Patent Office Paiented May 2, 1963
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Roger Davey + Critical Nucleus Dimers Are the Dimers Created by Content: Studying and Defining Solute- Solute Interactions in the Liquid Phase
20/06/2016 The context – making clusters A + A A 2 K = [A ] / [A] 2 Solution Chemistry and Structure 2 Roger Davey + Critical nucleus dimers Are the dimers created by Content: Studying and defining solute- solute interactions in the liquid phase. Techniques available. thermodynamically driven Speciation in solution. self association present in Do these (thermodynamic features have) an impact on nucleation rate tetramers or outcome? monomers the nucleation clusters – Examples – glycine/saccharin/benzoic acid/tetrolic acid/mandelic crystal acid/paminobenzoic acid/co-crystals. The link hypothesis . Equilibria in supersaturated homogeneous solution Formation and Growth of critical nuclei Kinetics Thermodynamics Are these equilibria and quasi equilibria in anyway related? Nucleation Summer School June 20-24 th 2016 University of Strathclyde Nucleation Summer School June 20-24 th 2016 University of Strathclyde First a note about ideal solutions A macroscopic view - ‘ideal solubility’ and why I use it. Enthalpy changes: The usual way: ∆Hsolution = ∆H sublimation + ∆H solvation dissolve solid in ∆H = ∆H + ∆H solvent solution fusion mixing In an ideal solution ∆H mixing = 0. compositi This means that (Es-s + Esolv-solv )/2 = Es-solv on Real solutions don’t have this exact balance and in a non-ideal solution ∆H mixing is thus non zero. time And the ideal solubility is given by a very familiar equation: ln(xideal )={ΔHF(1/T m-1/T)+ ΔCp[T m/T – ln(T m/T)-1]}/R The ideal way: melt solid and mix with solvent. If x > xideal then negative deviation …….solvation If x < xideal then positive deviation………aggregation. Nucleation Summer School June 20-24 th 2016 University of Strathclyde Nucleation Summer School June 20-24 th 2016 University of Strathclyde Macroscopic picture: polymorphism of Macroscopic picture: saccharin dihydroxybenzoic acid. -
Chemical Specificity in Short-Chain Fatty Acids and Their Analogues in Increasing Osmotic Fragility in Rat Erythrocytes in Vitro
Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic fragility in rat erythrocytes in Title vitro. Author(s) Mineo, Hitoshi; Hara, Hiroshi Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768(6), 1448-1453 Citation https://doi.org/10.1016/j.bbamem.2007.02.008 Issue Date 2007-06 Doc URL http://hdl.handle.net/2115/28208 Type article (author version) File Information BBA1768-6.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 1 Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic 2 fragility in rat erythrocytes in vitro 3 4 Hitoshi Mineo, Hiroshi Hara* 5 6 Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, 7 Hokkaido 060-8589, Japan 8 9 10 *Corresponding author. 11 Hiroshi HARA Ph.D. 12 Division of Applied Bioscience, 13 Graduate School of Agriculture, 14 Hokkaido University, 15 Kita-9, Nishi-9, Sapporo, 16 Hokkaido 060-8589, 17 Tel.: +81-11-706-3352; 18 fax: +81-11-706-2504. 19 E-mail address: [email protected] 20 21 22 23 24 25 2 1 Abstract 2 3 We examined the role of the chemical specificity of short-chain fatty acids 4 (SCFAs) and their derivatives in increasing osmotic fragility (OF) in rat red blood cells 5 (RBCs). Except for formic acid, normal SCFAs with 2 to 8 carbons increased the OF in 6 rat RBCs with increasing number of hydrocarbons in a dose-dependent manner. 7 Replacement of the carboxylic group with sulfonic group inhibited, but did not abolish, 8 the SCFA-mediated increase in OF. -
(12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S. -
United States Patent (19) 11 4,027,037 Siegle Et Al
