LEARNING ECOLOGY: ETHNOBOTANY in the SIERRA TARAHUMARA, MEXICO by FELICE SEA WYNDHAM (Under the Direction of Brent Berlin) ABSTR

Total Page:16

File Type:pdf, Size:1020Kb

LEARNING ECOLOGY: ETHNOBOTANY in the SIERRA TARAHUMARA, MEXICO by FELICE SEA WYNDHAM (Under the Direction of Brent Berlin) ABSTR LEARNING ECOLOGY: ETHNOBOTANY IN THE SIERRA TARAHUMARA, MEXICO by FELICE SEA WYNDHAM (Under the Direction of Brent Berlin) ABSTRACT This dissertation investigates social-environmental factors contributing to differential ethnobotanical expertise among children in Rarámuri (Tarahumara) communities in Rejogochi, Chihuahua, Mexico. This research contributes to understanding processes of transmission and acquisition of environmental knowledge and to the development of an ecological, interactionist model of indigenous education. The first section describes an ethnography of Rarámuri childhood, focusing on children’s life stages, work, play, and family environments. Some aspects of Rarámuri epistemologies of learning are explored. Among these is the importance of relationship maintenance through ritual and thinking/behaving well. Structured interviews with Rarámuri children between the ages of 5 and 18 showed consensus as to the primary importance of mothers, fathers, aunts and uncles as teachers of plant knowledge. Secondarily, siblings, cousins and playmates were identified as teachers. The second section presents a quantitative study of children’s knowledge of a set of 40 culturally significant local plants in three use-categories: medicinal, edible, and other material utility. The social-environmental factors significant in predicting levels of plant knowledge among children were, most notably, which primary school (of two local choices) children attended and, to a lesser extent, age of the child completing the interview. Plant-name and plant-use interviews suggest that many children today are not acquiring their parents’ full repertoire of plant knowledge, but rather, exhibit knowledge of a restricted set of plants that are most salient culturally and ecologically. The discussion of results highlights the importance of understanding how knowledge distribution patterns correspond to social relationships, social roles, and individual and family interest and experience. From the ethnographic and interview data presented in this dissertation, a Rarámuri model is suggested in which the richest and most extensive plant knowledge is held and practiced by select families, based on their interest and abilities. Children raised in these families are more likely to learn and practice this knowledge, regardless of other social-environmental factors such as schooling and bilingual ability. Implications for educational and conservation applications are discussed. The research described in this dissertation was completed in Rejogochi and surrounding areas over an 18-month period, from July 2001 to December 2002. INDEX WORDS: Rarámuri, Tarahumara, ethnobotany, ethnoecology, cultural transmission, human ecosystems, human ecology, informal education, indigenous education, Sierra Tarahumara, Northern Mexico. LEARNING ECOLOGY: ETHNOBOTANY IN THE SIERRA TARAHUMARA, MEXICO by FELICE SEA WYNDHAM Bachelor of Arts, Brown University, 1993 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2004 © 2004 Felice Sea Wyndham All Rights Reserved LEARNING ECOLOGY: ETHNOBOTANY IN THE SIERRA TARAHUMARA, MEXICO by FELICE SEA WYNDHAM Major Professor: Brent Berlin Committee: Elois Ann Berlin Benjamin G. Blount William L. Merrill Judith Preissle Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia August 2004 Dedication For my mother, Edith Wyndham and for my father, Charles Wyndham, for introducing me to the Sierra. iv Acknowledgements I am deeply grateful to my committee chair, Brent Berlin, and committee members, Elois Ann Berlin, Ben Blount, Bill Merrill and Jude Preissle, for their help and guidance while completing this work. Charles Peters gave me excellent and provocative advice throughout the process, for which I thank him. In Mexico, first I thank the community of Basíhuare and the residents of Rejogochi for their interest in this project, their guidance and instruction, their companionship and their friendship. I am particularly indebted to Moreno Sitánachi and Margarita León, Martha Sitánachi, María Elena Lirio and Martín Sanchez, Salomena Ramírez and Efigenia Ramírez, Azucena Zafiro, Roberto Morales González and Julián Morales González, Stanislaus Rascón, Marianita Morales González and Juan Rico León, Martín Chavez and his family, and many, many more. I will always be indebted to the many children of Rejogochi who befriended me, taught me, and allowed me access to their worlds. Felipe Ramírez, Elena Rich, Myriam Constantino and all the teachers at Rejogochi helped me throughout my stay in the Sierra, for which I am grateful. I thank Francisco Cardenal for his friendship, inspiration, advice, information and gourmet meals, and David Ribas for his friendship and support. Thanks also to Ubaldo Gardea and his lovely family, and all the teachers and students at the secundaria Basíhuare for their patience and good humor. Father Luis Verplancken, S.J., and his wonderful office staff in Creel helped me in many ways v on many occasions, for which I am indebted. Sandy Brown’s