High-Level Cognition During Story Listening Is Reflected In

Total Page:16

File Type:pdf, Size:1020Kb

High-Level Cognition During Story Listening Is Reflected In Supplementary materials for: High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns 1 1;2 1; Lucy L. W. Owen , Thomas H. Chang , and Jeremy R. Manning y 1Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 2Amazon.com, Seattle, WA yAddress correspondence to [email protected] September 9, 2019 1 Order 0 5 10 15 Order 1 Order 2 Order 3 Order 4 Order 5 speech sts v1 anterior insula visual sts voice early visual insula occipital auditory temporal sulcus cuneus stop signal cuneus voice sounds visual cortex stop ofc superior temporal speech visual anterior cortex ofc sounds comprehension blind unpleasant visual cortex stg tom occipital insular cortex visual eld auditory cortex network vision response orbitofrontal heschl superior temporal sighted response inhibition angular temporal person primary visual vlpfc extrastriate Order 6 Order 7 Order 8 Order 9 Order 10 temporal lobe hippocampus recognition monitoring insular lobe hippocampal temporal lobes anterior insula intensity amygdala memory encoding fusiform gyrus conict posterior insula putamen lobe mtl fusiform face insula anterior insular cortex ligual temporal lobe anterior temporal frontal cortex secondary somatosensory categories mtl face a medial frontal tactile pole medial temporal fusiform insula distriminative insula anterior hippocampus a anterior insula disease ad encoding temporal lobe error sii temporal pole amygdala categories insular primary secondary Order 11 Order 12 Order 13 Order 14 Order 15 hippocampal retrosplenial parahippocampal cortex ba index nger hippocampus temporal pole objects ba 44 contralateral memory navigation parahippocampal extrastriate nger anterior hippocampus face recognition place pleasant motor task episodic anterior temporal episodic memory faces hand amygdala pole episodic fusiform s1 medial temporal recognize locations face sensorimotor cortex retrieval angular memories object primary somatosensory parahippocampal angularl gyrus medial temporal object recognition m1 mtl cuneus autobiographical viewing ipsilateral Figure S1: Top terms associated with the endpoints of the strongest correlations for the intact experimental condition. Each color corresponds to one order of inter-subject functional correlations. The inflated brain plots display the locations of the endpoints of the 10 strongest (absolute value) correlations at each order, projected onto the cortical surface (Combrisson et al., 2019). The lists of terms display the top 10 Neurosynth terms (Rubin et al., 2017) decoded from the corresponding brain maps for each order. (Also see Fig. 7, top row, in the main text.) 2 Order 0 5 10 15 Order 1 Order 2 Order 3 Order 4 Order 5 auditory sounds sounds decision task occipital sounds auditory auditory visual stimulus inferior occipital speech speech superior temporal recruited dlpfc auditory cortex superior temporal pitch word pairs visual superior temporal voice speech regardless thalamic stg stg planum respectively lateral occipital voice auditory cortex auditory cortex generally cortex dlpfc heschl planum stg stimulus extrastriate pitch spoken temporale classic dorsomedial heschl gyrus sts planum temporale character dorsolateral prefrontal Order 6 Order 7 Order 8 Order 9 Order 10 putamen inferior frontal face recognition nucleus accumbens prefrontal music lobe mtl verb accumbens dorsolateral prefrontal vocal medial temporal face subgenual precuneus posterior mind tom frontal gyrus frontal gyrus ventral striatum prefrontal cortex tom parahippocampal cortex a prediction cortex precuneus auditory stimuli semantic inferior frontal dorsomedial perfronal dorsomedial heard dorsolateral prefrontal fusiform face prediction error dorsolateral theory of mind mtl recognition outcome medial mind lateral prefrontal verbs dorsomedial precuneus tone concepts face a ventral premotor posteral cingulate Order 11 Order 12 Order 13 Order 14 Order 15 2 somatosensory orthographic inferior parietal anterior superior sts touch reading decision speech temporal sulcus somatosensory cortex chinese ips auditory sulcus sts parietal junction visual word choice listening mental states tactile form sulcus ips spoken dorsomedial pain word form anterior intraparietal frontal operculum dorsomedial prefrontal junction word maintenance temporal gyrus speaker 1 somatosensory occipitotemporal intraparietal superior temporal medial somatosensory written intraparietal sulcus thalamic superior temporal s1 words decision making sounds superior Figure S2: Top terms associated with the endpoints of the strongest correlations for the paragraph exper- imental condition. This figure is in the same format as Figure S1, but