Transmetalation from Magnesium–Nhcs—Convenient Synthesis of Chelating -Acidic NHC Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Transmetalation from Magnesium–Nhcs—Convenient Synthesis of Chelating -Acidic NHC Complexes inorganics Article Transmetalation from Magnesium–NHCs—Convenient Synthesis of Chelating π-Acidic NHC Complexes Julian Messelberger 1, Annette Grünwald 1, Philipp Stegner 2, Laura Senft 3, Frank W. Heinemann 1 and Dominik Munz 1,* 1 Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] (J.M.); [email protected] (A.G.); [email protected] (F.W.H.) 2 Lehrstuhl für Anorganische und Metallorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] 3 Lehrstuhl für Bioanorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-9131-85-27464 Received: 6 May 2019; Accepted: 19 May 2019; Published: 22 May 2019 Abstract: The synthesis of chelating N-heterocyclic carbene (NHC) complexes with considerable π-acceptor properties can be a challenging task. This is due to the dimerization of free carbene ligands, the moisture sensitivity of reaction intermediates or reagents, and challenges associated with the workup procedure. Herein, we report a general route using transmetalation from magnesium–NHCs. Notably, this route gives access to transition-metal complexes in quantitative conversion without the formation of byproducts. It therefore produces transition-metal complexes outperforming the conventional routes based on free or lithium-coordinated carbene, silver complexes, or in situ metalation in dimethyl sulfoxide (DMSO). We therefore propose transmetalation from magnesium–NHCs as a convenient and general route to obtain NHC complexes. Keywords: NHC; transmetalation; magnesium; palladium; carbene 1. Introduction N-heterocyclic carbene (NHC) ligands have become the powerhouse of modern transition metal chemistry [1–13]. This is largely due to the ease of tuning their electronic and steric properties targeting a specific application. After Arduengo’s report on the first crystalline carbene [14], it became common belief that NHCs should be considered strong σ-donor ligands with negligible π-acceptor properties. However, it was later realized that the π-acceptor properties of ancillary carbene ligands are equally important [15]. This led to the design of π-electron-withdrawing carbenes such as Bertrand’s cyclic (alkyl)(amino) carbenes (CAACs) [16–21], diamido carbenes (DACs) [22–25], or ferrocenium-decorated NHCs [26–29]. Also, NHCs with saturated backbones (saNHCs, imidazolidin-2-ylidenes) as well as benzannulated congeners (benzNHCs, benzimidazolin-2-ylidenes) show considerable backbonding capabilities. This is either due to the pyramidalization of the amino groups, which reduces the overlap with the π-system within the N-heterocycle, or to the π-acidic character of the benzannulated π-system. An excellent example of the importance of these π-effects is represented by conjugated organic singlet biradicaloids derived from carbene scaffolds, where the stability and electronic properties are largely dependent on the nature of the carbene [30–34]. Another outstanding example from transition metal chemistry is the capability of CAACs and saNHCs to stabilize low-valent metal complexes [35]. Inorganics 2019, 7, 65; doi:10.3390/inorganics7050065 www.mdpi.com/journal/inorganics Inorganics 2019, 7, 65 2 of 14 Inorganics 2019, 7, x FOR PEER REVIEW 2 of 14 34]We. Another showed outstanding recently that example a strong from ligand transition field as thatmetal exerted chemistry by carbene is the ligandscapability with of strongCAACsσ -donorand andsaNHCs strong toπ-acceptor stabilize low properties-valent metal stabilizes complexes multiple-bonded [35]. late-transition-metal complexes [36–38]. We thereforeWe showed became recently interested that ina strong the synthesis ligand field of complexes as that exerted with πby-acidic carbene 2,6-pyridine ligands with diNHC strong (CNC) σ- pincer-typedonor and ligands strong derivedπ-acceptor from properties the saNHC stabilizes or benzNHC multiple sca-ffbondedold bridged late-transition by a pyridine-metal moiety complexes [39–41 ]. In[36 contrast–38]. We to thetherefore ubiquitous became conventional