United States Patent (19) 11 4,027,037 Siegle et al. (45) May 31, 1977 (54) N-SUBSTITUTED B-AMINOCROTONIC 57) ABSTRACT ACID ESTERS N-substituted (3-aminocrotonic acid esters of the for mula (75) Inventors: Peter Siegle, Cologne; Klaus Sasse, Schildgen; Peter Rössler, Cologne, all of Germany CH. COOR: (I) RC=CCN H (73) Assignee: Bayer Aktiengesellschaft, R11 Leverkusen, Germany in which (22 Filed: Mar. 12, 1975 R is hydrogen, or alkyl or alkenyl with up to 4 car bon atoms, (21) Appl. No.: 557,698 R’ is straight-chain or branched alkyl or alkenyl with up to 9 carbon atoms, optionally interrupted by O 30 Foreign Application Priority Data or S, and optionally substituted by halogen, phe Mar. 26, 1974 Germany .......................... 2414456 noxy, dimethylamino, cyclic alkyl or alkenyl with up to 8 carbon atoms which are optionally substi (52) U.S. C. ......................... 424/314; 260/239 BE; tuted by halogen, dimethylamino, or alkyl, alkoxy 260/239 BF; 260/247.2 B; 260/268 R; or alkylthio with up to 4 carbon atoms, phenyl 260/293.88; 260/326.43; 260/340.5; which is optionally substituted by halogen, dimeth 260/347.4; 260/468 G; 260/468 J; 260/470; ylamino, phenoxy, or alkyl, alkenyl, acyl, alkoxy, 260/471 A; 260/479 S; 260/481 R; 260/482 alkenoxy or alkynoxy containing up to 4 carbon R; 424/244; 424/2 48.52; 424/250; 424/267; atoms, or a 5- or 6-membered heterocyclic ring 424/274; 424/282; 424/285; 424/299; containing at least one O, S or N hetero-atom and 424/309; 424/248.55 optionally substituted by halogen, alkyl or alkoxy containing up to 4 carbon atoms or R is further (51 int. -
Transmetalation
Organic Chemistry IV Organometallic Chemistry for Organic Synthesis Prof. Paul Knochel LMU 2015 1 OCIV Prüfung: Freitag 17. Juli 2015 9-11 Uhr Wieland HS Wiederholungsklausur: Donnerstag 17. September 2015 12-14 Uhr Baeyer HS 2 Recommended Literature 1. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Fifth Edition Part A and Part B, Springer, 2008, ISBN-13: 978-0-387-68346-1 2. R. Brückner, Organic Mechanisms, Springer, 2010, ISBN: 978-3-642- 03650-7 3. L. Kürti, B. Czako, Strategic applications of named reactions in organic synthesis, Elsevier, 2005, ISBN-13: 978-0-12-429785-2 4. N. Krause, Metallorganische Chemie, Spektrum der Wissenschaft, 1996, ISBN: 3-86025-146-5 5. R. H. Crabtree, The organometallic chemistry of transition metals, Wiley- Interscience, 2005, ISBN: 0-471-66256-9 6. M. Schlosser, Organometallics in Synthesis – A manual, 2nd edition, Wiley, 2002, ISBN: 0-471-98416-7 7. K. C. Nicolaou, T. Montagnon, Molecules that changed the world, Wiley- VCH, 2008, ISBN: 978-527-30983-2 8. J. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, Palgrave Macmillan, 2009, ISBN-13: 978-1891389535 9. P. Knochel, Handbook of Functionalized Organometallics, Volume 1 und 2, Wiley-VCH, 2005, ISBN-13: 978-3-527-31131-6 3 Importance of organometallics 4 Industrial production Industrial annual production of various organometallics Organometallic production [T / year] Si 700 000 Pb 600 000 Al 50 000 Sn 35 000 Li 900 5 Organometallic reagents and catalysts for the organic synthesis 6 Historic point of view 1757 - Louis Cadet de Gassicourt (parisian apothecary) E. Frankland (1848), University of Marburg, initial goal: synthesis of an ethyl radical Universität Marburg (1848) 7 Organometallic chemistry of the XIX century 8 Organometallic chemistry of the XIX century 9 Reactivity of the Grignard reagents 10 Historic point of view Victor Grignard (1900) Karl Ziegler (1919) 11 Historic point of view first transition metal organometallics: Hein (1919) 12 Historic point of view 1951 : synthesis of ferrocene Pauson (Scotland) 7. -
Part I. Inversion of Secondary Cyclic Grignard Reagents
This dissertation has been , 69-11,692 microfilmed exactly as received PECHHOLD, Engelbert, 1933- STUDIES OF THE BEHAVIOR AND GENERATION OF GARB ANIONS: PART I. INVERSION OF SECONDARY CYCLIC GRIGNARD REAGENTS. PART II. FRAGMENTATION OF AZOFORMATE SALTS AND ACYLAZO COMPOUNDS WITH BASES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan ©Copyright "by- Engelbert Pechhold 1969 STUDIES OF THE BEHAVIOR MD GENERATION OF CARBANIONS PART I. INVERSION OF SECONDARY CYCLIC GRIGNARD REAGENTS PART II. FRAGMENTATION OF AZOFORMATE SADIS AND ACYLAZO COMPOUNDS WITH BASES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Engelbert Pechhold * # # * * # The Ohio State University 1968 Approved by •pV-gpa.-t— Adviser Department of Chemistry DEDICATION To my wife, Ingrid, and my parents, whose love, understanding, and encouragement have made this venture possible. ii ACKNOWLEDaEMElWS I -wish to express my deepest appreciation to Professor Gideon Fraenkel for suggestinf^ this problem, and for his guidance and encouragement throughout the course of this research. His assistance in the preparation of this dissertation is gratefully acknowledged. It is an understatement to say that without his un usual courage of conviction and high standards for academic perfor mance, this work could not have come into being. I owe special debt of gratitude to my colleagues for many suimtü-ating discussions of chemical matters and otherwise. In particular, I wish to express my gratitute to Dr. Don Dix, Dr. Dave Mams, and James Morton, who gave me much insight in ny research. -