displays results for the paragraph- scrambled story listening condition. (Also see Fig. 7, second row, in the main text.) 3 Order 0 5 10 15 Order 1 Order 2 Order 3 Order 4 Order 5 speech speech sts semantic brainstem sounds sts speech temporal lobe pain auditory voice voice fronto temporal spoken voice auditory superior temporal meaning fronto temporal superior temporal superior temporal auditory sentences speech perception stg sounds sounds syntactic speech sts stg stg verb repetition auditory cortex auditory cortex temporal familiarity insular acoustic audiovisual listening comprehension language comprehension temporal temporal acoustic language anterior superior Order 6 Order 7 Order 8 Order 9 Order 10 autobiographical anterior temporal memory retrieval fusiform gyrus objects posterior cingulate amygdala episodic fusiform fusiform default fearful retrieval face fusiform gyrus pcc fear episodic memory fusiform face extrastriate default mode amygdala insula recollection objects object medial amygdala responses retrieved face a occipitotemporal supremarginal amygdala response encoding a visual eld vmpfc neutral thalamic occipitotemporal visual mpfc fearful faces lobe mtl faces lateral occipital supramarginal gyrus neutral faces memories category perception Order 11 Order 12 Order 13 Order 14 Order 15 ventral premotor medial prefrontal retrosplenial object medial premotor cortex medial retrosplenial cortex objects posterior cingulate premotor mpfc precuneus face recognition pcc tactile cortex mpfc brainstem lateral occipital medial prefrontal sensorimotor prefrontal cortex posterior cingulate precuneus corte precuneus somatosensory prefrontal personal tools autobiographical anterior intraparietal ipl medial mt default motor default medial prefrontal v5 default mode inferior parietal autobiographical mpfc motion lateral parietal production default mode place action observation mpfc Figure S3: Top terms associated with the endpoints of the strongest correlations for the word experimental condition. This figure is in the same format as Figure S1, but displays results for the word-scrambled story listening condition. (Also see Fig. 7, third row, in the main text.) 4 Order 0 5 10 15 Order 1 Order 2 Order 3 Order 4 Order 5 parietal visual network autobiographical dorsolateral calculation occipital expectancy anterior temporal dorsolateral prefrontal ips v1 task default network cognitive intraparietal extrastriate ica autobiographic dlpfc superior parietal motion additional default memory load tasks sighted networks real tasks subtraction visual cortex load scene working task object memory load mental working memory action occiplical cortex spl retrosplenial lateral prefrontal numbers visual eld parietal dmn load Order 6 Order 7 Order 8 Order 9 Order 10 dorsomedial anterior insula occipital posterior insula person medial insula precuneus amygdala hippocampus face a dorsomedial prefrontal frontal cortex precuneus posterior accumbens fusiform face cortex mpfc anterior visual nucleus accumbens dorsolateral prefrontal medial prefrontal monitoring cortex precuneus amygdala a mpfc insular parietal anterior hippocampus production memories insula anterior ipl hippocampus categories temporal pole picture occipital cortex hippocampal theory mind pole error superior parietal monetary tpj recollection conict motion sii speech Order 11 Order 12 Order 13 Order 14 Order 15 1 somatosensory orthographic olfactory amygdala response nucleus accumbens hippocampal reading amygdala amygdala hippocampus monetary incentive hippocampus chinese taste amygdala responses prediction error somatosensory cortex visual word insula retrosplenial accumbens tactile form disgust episodic incentive s1 word form ratings retrieval striatum amygdala hippocampus word amygdala response amygdala reinforcement somatosensory occipitotemporal painful hippocampus monetary touch written food emotional stimuli ventral striatum sensory word posterior insula fearful prediction Figure S4: Top terms associated with the endpoints of the strongest correlations for the rest experimental condition. This figure is in the same format as Figure S1, but displays results for the resting state condition. (Also see Fig. 7, bottom row, in the main text.) 5 Supplemental references Combrisson, E., Vallat, R., O’Reilly, C., Jas, M., Pascarella, A., l Saive, A., Thiery, T., Meunier, D., Altukhov, D., Lajnef, T., Ruby, P., Guillot, A., and Jerbi, K. (2019). Visbrain: a multi- purpose GPU-accelerated open-source suite for multimodal brain data visualization. Frontiers in Neuroinformatics, 13(14):1–14. Rubin, T. N., Kyoejo, O., Gorgolewski, K. J., Jones, M. N., Poldrack, R. A., and Yarkoni, T. (2017). Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition. PLoS Computational Biology, 13(10):e1005649. 6.