interested in imidazoline-derived the synthesis of complexes NHCs, with examples π-acidic for 2,6 the-pyridine saturated imidazolidinediNHC (CNC derivatives) pincer-type are ligands still comparably derived from scarce the in saNHC the literature or benzNHC [42–44]. scaffold This applies bridged even by more a topyridine CNC pincer-type moiety [39 ligands–41]. In with contrast saNHC to orthe benzNHC ubiquitous congeners conventional [45– 50imidazolin]. In fact,e- onlyderived one NHCs, example hasexamples been reported for thefor saturated the saNHC imidazolidin derivatives,e derivatives which is are Chirik’s still comparably iron complex scarce [51, 52in ].the This literature iron complex [42– 44]. This applies even more to CNC pincer-type ligands with saNHC or benzNHC congeners [45–50]. was synthesized by in situ deprotonation/metalation using iron hexamethyldisilazane (Fe[N(SiMe3)2]2) In fact, only one example has been reported for the saNHC derivatives, which is Chirik’s iron complex as a precursor. Note that this precursor is inconvenient to handle. Besides, because of its high air [51,52]. This iron complex was synthesized by in situ deprotonation/metalation using iron sensitivity, it has to be distilled prior to use [53,54]. Accordingly, we decided to investigate more hexamethyldisilazane (Fe[N(SiMe3)2]2) as a precursor. Note that this precursor is inconvenient to expedient and general routes to access metal complexes. handle. Besides, because of its high air sensitivity, it has to be distilled prior to use [53,54]. Accordingly,NHC complexes we decided of the to s-block investigate metals more are expedient still rarely and explored general [55 routes]. This to is access also true metal for complexes. magnesium, althoughNHC the complexes first example of the of ans-block NHC–magnesium metals are still complex rarely explored dates back [55] to. Th 1993is is [56 also]. Subsequent true for investigationsmagnesium, withalthough s-block the first metals example focused of [an57 –NHC68] largely–magnesium on anionic complex ligands dates becauseback to of1993 the [56] weak. magnesium–NHCSubsequent investigations bond [69 with–74]. s For-block magnesium–NHC metals focused [57 complexes,–68] largelyexamples on anionic of liga saturatednds because [75] of and benzannulatedthe weak magnesium [76,77] NHCs–NHC remain bond [69 extraordinarily–74]. For magnesium scarce. We–NHC hypothesized complexes, that examples transmetalation of saturated from magnesium–NHCs[75] and benzannulated should be[76,77 an exceptional] NHCs remain mild method extraordinar to synthesizeily scarc NHCe. We complexes. hypothesized In particular, that wetransmetalation were hoping for from a suppression magnesium– ofNHCs carbene-dimerization should be an exceptional processes mild as method well as ato beneficialsynthesize template NHC effcomplexes.ect by the magnesiumIn particular, metal.we were Accordingly, hoping for a suppression we were intrigued of carbene by-dimerization the low cost processes as well as as easewell of handlingas a beneficial of the template related magnesium effect by the compounds.magnesium metal. Inspiration Accordingly, came especiallywe were intrigued from two by reportsthe low in thecost literature, as well as in ease which of thehandling transmetalation of the related of anmagnesium anionic NHCcompounds. ligand toInspiration iron [73] came and ofespecially an acyclic diaminocarbenefrom two reports ligand in theto literature, copper [in78 which] was the reported. transmetalation In light of an the anionic recent NHC report ligand of heavy to iron alkaline [73] earth–NHCand of an complexesacyclic diaminocarbene embedded in ligand tridentate to copper coordination [78] was environmentsreported. In light [79 ],of we the decided recent report to explore of theheavy transmetalation alkaline earth from–NHC magnesium–NHCs complexes embedded in more in tridentate detail. Herein, coordination we report environment a convenients [79] method, we fordecided the synthesis to explore of the late-transition-metal transmetalation from complexes magnesium with–NHCs tridentate in more ligands detail. Herein, with π -acidicwe report NHCs a convenient method for the