friendship, companionship on many hairy adventures, and unwavering positive enthusiasm made my stay in the Sierra so much more exciting. Bill Merrill and Janneli Miller shared their own field (and post-field) experiences with me in important ways. At the Instituto Politécnico Nacional of Durango, Mexico thanks to Dra. Socorro González Elizondo for identifying and curating my plant collections, and to Dra. Celia López González for her enthusiasm and help. My sister, Kristine Wyndham, was a constant support while I was writing, as was Stephanie Paladino; Winn Mallard helped launch me into the field keeping my priorities straight. Thanks also to Monika Wyndham and Alex Wyndham. I will always appreciate Charlotte Blume’s upbeat outlook on life and am grateful for the many ways that she enhanced my graduate school experience. I thank Isidor Ruderfer, Jim Boster, Michael Fischer, Jaxk Reeves and the Statistics Consulting Center at UGA for their help and technical advice. The Human Ecosystems Kuchka was a source of inspiration, feedback and critical thinking during the dissertation process. The field research described in this dissertation was funded by an American Education Research Association/Spencer Foundation Pre- dissertation Fellowship (2000-2001), and a dissertation improvement grant from the National Science Foundation (2001-2002). Pre- dissertation field work was funded by a Tinker Foundation/ University of Georgia Center for Latin American and Caribbean Studies travel grant to the Sierra Tarahumara in 1999. The write-up phase of this vi dissertation was supported by a University of Georgia Dissertation Writing Fellow grant (2003-2004). The mistakes and shortfalls are all mine. Matéteraba! vii Table of Contents Page Acknowledgements..................................................... v Chapter 1 Introduction ................................................. 1 Traditional knowledge in global contexts ................... 5 Some personal reasons for the research ..................... 8 Overview .................................................. 10 Notes on language and orthography ......................... 12 Benefits to the community ................................. 13 2 Rarámuri Sociocultural and Biophysical Environments ......... 15 Brief history of the region ............................... 18 Population ................................................ 20 Social and cultural overview .............................. 22 Biophysical landscapes and ethnoecology ................... 43 3 Growing up Rarámuri ......................................... 49 Ethnographic methodology and techniques ................... 50 Rarámuri life stages ...................................... 53 Interpersonal and emotional life within the family ........ 75 Daily life for Rarámuri children .......................... 78 4 Rarámuri Learning Ecology: Guided Reinvention of Culture ... 94 Socialization ............................................. 96 Schooling ................................................. 98 Children and tesgüino networks ........................... 100 viii Rarámuri concepts of learning: “thinking well” and “binéreri” ........................................... 101 In the family: learning and teaching about plants ........ 106 Reported learning and teaching networks .................. 110 5 Intracultural Variation of Plant Knowledge ................. 115 Objectives ............................................... 116 Methods and techniques ................................... 118 Analysis ................................................. 133 Results .................................................. 136 Discussion ............................................... 147 Conclusions .............................................. 161 6 Conclusions and Beginnings ................................. 163 Interactionist perspectives on learning and teaching in cultural context ..................................... 164 Learning, cultural transmission and ecosystem transformation ....................................... 168 Toward a model of Rarámuri education: knowing plants vs. plant knowledge ...................................... 170 References Cited................................................... 176 Appendix A Plant Species and Rarámuri Names Collected, Listed Alphabetically by Family ................................... 190 B Instruments
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • State of Colorado 2016 Wetland Plant List
    5/12/16 State of Colorado 2016 Wetland Plant List Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X http://wetland-plants.usace.army.mil/ Aquilegia caerulea James (Colorado Blue Columbine) Photo: William Gray List Counts: Wetland AW GP WMVC Total UPL 83 120 101 304 FACU 440 393 430 1263 FAC 333 292 355 980 FACW 342 329 333 1004 OBL 279 285 285 849 Rating 1477 1419 1504 1511 User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps Region. 3) Some state boundaries lie within two or more Corps Regions. If a species occurs in one region but not the other, its rating will be shown in one column and the other column will be BLANK. Approved for public release; distribution is unlimited. 1/22 5/12/16 Scientific Name Authorship AW GP WMVC Common Name Abies bifolia A. Murr. FACU FACU Rocky Mountain Alpine Fir Abutilon theophrasti Medik. UPL UPL FACU Velvetleaf Acalypha rhomboidea Raf. FACU FACU Common Three-Seed-Mercury Acer glabrum Torr. FAC FAC FACU Rocky Mountain Maple Acer grandidentatum Nutt. FACU FAC FACU Canyon Maple Acer negundo L. FACW FAC FAC Ash-Leaf Maple Acer platanoides L. UPL UPL FACU Norw ay Maple Acer saccharinum L. FAC FAC FAC Silver Maple Achillea millefolium L. FACU FACU FACU Common Yarrow Achillea ptarmica L.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Chiricahua National Monument