Recommended publications
  • Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules
    THE JOURNAL OF COMPARATIVE NEUROLOGY 317:1-30 (1992) Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules LEAH A. KRUBITZER AND MIKE B. CALFORD Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, Queensland, Australia 4072 ABSTRACT Five somatosensory fields were defined in the grey-headed flying fox by using microelec- trode mapping procedures. These fields are: the primary somatosensory area, SI or area 3b; a field caudal to area 3b, area 1/2; the second somatosensory area, SII; the parietal ventral area, PV; and the ventral somatosensory area, VS. A large number of closely spaced electrode penetrations recording multiunit activity revealed that each of these fields had a complete somatotopic representation. Microelectrode maps of somatosensory fields were related to architecture in cortex that had been flattened, cut parallel to the cortical surface, and stained for myelin. Receptive field size and some neural properties of individual fields were directly compared. Area 3b was the largest field identified and its topography was similar to that described in many other mammals. Neurons in 3b were highly responsive to cutaneous stimulation of peripheral body parts and had relatively small receptive fields. The myeloarchi- tecture revealed patches of dense myelination surrounded by thin zones of lightly myelinated cortex. Microelectrode recordings showed that myelin-dense and sparse zones in 3b were related to neurons that responded consistently or habituated to repetitive stimulation respectively. In cortex caudal to 3b, and protruding into 3b, a complete representation of the body surface adjacent to much of the caudal boundary of 3b was defined.
    [Show full text]
  • 'What' but Not 'Where' Auditory Processing Pathway
    NeuroImage 82 (2013) 295–305 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Emotion modulates activity in the ‘what’ but not ‘where’ auditory processing pathway James H. Kryklywy d,e, Ewan A. Macpherson c,f, Steven G. Greening b,e, Derek G.V. Mitchell a,b,d,e,⁎ a Department of Psychiatry, University of Western Ontario, London, Ontario N6A 5A5, Canada b Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario N6A 5A5, Canada c National Centre for Audiology, University of Western Ontario, London, Ontario N6A 5A5, Canada d Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5A5, Canada e Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5A5, Canada f School of Communication Sciences and Disorders, University of Western Ontario, London, Ontario N6A 5A5, Canada article info abstract Article history: Auditory cortices can be separated into dissociable processing pathways similar to those observed in the vi- Accepted 8 May 2013 sual domain. Emotional stimuli elicit enhanced neural activation within sensory cortices when compared to Available online 24 May 2013 neutral stimuli. This effect is particularly notable in the ventral visual stream. Little is known, however, about how emotion interacts with dorsal processing streams, and essentially nothing is known about the impact of Keywords: emotion on auditory stimulus localization. In the current study, we used fMRI in concert with individualized Auditory localization Emotion auditory virtual environments to investigate the effect of emotion during an auditory stimulus localization fi Auditory processing pathways task. Surprisingly, participants were signi cantly slower to localize emotional relative to neutral sounds.
    [Show full text]
  • Anatomy of the Temporal Lobe
    Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation.