synthesis of late-transition-metal complexes with tridentate ligands with based on transmetalation from magnesium complexes. Notably, other routes commonly applied [80] π-acidic NHCs based on transmetalation from magnesium complexes. Notably, other routes failed entirely in our hands or gave low yields and/or impure products. Our results hence suggest commonly applied [80] failed entirely in our hands or gave low yields and/or impure products. Our transmetalation from magnesium–NHCs as a general and convenient method to access π-acidic and results hence suggest transmetalation from magnesium–NHCs as a general and convenient method chelating NHC complexes with high yields. to access π-acidic and chelating NHC complexes with high yields. 2. Results and Discussion 2. Results and Discussion Following our computational predictions [36,37], we decided to synthesize 2,6-pyridine diNHC Following our computational predictions [36,37], we decided to synthesize 2,6-pyridine diNHC (CNC)(CNC) complexes complexes withwith bulky 2,6 2,6-diisopropylphenyl-diisopropylphenyl
Recommended publications
  • Porphyrin Carbene Complexes: (5,10,15,20-Tetra-P-Tolylporphyrinato )
    Chemistry Publications Chemistry 8-1994 Properties and Molecular Structures of Osmium(ll) Porphyrin Carbene Complexes: (5,10,15,20-Tetra-p-tolylporphyrinato )osmium Di-p-tolylmethylidene and (5,10,15,20-Tetra-p- tolylporphyrinato)osmium (Trimethylsilyl)methylidene Jean-Pierre Djukic Iowa State University Daniel A. Smith Iowa State University Victor G. Young Jr. Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs L. Keith Woo IowaP Satrate of U ntheiversitCyhe, kmiwoo@istryas Ctaommonte.edu s The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/727. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Properties and Molecular Structures of Osmium(ll) Porphyrin Carbene Complexes: (5,10,15,20-Tetra-p-tolylporphyrinato )osmium Di-p- tolylmethylidene and (5,10,15,20-Tetra-p-tolylporphyrinato)osmium (Trimethylsilyl)methylidene Abstract The first molecular structures of two (porphyrinato)osmium(II) alkylidene complexes are described. The carbene fragments of (5,10,15,20-tetra-p-tolylporphyrinato)osmium (trimethylsilyl) methylidene (1) and (5,10,15,20-tetra-p-tolylporphyrinato)osmium di-p-tolylmethylidene (2) adopt different conformations in the solid state. With respect to the porphyrin ring nitrogen atoms, a staggered conformation is found for the complex 1 carbene moiety (dos-e = 1.
    [Show full text]
  • Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007
    Baran Group Meeting Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007 Ernst Otto Fischer (1918 - ) Other Types of Stabilized Carbenes: German inorganic chemist. Born in Munich Schrock carbene, named after Richard R. Schrock, is nucleophilic on November 10, 1918. Studied at Munich at the carbene carbon atom in an unpaired triplet state. Technical University and spent his career there. Became director of the inorganic Comparision of Fisher Carbene and Schrock carbene: chemistry institute in 1964. In the 1960s, discovered a metal alkylidene and alkylidyne complexes, referred to as Fischer carbenes and Fischer carbynes. Shared the Nobel Prize in Chemistry with Geoffery Wilkinson in 1973, for the pioneering work on the chemistry of organometallic compounds. Schrock carbenes are found with: Representatives: high oxidation states Isolation of first transition-metal carbene complex: CH early transition metals Ti(IV), Ta(V) 2 non pi-acceptor ligands Cp2Ta CH N Me LiMe Me 2 2 non pi-donor substituents CH3 (CO) W CO (CO)5W 5 (CO)5W A.B. Charette J. Am. Chem. Soc. 2001, 123, 11829. OMe O E. O. Fischer, A. Maasbol, Angew. Chem. Int. Ed., 1964, 3, 580. Persistent carbenes, isolated as a crystalline solid by Anthony J. Arduengo in 1991, can exist in the singlet state or the triplet state. Representative Fischer Carbenes: W(CO) Cr(CO) 5 5 Fe(CO)4 Mn(CO)2(MeCp) Co(CO)3SnPh3 Me OMe Ph Ph Ph NEt2 Ph OTiCp2Cl Me OMe Foiled carbenes were defined as "systems where stabilization is Fischer carbenes are found with : obtained by the inception of the facile reaction which is foiled by the impossibility of attaining the final product geometry".
