake Tahoe, California GEOSPHERE, V
    Research Paper GEOSPHERE Pleistocene volcanism and shifting shorelines at Lake Tahoe, California GEOSPHERE, v. 14, no. 2 Winifred Kortemeier1, Andrew Calvert2, James G. Moore2, and Richard Schweickert3 1Western Nevada College, 2201 West College Parkway, Carson City, Nevada 89703, USA doi:10.1130/GES01551.1 2U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, USA 3Department of Geological Sciences and Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, USA 16 figures; 1 table; 1 supplemental file CORRESPONDENCE: [email protected] CITATION: Kortemeier, W., Calvert, A., Moore, J.G., ABSTRACT 1. INTRODUCTION and Schweickert, R., 2018, Pleistocene volcanism and shifting shorelines at Lake Tahoe, California: Geosphere, v. 14, no. 2, p. 812–834, doi:10.1130/ In the northwestern Lake Tahoe Basin, Pleistocene basaltic and trachy­ Basaltic and trachyandesitic lavas form a small Pleistocene volcanic field GES01551.1. andesitic lavas form a small volcanic field comprising ~1 km3 of lava that of ~1 km3 in the northwestern Lake Tahoe Basin (Fig. 1). Lavas and pyroclastic erupted from seven vents. Most of these lavas erupted subaerially and material erupted from approximately seven vents on both sides of the Truckee Science Editor: Raymond M. Russo produced lava flows. However, where they flowed into an early Lake Tahoe River, the lake outlet. In this study, a succession of basalt and trachyandesitic Associate Editor: Graham D.M. Andrews ( Proto­Tahoe), they produced deltas consisting of hydrovolcanic breccias as lavas was mapped, sampled, analyzed, and radiometrically dated to charac- Received 26 April 2017 well as pillow lavas draped downslope, pillow breccias, hyaloclastites, and terize the nature of the volcanism.
    [Show full text]
  • Ice Springs Volcanic Field
    Young Volcanism in Millard County: Ice Springs Volcanic Field Shelley Judge1, Meagen Pollock1, Michael Williams1, Krysden Schantz2, Kelli Baxstrom3, Kyle Burden4, Cam Matesich5, Emily Randall1, Samuel Patzkowsky6, Whitney Sims1, William Cary1, Matt Peppers7, Addison Thompson8, Thomas Wilch9 1The College of Wooster, Department of Earth Sciences, 944 College Mall, Wooster, Ohio 44691; [email protected] 2Cape Fear Public Utility Authority, 235 Government Center Dr., Wilmington, North Carolina 28403 3USGS Landslide Hazards, 1711 Illinois St., Golden, Colorado 80401 4North Carolina Department of Transportation, 300 Division Dr., Wilmington, North Carolina 28401 5Bethlehem-Center High School, 179 Crawford Road, Fredericktown, Pennsylvania 15333 6Franklin and Marshall College, Department of Earth and Environment, P.O. Box 3003, Lancaster, Pennsylvania 17604 7Chesapeake Energy, 6100 N Western Ave., Oklahoma City, Oklahoma 73118 8Pomona College, Department of Geology, 1050 N. Mills Ave., Claremont, California 91711 9Albion College, Department of Geology, 611 E. Porter St., Albion, Michigan 49224 Utah Geosites 2019 Utah Geological Association Publication 48 M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors COVER IMAGE: Aerial photo of Pocket, Crescent, Miter and Terrace craters. View to the east (from Google Earth). M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors 2019 Utah Geological Association Publication 48 Presidents Message I have had the pleasure of working with many different geologists from all around the world. As I have traveled around Utah for work and pleasure, many times I have observed vehicles parked alongside the road with many people climbing around an outcrop or walking up a trail in a canyon. Whether these people are from Utah or from another state or country, they all are quick to mention to me how wonderful our geology is here in Utah.