    [Show full text]
  • Brain Maps – the Sensory Homunculus
    Brain Maps – The Sensory Homunculus Our brains are maps. This mapping results from the way connections in the brain are ordered and arranged. The ordering of neural pathways between different parts of the brain and those going to and from our muscles and sensory organs produces specific patterns on the brain surface. The patterns on the brain surface can be seen at various levels of organization. At the most general level, areas that control motor functions (muscle movement) map to the front-most areas of the cerebral cortex while areas that receive and process sensory information are more towards the back of the brain (Figure 1). Motor Areas Primary somatosensory area Primary visual area Sensory Areas Primary auditory area Figure 1. A diagram of the left side of the human cerebral cortex. The image on the left shows the major division between motor functions in the front part of the brain and sensory functions in the rear part of the brain. The image on the right further subdivides the sensory regions to show regions that receive input from somatosensory, auditory, and visual receptors. We then can divide these general maps of motor and sensory areas into regions with more specific functions. For example, the part of the cerebral cortex that receives visual input from the retina is in the very back of the brain (occipital lobe), auditory information from the ears comes to the side of the brain (temporal lobe), and sensory information from the skin is sent to the top of the brain (parietal lobe). But, we’re not done mapping the brain.
    [Show full text]
  • Subdivisions of Auditory Cortex and Processing Streams in Primates
    Colloquium Subdivisions of auditory cortex and processing streams in primates Jon H. Kaas*† and Troy A. Hackett‡ Departments of †Psychology and ‡Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37240 The auditory system of monkeys includes a large number of histochemical studies in chimpanzees and humans, and nonin- interconnected subcortical nuclei and cortical areas. At subcortical vasive functional studies in humans. levels, the structural components of the auditory system of mon- keys resemble those of nonprimates, but the organization at The Core Areas of Auditory Cortex cortical levels is different. In monkeys, the ventral nucleus of the Originally, auditory cortex of monkeys was thought to be orga- medial geniculate complex projects in parallel to a core of three nized much as in cats, with a single primary area, AI, in the primary-like auditory areas, AI, R, and RT, constituting the first cortex of the lower bank of the lateral sulcus and a second area, stage of cortical processing. These areas interconnect and project AII, deeper in the sulcus (e.g., ref. 3). This concept fits well with to the homotopic and other locations in the opposite cerebral the early view that auditory, somatosensory, and visual systems hemisphere and to a surrounding array of eight proposed belt all have two fields. However, we now know that primates have areas as a second stage of cortical processing. The belt areas in turn a number of sensory representations for each modality, and project in overlapping patterns to a lateral parabelt region with at several somatosensory and auditory fields can be considered least rostral and caudal subdivisions as a third stage of cortical primary or primary like in character.
    [Show full text]
  • A Core Speech Circuit Between Primary Motor, Somatosensory, and Auditory Cortex
    bioRxiv preprint doi: https://doi.org/10.1101/139550; this version posted May 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Speech core 1 A core speech circuit between primary motor, somatosensory, and auditory cortex: Evidence from connectivity and genetic descriptions * ^ Jeremy I Skipper ​ and Uri Hasson ​ ​ * Experimental​ Psychology, University College London, UK ^ Center​ for Mind/Brain Sciences (CIMeC), University of Trento, Italy, and Center for Practical Wisdom, Dept. of Psychology, The University of Chicago Running title: Speech core ​ Words count: 20,362 ​ Address correspondence to: Jeremy I Skipper University College London Experimental Psychology 26 Bedford Way London WC1H OAP United Kingdom E-mail: [email protected] ​ bioRxiv preprint doi: https://doi.org/10.1101/139550; this version posted May 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Speech core 2 Abstract What adaptations allow humans to produce and perceive speech so effortlessly? We show that speech is supported by a largely undocumented core of structural and functional connectivity between the central sulcus (CS or primary motor and somatosensory cortex) and the transverse temporal gyrus (TTG or primary auditory cortex). Anatomically, we show that CS and TTG cortical thickness covary across individuals and that they are connected by white matter tracts.