    [Show full text]
  • Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media
    catalysts Article Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media Gonçalo A. O. Tiago 1, Kamran T. Mahmudov 1,2,*, M. Fátima C. Guedes da Silva 1,* , Ana P. C. Ribeiro 1,* , Luís C. Branco 3, Fedor I. Zubkov 4 and Armando J. L. Pombeiro 1 1 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal; [email protected] (G.A.O.T.); [email protected] (A.J.L.P.) 2 Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan 3 LAQV-REQUINTE, Departamento de Química, Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; [email protected] 4 Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian; [email protected] * Correspondence: [email protected] or [email protected] (K.T.M.); [email protected] (M.F.C.G.d.S.); [email protected] (A.P.C.R.) Received: 22 February 2019; Accepted: 15 March 2019; Published: 20 March 2019 0 Abstract: The novel Ag(I) and Cu(II) coordination polymers [Ag(m3-1κO;2:3κO ;4κN-HL)]n·n/2H2O(1) − and [Cu(en)2(m-1κO;2κN-L)]n·nH2O(2) [HL = 2-(2-(1-cyano-2-oxopropylidene)hydrazinyl)benzene sulfonate] were synthesized and characterized by IR and ESI-MS spectroscopies, elemental and single crystal X-ray diffraction analyses.
    [Show full text]
  • Trimethylsilyl Trifluoromethanesulfonate-Mediated Additions to Acetals, Nitrones, and Aminals Chelsea Safran
    University of Richmond UR Scholarship Repository Honors Theses Student Research 4-1-2013 Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals Chelsea Safran Follow this and additional works at: http://scholarship.richmond.edu/honors-theses Recommended Citation Safran, Chelsea, "Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals" (2013). Honors Theses. Paper 71. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals By Chelsea Safran Honors Thesis In Program In Biochemistry and Molecular Biology University of Richmond Richmond, VA Spring 2012 Advisor: Dr. C. Wade Downey This thesis has been accepted as part of the honors requirements in the Program in Biochemistry and Molecular Biology ______________________________ _________________ (advisor signature) (date) ______________________________ _________________ (reader signature) (date) Table of Contents i. Acknowledgements ii ii. Abstract iii iii. Chapter I: Introduction 1-4 iv. Chapter II: Amides 4-15 v. Chapter III: I. Bisthione Synthesis 16-18 II. Reactions with other N,O-acetals 18-22 vi. Chapter IV: I. Additions to Nitrones 22-25 II. Future Work 25 vii. Chapter V: Experimental I. N,O-acetal Formation 25-28 II. Addition to Nitrones 28-29 viii. Chapter VI: References 30 i Acknowledgments I would like to acknowledge my research Dr. Wade Downey for all of his time and dedication to my research for the past two years.
    [Show full text]
  • N-Heterocyclic Carbenes (Nhcs)
    Baran Lab N - H e t e r o c y c l i c C a r b e n e s ( N H C s ) K. J. Eastman An Introduction to N-heterocyclic Carbenes: How viable is resonance contributer B? Prior to 1960, a school of thought that carbenes were too reactive to be smaller isolated thwarted widespread efforts to investigate carbene chemistry. base ! N N N N R R R R Perhaps true for the majority of carbenes, this proved to be an inaccurate X- assessment of the N-heterocyclic carbenes. H longer Kirmse, W. Angerw. Chem. Int. Ed. 2004, 43, 1767-1769 In the early 1960's Wanzlick (Angew. Chem. Int. Ed. 1962, 1, 75-80) first investigated the reactivity and stability of N-heterocyclic carbenes. Attractive Features of NHCs as Ligands for transition metal catalysts: Shortly thereafter, Wanzlick (Angew. Chem. Int. Ed. 1968, 7, 141-142) NHCs are electron-rich, neutral "#donor ligands (evidenced by IR frequency of reported the first application of NHCs as ligands for metal complexes. CO/metal/NHC complexes). Surprisingly, the field of of NHCs as ligands in transition metal chemistry Electron donating ability of NHCs span a very narrow range when compared to remained dormant for 23 years. phosphine ligands In 1991, a report by Arduengo and co-workers (J. Am. Chem. Soc. 1991, Electronics can be altered by changing the nature of the azole ring: 113, 361-363) on the extraodinary stability, isolation and storablility of benzimidazole<imidazole<imidazoline (order of electron donating power). crystalline NHC IAd. NHC-metal complex stability: NaH, DMSO, MeOH N N N N + H2 + NaCl NHCs form very strong bonds with the majority of metals (stronger than Cl- phosphines!) H IAd N-heterocyclic carbenes are electronically (orbital overlap) and sterically (Me vs.