    [Show full text]
  • Pahvant Valley Heritage Trail J J BLM Fillmore Field Office 95 E
    I This map is geo-referenced Pahvant Valley Heritage Trail J J BLM Fillmore Field Office 95 E. 500 N. Fillmore, UT 435-7843-3100 .':i'h~~:fll', .~ • BLM Field Office Mileage Between Points RIDE OM " EStGN ATED A'fl UTf:S Scenic Geology Area of Critical Environmental Concern . :;/.<'.l.o';;~~-t,~ State Wildlife Reserve/Manage ent Area P.etroglyr:,h Site Forest Service - I f /----------r-',;-- /"1' / ,/ '; ~, ;,/_ _ // / )) / /?:; - 11 l'f- !.\ ~l/ / ,-~.--/".~/ l .. I - ,r__ .,J • ,I" ""'\ k ,: ?~-----=,- 1, ~ " v "-- --""'-- ,- :J Fort Deserel serves as a landmark ,··=w·""·-· of Mormon pioneer history and is ,,,,. / the only remaining example of the I l (./ ) ~maoy adobe forts b"III~ T--:. r-, j'·--, / J <~~"" ' ,. ~/ ·~7-~ .f ", I ( __<J f o~>f' I / .J 1,.i'IJ' I f ,f-- ··"\ C_,J I ~-""> "" I i ~.f ,-~..J / -\. r ) 5-- ,' ,.- --~ _y ~ 1~ /y ..r- , _,, _Lt:;l"';~~ated along the roadside just before the ( -,c·f"'' - parking area 1s the Great Stone Face 5.6 "'*,-r //>,__ _ Petroglyphs site. The meaning of these .I <'~--,.,._ writings 1s unknown , but some authorities 1' think these symbols were an agreement ·~1· ... ' 1·--·----- /·r--· dividing water and hunting rights among '1 the Indians of the lower Sevier River area Grea~k;ton~ \, / "-,1 ------ Face' '\ // I - -)/ ., / i ' This natural geologic fe~ture i~-:aid / I to look like images of Mormon I prophet Joseph Smith. A steep, ;----------1 rocky trail takes you closer to this natural formation also known as the "Guardian of Deseret". After the volcanic eruption that formed Pahvant Butte. Lake Bonneville carved a shelf around most of the butte except for the north face where intense storm waves cut a vertical cliff into the cone.
    [Show full text]
  • Pyroclastic Passage Zones in Glaciovolcanic Sequences
    ARTICLE Received 4 Oct 2012 | Accepted 29 Mar 2013 | Published 30 Apr 2013 DOI: 10.1038/ncomms2829 Pyroclastic passage zones in glaciovolcanic sequences James K. Russell1, Benjamin R. Edwards2 & Lucy A. Porritt1,3 Volcanoes are increasingly recognized as agents and recorders of global climate variability, although deciphering the linkages between planetary climate and volcanism is still in its infancy. The growth and emergence of subaqueous volcanoes produce passage zones, which are stratigraphic surfaces marking major transitions in depositional environments. In glacio- volcanic settings, they record the elevations of syn-eruptive englacial lakes. Thus, they allow for forensic recovery of minimum ice thicknesses. Here we present the first description of a passage zone preserved entirely within pyroclastic deposits, marking the growth of a tephra cone above the englacial lake level. Our discovery requires extension of the passage-zone concept to accommodate explosive volcanism and guides future studies of hundreds of glaciovolcanic edifices on Earth and Mars. Our recognition of pyroclastic passage zones increases the potential for recovering transient paleolake levels, improving estimates of paleo- ice thicknesses and providing new constraints on paleoclimate models that consider the extents and timing of planetary glaciations. 1 Volcanology and Petrology Laboratory, Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4. 2 Department of Earth Sciences, Dickinson College, Carlisle, Pennsylvania 17013, USA. 3 School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. Correspondence and requests for materials should be addressed to J.K.R. (email: [email protected]). NATURE COMMUNICATIONS | 4:1788 | DOI: 10.1038/ncomms2829 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited.
    [Show full text]
  • Subaqueous Eruption-Fed Density Currents and Their Deposits
    Precambrian Research 101 (2000) 87–109 www.elsevier.com/locate/precamres Subaqueous eruption-fed density currents and their deposits James D.L. White Geology Department, Uni6ersity of Otago, PO Box 56, Dunedin, New Zealand Abstract Density currents fed directly from subaqueous eruptions can be divided conceptually into three groups based on modes of fragmentation and transport: (I) explosive fragmentation, with deposition from a gas-supported current; (II) explosive fragmentation, with deposition from a water-supported current; (III) fragmentation of flowing lava, with deposition from a water-supported current (Fig. 1). Group I products include subaqueously emplaced welded ignimbrite and other high-temperature emplaced subaqueous pyroclastic flow deposits. Group II products are the most varied, and include representatives of both high- and low-concentration turbidity currents, grainflows and debris flows, and are termed eruption-fed aqueous density currents. Some clasts in such currents are transported and even deposited at high temperature, but the transporting currents, ranging from grain flows to dilute turbidity currents, are water dominated even though steam may be developed along large clasts’ margins. Group III products formed from lava flow-fed density currents tend to be weakly dispersed down-gradient along the seafloor, and generally consist largely of fragments formed by dynamo-thermal quenching and spalling. Bursting of bubbles formed by vapor expansion probably contributes to some Group III beds. Distinctive column-margin fall deposits may form in water-excluded zones that developed very locally around vents in association with Group I and II deposits, and are distinguished by heat retention structures, indicators of gas-phase transport and absence of current-formed deposi- tional features.