Theoretical Insight Into the Transmetalation of MOF-5 Lattices
Article pubs.acs.org/cm When the Solvent Locks the Cage: Theoretical Insight into the Transmetalation of MOF‑5 Lattices and Its Kinetic Limitations ,† ‡ †,§ ‡ † Luca Bellarosa,* Carl K. Brozek, Max García-Melchor, Mircea Dinca,̆and Nuriá Lopeź † Institute of Chemical Research of Catalonia, ICIQ, Av. Països Catalans 16, 43007 Tarragona, Spain ‡ Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States § SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States *S Supporting Information ABSTRACT: Transmetalation is an innovative postsynthetic strategy for tailoring the properties of metal−organic frameworks (MOFs), allowing stable unprecedented metal coordination environments. Although the experimental synthetic protocol is well- established, the underlying mechanism for transmetalation is still unknown. In this work, we propose two different solvent-mediated reaction paths for the Ni transmetalation in Zn- MOF-5 lattices through density functional theory simulations. In both mechanisms, the bond strength between the exchanged metal and the solvent is the key descriptor that controls the degree of transmetalation. We also show that the role of the solvent in this process is twofold: it initially promotes Zn exchange, but if the metal−solvent bond is too strong, it blocks the second transmetalation cycle by restricting the lattice flexibility. The competition between these two effects leads the degree of incorporation of metal into MOF-5 to display a volcano-type dependence with respect to the metal−solvent bond strength for different transition metal ions. ■ INTRODUCTION PSIM.26 Nevertheless, the dependence on the ligand field was The easiness with which metal−organic frameworks (MOFs)1 found to be opposite for Ni inserting into MOF-5 and Co into MFU-4l. -
Guide to the Jonas and Edna Kamlet / Kamlet Laboratories Records, 1913-1989
Guide to the Jonas and Edna Kamlet / Kamlet Laboratories records, 1913-1989 Descriptive Summary Title : Jonas and Edna Kamlet / Kamlet Laboratories records Creator: Kamlet, Jonas Kamlet, Edna Dates : N/A ID Number : K27 Size: 190 boxes Abstract: This collection consists of records related to the Kamlet Laboratory and its founders. Chemist. Jonas kamlet and his wife, Edna, founded The Kamlet Laboratory (1940-1979) in New York City. The laboratory's work centered on the research and development of new methods for chemical products as well as identifying interested clients and selling rights to them. The laboratory also provided consultation services to a variety of businesses. Included are: personal papers, correspondence, professional correspondence, magazine clippings, newspaper clippings, photographs, drafts, publications, advertisements, announcements, price quotes, technical reports, test results, and scrapbooks. Includes personal papers, correspondence, professional correspondence, magazine clippings, newspaper clippings, photographs, drafts, publications, advertisements, announcements, price quotes, technical reports, test results, and scrapbooks. Language(s): English Repository: Special Collections University of South Florida Libraries 4202 East Fowler Ave., LIB122 Tampa, Florida 33620 Phone: 813-974-2731 - Fax: 813-396-9006 Contact Special Collections Administrative Summary Provenance: Kamlet, Jonas Kamlet, Edna Acquisition Information: Donation. Access Conditions: The contents of this collection may be subject to copyright. Visit the United States Copyright Office's website at http://www.copyright.gov/ for more information. Processing History: processed; Eight separate finding aids were initially made for these collections. However, these finding aids are now being combined to form one collection. Preferred Citation: Kamlet Laboratories Records, Special Collections Department, Tampa Library, University of South Florida, Tampa, Florida. -
Oxidation of Organocopper Compounds