    In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument Open-File Report 2008-1023 U.S. Department of the Interior U.S. Geological Survey National Park Service This page left intentionally blank. In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument By Brian F. Powell, Cecilia A. Schmidt, William L. Halvorson, and Pamela Anning Open-File Report 2008-1023 U.S. Geological Survey Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B.F., Schmidt, C.A., Halvorson, W.L., and Anning, Pamela, 2008, Vascular plant and vertebrate inventory of Chiricahua National Monument: U.S. Geological Survey Open-File Report 2008-1023, 104 p. [http://pubs.usgs.gov/of/2008/1023/]. Cover photo: Chiricahua National Monument. Photograph by National Park Service. Note: This report supersedes Schmidt et al. (2005). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • <I>Milla Biflora</I>
    Plant Ecology and Evolution 150 (1): 76–86, 2017 https://doi.org/10.5091/plecevo.2017.1276 REGULAR PAPER Morphometric analysis of Milla biflora (Asparagaceae: Brodieaoideae), with an identification key for Milla Jorge Gutiérrez1, Teresa Terrazas2,* & Isolda Luna-Vega3 1Herbario JES, Área de Biología, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo. Texcoco, 56230, Estado de México, Mexico 2Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico 3Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico *Author for correspondence: [email protected] Background and aims – The taxonomical delimitation of Milla biflora has been controversial and is possibly associated with the high morphological variation of this taxon. The aims of this study were to find morphological characters that allow to distinguish groups among M. biflora and to analyse the morphological variation, with the purpose of generating an identification key. Methods – A multivariate analysis was based 24 quantitative characters of nine species of the genus Milla. Nine morphometric characters that had the highest loadings in the multivariate analysis plus 18 qualitative characters were used to run a cluster analysis. Key results – Discriminant analysis showed that the quantitative characters selected by the canonical discriminant analysis do not allow distinguishing all the species studied. Only the combination of qualitative and quantitative characters favours the separation of the species through the cluster analysis. Cluster analysis allowed the recognition of 35 groups with a dissimilarity value > 0.80. Twenty-six morphotypes differ from the other Milla species, previously recognized, in at least one character.
    [Show full text]
  • Monarch Handout
    All About Monarch Butterflies Presented by Rebecca Schoenenberger UCCE Master Gardener Santa Clara County Master Gardener Program Master Gardener program volunteers are trained by the University of California Cooperative Extension. Our mission is to develop, adapt and extend research-based horticultural information and educational programs to the residents of Santa Clara County. Master Gardener Help Desk • E -mail questions using our website: http://mgsantaclara.ucanr.edu/help-desk • Call the Help Desk: 408-282-3105 (9:30 a.m. – 12:30 p.m. Monday through Friday) Bring specimens to the Master Gardener Help Desk Office during Help Desk hours: • 1553 Berger Drive, Building 1, 2nd Floor, San Jose, CA 95112 • Call or bring specimens to the Master Gardeners at the Gamble Garden library in Palo Alto: 650-329-1356 Fridays only, 1-4 p.m. In winter, please call before coming to Gamble. About Monarchs - Life Cycle & Metamorphosis - Migration - Habitat - Threats - Conservation Life Cycle - Egg - Larvae (5 instars) - Pupa - Adult Migration - Eastern: Southeastern Canada, Eastern USA & Central Mexico - Western: Southwestern Canada, Western USA Pacific Wintering Habitat - California Wintering Sites: UCCE Master Gardener Program of Santa Clara County http://mgsantaclara.ucanr.edu ‣ Ardenwood Historic Farm, Fremont, CA ‣ Lighthouse Field State Beach Monarch Grove, Santa Cruz, CA ‣ Natural Bridges State Park, Santa Cruz, CA ‣ Pacific Grove Sanctuary, Pacific Grove, CA ‣ Point Lobos State Park, Carmel, CA ‣ Morro Bay State Park, Morro Bay, CA ‣ Pismo Beach Monarch Butterfly Grove, Oceano, CA ‣ Ellwood Mesa Open Space, Goleta, CA Habitat - Food ‣ Larvae = Milkweed ‣ Adult = Nectar - Shelter ‣ Monterey Pine, Monterey Cypress & Eucalyptus ‣ Moderate Weather Extremes - Space ‣ International Western (California) Shelter Trees • Monterey Pine - Pinus radiata - Fast growing, but short lived.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Flora of the San Pedro Riparian National Conservation Area, Cochise County, Arizona