    [Show full text]
  • An Investigation of N-Heterocyclic Carbene Carboxylates
    AN INVESTIGATION OF N-HETEROCYCLIC CARBENE CARBOXYLATES: INSIGHT INTO DECARBOXYLATION, A TRANSCARBOXYLATION REACTION, AND SYNTHESIS OF HYDROGEN BONDING PRECURSORS by Bret Ryan Van Ausdall A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry The University of Utah May 2012 Copyright © Bret Ryan Van Ausdall 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Bret Ryan Van Ausdall has been approved by the following supervisory committee members: Janis Louie , Chair 7-8-2011 Date Approved Cynthia Burrows , Member 7-8-2011 Date Approved Thomas Richmond , Member 7-8-2011 Date Approved Matthew S. Sigman , Member 7-8-2011 Date Approved Debra Mascaro , Member 7-8-2011 Date Approved and by Henry S. White , Chair of the Department of Chemistry and by Charles A. Wight, Dean of The Graduate School. ABSTRACT A series of 1,3-disubstituted-2-imidazolium carboxylates, an adduct of CO2 and N-heterocyclic carbenes, was synthesized and characterized using single crystal X-ray, thermogravimetric, IR, and NMR analysis. The TGA analysis of the imidazolium carboxylates shows that as steric bulk on the N-substituent increases, the ability of the NHC-CO2 to decarboxylate increases. Single crystal X-ray analysis shows that the torsional angle of the carboxylate group and the C-CO2 bond length with respect to the imidazolium ring is dependent on the steric bulk of the N-substituent. Rotamers in the t unit cell of a single crystal of I BuPrCO2 (2f) indicate that the C-CO2 bond length increases as the N-substituents rotate toward the carboxylate moiety, which suggests that rotation of the N-substituents through the plane of the C-CO2 bond may be involved in the bond breaking event to release CO2.
    [Show full text]
  • Divergent Enantioselective Synthesis of Hapalindole-Type Alkaloids Using Catalytic Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Divergent enantioselective synthesis of hapalindole-type alkaloids using catalytic Cite this: Chem. Sci.,2016,7,4725 asymmetric hydrogenation of a ketone to construct the chiral core structure† Yang Liu,‡a Li-Jie Cheng,‡a Hai-Tao Yue,a Wen Che,a Jian-Hua Xie*a and Qi-Lin Zhouab A divergent enantioselective approach to hapalindole-type alkaloids is described. The route features a ruthenium-catalyzed asymmetric hydrogenation of a ketone via DKR to construct the chiral trans-1- indolyl-2-isopropenylcyclohexane skeleton and a switchable sequence of methylation and acetylation/ aldol reaction to access a chiral quaternary stereocenter. (+)-Hapalindole Q (1, 13 steps, 5.9% overall Received 15th February 2016 yield), (À)-12-epi-hapalindole Q isonitrile (2, 15 steps, 5.5% overall yield), (À)-hapalindole D (3, 14 steps, Accepted 12th April 2016 2.3% overall yield), and (+)-12-epi-fischerindole U isothiocyanate (4, 14 steps, 3.0% overall yield) were Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c6sc00686h synthesized in 13–15 steps from a commercially available material to demonstrate the application of this www.rsc.org/chemicalscience approach. Introduction (+)-p-menth-1-en-9-ol.3,5f However, only one catalytic enantiose- lective synthesis of a hapalindole-type alkaloid has been re- 7 Owing to the unique and diverse molecular architectures of ported: Kinsman and Kerr used an organocatalyzed hapalindole-type alkaloids and their broad range of biological asymmetric Diels–Alder reaction as a key step in the synthesis of activities, they have recently attracted great interest as synthetic (+)-hapalindole Q (1).