    [Show full text]
  • A Core Speech Circuit Between Primary Motor, Somatosensory, and Auditory Cortex
    bioRxiv preprint doi: https://doi.org/10.1101/139550; this version posted May 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Speech core 1 A core speech circuit between primary motor, somatosensory, and auditory cortex: Evidence from connectivity and genetic descriptions * ^ Jeremy I Skipper ​ and Uri Hasson ​ ​ * Experimental​ Psychology, University College London, UK ^ Center​ for Mind/Brain Sciences (CIMeC), University of Trento, Italy, and Center for Practical Wisdom, Dept. of Psychology, The University of Chicago Running title: Speech core ​ Words count: 20,362 ​ Address correspondence to: Jeremy I Skipper University College London Experimental Psychology 26 Bedford Way London WC1H OAP United Kingdom E-mail: [email protected] ​ bioRxiv preprint doi: https://doi.org/10.1101/139550; this version posted May 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Speech core 2 Abstract What adaptations allow humans to produce and perceive speech so effortlessly? We show that speech is supported by a largely undocumented core of structural and functional connectivity between the central sulcus (CS or primary motor and somatosensory cortex) and the transverse temporal gyrus (TTG or primary auditory cortex). Anatomically, we show that CS and TTG cortical thickness covary across individuals and that they are connected by white matter tracts.
    [Show full text]
  • Review of Temporal Lobe Structures
    REVIEW OF TEMPORAL LOBE STRUCTURES STS - remember the ________, _______, and _________ temporal gyri. - the superior temporal sulcus (STS). - the lateral fissure. - medial temporal lobe structures include the ___________, and ___________ (with associated cortex including uncus, subiculum, entorhinal cortex, perirhinal cortex). - Area TE = Brodmann’s 20, 21 & 38 (middle & inferior temp. gyri). - Parahippocampal gyrus = area TF and TH. 1 TEMPORAL LOBE FUNCTIONS Sensory Inputs to Temporal lobe: 1. ____________________________________________; 2. _________________________________________________. Temporal cortical regions and functional correlates: 1. Within lateral fissure (superior surface of lateral fissure): a) Heschel’s gyri (_____________________). b) posterior to Heschel’s gyri (_______________________). c) Planum temporale (secondary auditory cortex; Wernicke’s area - specialized in __________________________). 2 Temporal cortical regions and functional correlates (continued): 2. Superior temporal sulcus, middle and inferior temporal gyrus (area TE): _________________________________________ ____________. 3. Ventral/medial surface of temporal lobe (hippocampus and associated cortex): ______________________________. - the ventral/medial surface of the temporal lobe is also associated with the amygdala. Together with the surrounding ventral/medial temporal lobe, the amygdala is involved in __________________________________________. Hemispheric “specialization”: 1. Left hemisphere: a) ________________; b) ____________________________.
    [Show full text]
  • A Practical Review of Functional MRI Anatomy of the Language and Motor Systems
    REVIEW ARTICLE FUNCTIONAL A Practical Review of Functional MRI Anatomy of the Language and Motor Systems X V.B. Hill, X C.Z. Cankurtaran, X B.P. Liu, X T.A. Hijaz, X M. Naidich, X A.J. Nemeth, X J. Gastala, X C. Krumpelman, X E.N. McComb, and X A.W. Korutz ABSTRACT SUMMARY: Functional MR imaging is being performed with increasing frequency in the typical neuroradiology practice; however, many readers of these studies have only a limited knowledge of the functional anatomy of the brain. This text will delineate the locations, anatomic boundaries, and functions of the cortical regions of the brain most commonly encountered in clinical practice—specifically, the regions involved in movement and language. ABBREVIATIONS: FFA ϭ fusiform face area; IPL ϭ inferior parietal lobule; PPC ϭ posterior parietal cortex; SMA ϭ supplementary motor area; VOTC ϭ ventral occipitotemporal cortex his article serves as a review of the functional areas of the brain serving to analyze spatial position and the ventral stream working Tmost commonly mapped during presurgical fMRI studies, to identify what an object is. Influenced by the dorsal and ventral specifically targeting movement and language. We have compiled stream model of vision, Hickok and Poeppel2 hypothesized a sim- what we hope is a useful, easily portable, and concise resource that ilar framework for language. In this model, the ventral stream, or can be accessible to radiologists everywhere. We begin with a re- lexical-semantic system, is involved in sound-to-meaning map- view of the language-processing system. Then we describe the pings associated with language comprehension and semantic ac- gross anatomic boundaries, organization, and function of each cess.