    Flora of the San Pedro Riparian National Conservation Area, Cochise County, Arizona Elizabeth Makings School of Life Sciences, Arizona State University, Tempe, AZ Abstract—The flora of the San Pedro Riparian National Conservation Area (SPRNCA) consists of 618 taxa from 92 families, including a new species of Eriogonum and four new State records. The vegetation communities include Chihuahuan Desertscrub, cottonwood-willow riparian cor- ridors, mesquite terraces, sacaton grasslands, rocky outcrops, and cienegas. Species richness is enhanced by factors such as perennial surface water, unregulated flood regimes, influences from surrounding floristic provinces, and variety in habitat types. The SPRNCA represents a fragile and rare ecosystem that is threatened by increasing demands on the regional aquifer. Addressing the driving forces causing groundwater loss in the region presents significant challenges for land managers. potential value of a species-level botanical inventory may not Introduction be realized until well into the future. Understanding biodiversity has the potential to serve a unifying role by (1) linking ecology, evolution, genetics and biogeography, (2) elucidating the role of disturbance regimes Study Site and habitat heterogeneity, and (3) providing a basis for effec- tive management and restoration initiatives (Ward and Tockner San Pedro Riparian National 2001). Clearly, we must understand the variety and interac- Conservation Area tion of the living and non-living components of ecosystems in order to deal with them effectively. Biological inventories In 1988 Congress designated the San Pedro Riparian are one of the first steps in advancing understanding of our National Conservation Area (SPRNCA) as a protected reposi- natural resources and providing a foundation of information tory of the disappearing riparian habitat of the arid Southwest.
    [Show full text]
  • Floristic Surveys of Saguaro National Park Protected Natural Areas
    Floristic Surveys of Saguaro National Park Protected Natural Areas William L. Halvorson and Brooke S. Gebow, editors Technical Report No. 68 United States Geological Survey Sonoran Desert Field Station The University of Arizona Tucson, Arizona USGS Sonoran Desert Field Station The University of Arizona, Tucson The Sonoran Desert Field Station (SDFS) at The University of Arizona is a unit of the USGS Western Ecological Research Center (WERC). It was originally established as a National Park Service Cooperative Park Studies Unit (CPSU) in 1973 with a research staff and ties to The University of Arizona. Transferred to the USGS Biological Resources Division in 1996, the SDFS continues the CPSU mission of providing scientific data (1) to assist U.S. Department of Interior land management agencies within Arizona and (2) to foster cooperation among all parties overseeing sensitive natural and cultural resources in the region. It also is charged with making its data resources and researchers available to the interested public. Seventeen such field stations in California, Arizona, and Nevada carry out WERC’s work. The SDFS provides a multi-disciplinary approach to studies in natural and cultural sciences. Principal cooperators include the School of Renewable Natural Resources and the Department of Ecology and Evolutionary Biology at The University of Arizona. Unit scientists also hold faculty or research associate appointments at the university. The Technical Report series distributes information relevant to high priority regional resource management needs. The series presents detailed accounts of study design, methods, results, and applications possibly not accommodated in the formal scientific literature. Technical Reports follow SDFS guidelines and are subject to peer review and editing.
    [Show full text]
  • Desert Survivors NURTURING PLANTS and PEOPLE SINCE 1981
    1020 W. Starr Pass nonprofit org Tucson, AZ 85713 US postage open 8-5 Tue-Sat PAID Tucson, Arizona permit no. 337 Desert Survivors NURTURING PLANTS AND PEOPLE SINCE 1981 SPRING 2017 Executive Director’s State service contract, which was brought into line with the new minimum wage law Report through an increase in the payment rate for Group Supported Employment Ser- First things first; I want to thank every- vices. We thank our leaders in State Gov- one who participated in the “State ernment for understanding the importance VISIT OUR WEBSITE of the services we provide to especially desertsurvivors.org Tax Credit Campaign” for Desert Sur- vivors. The response was greater than deserving members of our community. anticipated, and the drive brought in MEMBERSHIP $50/yr It is important to reiterate that the wages : about $50,000! The best part is that Program -newsletter semiannually of our special workers are not paid by participants in this campaign should -10% off plant purchases government contract funds. All wages for Services get their money back, in the amount all year our special workers are paid by revenue -members’ day sale entry of their donation, credited to them generated by their tasks in the plant Update from the State taxes they owed. I nursery and trail work in combination with especially enjoy that part. I pray that DIRECTORY: contract funds and private donations. the good fortune bestowed upon our These special people are paid for the agency by our members and friends Richard Bechtold SPRING hard work they perform 250 days a year, continues in the years to come.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]