Oxidation of Organocopper Compounds Sarah J. Aves and Dr. David R. Spring Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW United Kingdom Tel.: +44 (0) 1223 336498 Fax: +44 (0) 1223 336362 E-mail: [email protected] [email protected] Oxidation of Organocopper Compounds Contents I. Introduction.................................................................................................................3 II. Formation of C-C Bonds............................................................................................. 4 A. Initial Studies.......................................................................................................... 4 B. Cross-coupling ........................................................................................................ 5 C. Biaryl Formation................................................................................................... 11 D. Intramolecular Bond Formation............................................................................ 14 E. Dimerisations of Heteroaromatics, Alkenyl and Alkyl Groups and Macrocycle Formation...................................................................................................................... 18 III. Formation of C-N Bonds ...................................................................................... 21 A. Initial Studies........................................................................................................ 21 B. Further Developments.......................................................................................... -
Carbometallation Chemistry
Carbometallation chemistry Edited by Ilan Marek Generated on 01 October 2021, 10:03 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Carbometallation chemistry Ilan Marek Editorial Open Access Address: Beilstein J. Org. Chem. 2013, 9, 234–235. Schulich Faculty of Chemistry, Technion-Israel Institute of doi:10.3762/bjoc.9.27 Technology, Haifa 32000, Israel Received: 24 January 2013 Email: Accepted: 29 January 2013 Ilan Marek - [email protected] Published: 04 February 2013 This article is part of the Thematic Series "Carbometallation chemistry". Keywords: carbometallation Guest Editor: I. Marek © 2013 Marek; licensee Beilstein-Institut. License and terms: see end of document. Following the pioneering Ziegler addition of nucleophiles to in the 1,2-bisalkylation of nonactivated alkenes! In this nonactivated unsaturated carbon–carbon bonds, the controlled Thematic Series, you will find -
(12) United States Patent (10) Patent No.: US 8,623.422 B2 Hansen Et Al
USOO8623422B2 (12) United States Patent (10) Patent No.: US 8,623.422 B2 Hansen et al. (45) Date of Patent: *Jan. 7, 2014 (54) COMBINATION TREATMENT WITH 5,668,161 A 9/1997 Talley et al. STRONTUM FOR THE PROPHYLAXIS 5,681,842 A 10, 1997 Dellaria et al. AND/OR TREATMENT OF CARTILAGE 5,686.460 A 11/1997 Nicolai et al. AND/OR BONE CONDITIONS 5,686,470 A 11/1997 Weier et al. 5,696,431 A 12/1997 Giannopoulos et al. 5,707,980 A 1/1998 Knutson (75) Inventors: Christian Hansen, Vedback (DK); 5,719,163 A 2f1998 Norman et al. Henrik Nilsson, Copenhagen (DK); 5,750,558 A 5/1998 Brooks et al. Stephan Christgau, Gentofte (DK) 5,753,688 A 5/1998 Talley et al. 5,756,530 A 5/1998 Lee et al. (73) Assignee: Osteologix A/S, Copenhagen (DK) 5,756,531 A 5/1998 Brooks et al. 5,760,068 A 6/1998 Talley et al. (*) Notice: Subject to any disclaimer, the term of this 5,776,967 A 7/1998 Kreft et al. patent is extended or adjusted under 35 5,776,984. A 7/1998 Dellaria et al. U.S.C. 154(b) by 558 days. 5,783,597 A 7/1998 Beers et al. This patent is Subject to a terminal dis 5,807,873 A 9, 1998 Nicolai et al. claimer. 5,824,699 A 10, 1998 Kreft et al. 5,830,911 A 11/1998 Failli et al. 5,840,924 A 11/1998 Desmond et al. -
Lawrence Berkeley National Laboratory Recent Work
Lawrence Berkeley National Laboratory Recent Work Title THE REACTION OF POTASSIUM GERMYL WITH ORGANIC HALIDES Permalink https://escholarship.org/uc/item/8bj224rn Author Dreyfuss, Robert Michael. Publication Date 1971 eScholarship.org Powered by the California Digital Library University of California • ! . - f - UCRL-20502 r : • r~ l1f I j >4 ~ ' l! . .z ·' :. I •'\ , ..\ 1:~ 1 ' -1. ; .. ~ (.., ~\)(: .,..J4··· .~ ·~·:.,., .. ,.:,..~·~-~01\ . • J I 'i ... THE REACTION OF POTASSIUM GERMYL WITH ORGANIC HALIDES Robert Michael Dreyfuss (Ph. D. Thesis) January 1971 AEC Contract No. W-7405-eng-48 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. ~or a personal retention copy, call Tech. Info. Dioision, Ext. 5545 1 c:: (} :::0 t-' I N 0 (J1 0 r., N ~ DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.