    [Show full text]
  • 2018 Neuromodulation of Right Auditory Cortex
    Neuromodulation of right auditory cortex selectively increases activation ANGOR UNIVERSITY in speech-related brain areas in brainstem auditory agnosia Bestelmeyer, Patricia E.G.; Davis, Nick J.; Poliva, Oren; Rafal, Robert D. Cognitive and Behavioral Neurology DOI: 10.1097/WNN.0000000000000162 PRIFYSGOL BANGOR / B Published: 01/09/2018 Peer reviewed version Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Bestelmeyer, P. E. G., Davis, N. J., Poliva, O., & Rafal, R. D. (2018). Neuromodulation of right auditory cortex selectively increases activation in speech-related brain areas in brainstem auditory agnosia. Cognitive and Behavioral Neurology, 31(3), 151-155. https://doi.org/10.1097/WNN.0000000000000162 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 27. Sep. 2021 Anodal tDCS over auditory cortex modulates neural activation in auditory agnosia Neuromodulation of right auditory cortex selectively increases activation in speech-related brain areas in brainstem auditory agnosia Patricia E.G.
    [Show full text]
  • Functional Topography of Human Auditory Cortex
    1416 • The Journal of Neuroscience, January 27, 2016 • 36(4):1416–1428 Behavioral/Cognitive Functional Topography of Human Auditory Cortex Amber M. Leaver1,2 and Josef P. Rauschecker1,3 1Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, 2Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, Los Angeles, California 90095, and 3Institute for Advanced Study, Technische Universita¨t Mu¨nchen, D-85748 Garching, Germany Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, func- tional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl’s gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal mod- ulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex.
    [Show full text]
  • Neuromodulation and Plasticity of the Adult Auditory Cortex
    Cosyne 2007 Friday evening, Poster II-52 Neuromodulation and plasticity of the adult auditory cortex RC Froemke1, P Levis2, MM Merzenich1, CE Schreiner1 1: Coleman Lab, Keck Center, Dept. Otolaryngology, UCSF, CA, USA 2:Computer Systems Lab, Depts. EE & CS, Stanford University, Palo Alto, CA, USA Cortical networks are highly dynamic and labile. In large part, these qualities reflect the ability of cortical synapses to be rapidly modified in a way that depends on the patterns of experience, activity, and neuromodulation. However, the rules of cortical synaptic plasticity and neuromodulation remain unclear, especially in the intact brain, where cortical circuitry is under the powerful influence of a diverse set of subcortical systems. To understand how neuronal activity and neuromodulation lead to changes in cortical synapses in vivo, we have used a combination of approaches, including in vivo whole-cell recording, electrical stimulation of the cortex, thalamus, and subcortical neuromodulator nuclei, and telemetric recording and stimulation in the behaving animal. In the experiments reported here, we have focused on the organization of receptive fields in the primary auditory cortex (A1) of adult rats, and the control of cortical responses by modulatory inputs from the basal forebrain. Our whole-cell recording experiments first showed that sensory stimulation alone does not lead to long-term changes in synaptic receptive fields, suggesting that repetitive pre- and postsynaptic spiking (such as that which drives spike-timing-dependent plasticity) are not sufficient for long- term synaptic modification in adult A1 in vivo. However, pairing sensory stimulation with electrical stimulation of the basal forebrain, containing the major cholinergic input to the cortex, reliably produced large long-term changes in the synaptic receptive fields of A1 neurons.
    [Show full text]