    [Show full text]
  • Classification of Volcanic Ash Particles Using a Convolutional Neural
    www.nature.com/scientificreports OPEN Classifcation of volcanic ash particles using a convolutional neural network and probability Received: 12 January 2018 Daigo Shoji1, Rina Noguchi2,5, Shizuka Otsuki3 & Hideitsu Hino4 Accepted: 8 May 2018 Analyses of volcanic ash are typically performed either by qualitatively classifying ash particles by eye or Published: xx xx xxxx by quantitatively parameterizing its shape and texture. While complex shapes can be classifed through qualitative analyses, the results are subjective due to the difculty of categorizing complex shapes into a single class. Although quantitative analyses are objective, selection of shape parameters is required. Here, we applied a convolutional neural network (CNN) for the classifcation of volcanic ash. First, we defned four basal particle shapes (blocky, vesicular, elongated, rounded) generated by diferent eruption mechanisms (e.g., brittle fragmentation), and then trained the CNN using particles composed of only one basal shape. The CNN could recognize the basal shapes with over 90% accuracy. Using the trained network, we classifed ash particles composed of multiple basal shapes based on the output of the network, which can be interpreted as a mixing ratio of the four basal shapes. Clustering of samples by the averaged probabilities and the intensity is consistent with the eruption type. The mixing ratio output by the CNN can be used to quantitatively classify complex shapes in nature without categorizing forcibly and without the need for shape parameters, which may lead to a new taxonomy. Te shape of volcanic ash particles depends on the eruption type. Terefore, by analyzing ash shape, we can better understand the physical mechanism of volcanic eruptions, which can help to mitigate volcanic hazards.
    [Show full text]
  • Phreatomagmatic Vs Magmatic Eruptive Styles in Maar- Diatremes -A Case Study at Twin Peaks, Hopi Buttes Volcanic Field, Navajo N
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338676556 Phreatomagmatic vs magmatic eruptive styles in maar- diatremes -a case study at Twin Peaks, Hopi Buttes volcanic field, Navajo Nation, Arizona Article in Bulletin of Volcanology · January 2020 DOI: 10.1007/s00445-020-1365-y CITATIONS READS 0 58 2 authors: Benjamin Latutrie Pierre-Simon Ross Institut National de la Recherche Scientifique Institut National de la Recherche Scientifique 13 PUBLICATIONS 12 CITATIONS 77 PUBLICATIONS 1,547 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Volcanism in the Hopi Buttes volcanic field View project Uppermost Albian quantitative biochronology: a prerequisite for understanding couplings between major palaeocological and environmental changes View project All content following this page was uploaded by Benjamin Latutrie on 18 January 2020. The user has requested enhancement of the downloaded file. The following document is a pre-print version of: Latutrie B, Ross P-S (2020) Phreatomagmatic vs magmatic eruptive styles in maar-diatremes – a case study at Twin Peaks, Hopi Buttes volcanic field, Navajo Nation, Arizona. Bull Volcanol Phreatomagmatic vs magmatic eruptive styles in maar- diatremes – a case study at Twin Peaks, Hopi Buttes volcanic field, Navajo Nation, Arizona Benjamin Latutrie*, Pierre-Simon Ross Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490 rue de la Couronne, Québec (QC), G1K 9A9, Canada * Corresponding author E-mail addresses: [email protected] (B. Latutrie), [email protected] (P.-S. Ross) Keywords: maar-diatreme, phreatomagmatic, magmatic, fragmentation, lava lakes Abstract The Hopi Buttes volcanic field (HBVF) is located on the Colorado Plateau, northern Arizona.
    [Show full text]
  • Where Dry Rivers Meet: a Palimpsest of the Pahvant
    WHERE DRY RIVERS MEET: A PALIMPSEST OF THE PAHVANT VALLEY, BLACK ROCK AND SEVIER DESERTS by Dylan J. Mace A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science in Environmental Humanities Department of English The University of Utah August 2012 Copyright © Dylan J. Mace 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of Dylan J. Mace has been approved by the following supervisory committee members: R. Stephen Tatum , Chair 23 May, 2012 Date Approved Terry T. Williams , Member 23 May, 2012 Date Approved Marnie Powers-Torrey , Member 23 May, 2012 Date Approved and by R. Stephen Tatum , Chair of the Department of English and by Charles A. Wight, Dean of The Graduate School. ABSTRACT The lands of the Great Basin are often considered to be bleak, empty places Without history or stories. When I Was fifteen, my grandfather led me on a short journey around the center of the Pahvant Valley, a relatively small portion of the Great Basin. Using this trip as a frame, I illustrate the complexity of the place, exploring the biologic, geologic, as Well as human history of the area. Simultaneously, I Work to show the importance of memory in the creation of attachment and appreciation of people to a specific place. TABLE OF CONTENTS $%675$&7««««««««««««««««««««««««««««««««««««««««iii 35()$&(««««««««««««««««««««««««««««««««««««««««««v WHERE DRY RIVERS MEET: A PALIMPSEST OF THE PAHVANT 9$//(<%/$&.52&.$1'6(9,(5'(6(576«««««««««««««««««« 5()(5(1&(6««««««««««««««««««««««««««««««««««««««107 PREFACE The seeds for this Writing Were planted very early in my life, probably before I can remember, during my first experiences in the Pahvant Valley and With my grandparents.
    [Show full text]