    [Show full text]
  • The Chemistry of Carbene-Stabilized
    THE CHEMISTRY OF CARBENE-STABILIZED MAIN GROUP DIATOMIC ALLOTROPES by MARIHAM ABRAHAM (Under the Direction of Gregory H. Robinson) ABSTRACT The syntheses and molecular structures of carbene-stabilized arsenic derivatives of 1 1 i 1 1 AsCl3 (L :AsCl3 (1); L : = :C{N(2,6- Pr2C6H3)CH}2), and As2 (L :As–As:L (2)), are presented herein. The potassium graphite reduction of 1 afforded the carbene-stabilized diarsenic complex, 2. Notably, compound 2 is the first Lewis base stabilized diatomic molecule of the Group 13–15 elements, in the formal oxidation state of zero, in the fourth period or lower of the Periodic Table. Compound 2 contains one As–As σ-bond and two lone pairs of electrons on each arsenic atom. In an effort to study the chemistry of the electron-rich compound 2, it was combined with an electron-deficient Lewis acid, GaCl3. The addition of two equivalents of GaCl3 to 2 resulted in one-electron oxidation of 2 to 1 1 •+ – •+ – give [L :As As:L ] [GaCl4] (6 [GaCl4] ). Conversely, the addition of four equivalents of GaCl3 to 2 resulted in two- electron oxidation of 2 to give 1 1 2+ – 2+ – •+ [L :As=As:L ] [GaCl4 ]2 (6 [GaCl4 ]2). Strikingly, 6 represents the first arsenic radical to be structurally characterized in the solid state. The research project also explored the reactivity of carbene-stabilized disilicon, (L1:Si=Si:L1 (7)), with borane. The reaction of 7 with BH3·THF afforded two unique compounds: one containing a parent silylene (:SiH2) unit (8), and another containing a three-membered silylene ring (9).
    [Show full text]
  • Photochemical Generation of Carbenes and Ketenes from Phenanthrene-Based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene
    Colby College Digital Commons @ Colby Honors Theses Student Research 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene Tarini S. Hardikar Student Tarini Hardikar Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Organic Chemistry Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Hardikar, Tarini S. and Hardikar, Tarini, "Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene" (2017). Honors Theses. Paper 948. https://digitalcommons.colby.edu/honorstheses/948 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR A Thesis Presented to the Department of Chemistry, Colby College, Waterville, ME In Partial Fulfillment of the Requirements for Graduation With Honors in Chemistry SUBMITTED MAY 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR Approved: (Mentor: Dasan M. Thamattoor, Professor of Chemistry) (Reader: Rebecca R. Conry, Associate Professor of Chemistry) “NOW WE KNOW” - Dasan M. Thamattoor Vitae Tarini Shekhar Hardikar was born in Vadodara, Gujarat, India in 1996. She graduated from the S.N.
    [Show full text]
  • Carbene Metal Amide Photoemitters: Tailoring Conformationally Flexible Amides for Full Color Range Emissions Including White-Emi
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Carbene metal amide photoemitters: tailoring conformationally flexible amides for full color Cite this: Chem. Sci., 2020, 11,435 † All publication charges for this article range emissions including white-emitting OLED have been paid for by the Royal Society a b b of Chemistry Alexander S. Romanov, * Saul T. E. Jones, Qinying Gu, Patrick J. Conaghan, b Bluebell H. Drummond, b Jiale Feng, b Florian Chotard, a Leonardo Buizza, b Morgan Foley, b Mikko Linnolahti, *c Dan Credgington *b and Manfred Bochmann *a Conformationally flexible “Carbene–Metal–Amide” (CMA) complexes of copper and gold have been developed based on a combination of sterically hindered cyclic (alkyl)(amino)carbene (CAAC) and 6- and 7-ring heterocyclic amide ligands. These complexes show photoemissions across the visible spectrum with PL quantum yields of up to 89% in solution and 83% in host-guest films. Single crystal X-ray diffraction and photoluminescence (PL) studies combined with DFT calculations indicate the important Creative Commons Attribution 3.0 Unported Licence. role of ring structure and conformational flexibility of the amide ligands. Time-resolved PL shows efficient delayed emission with sub-microsecond to microsecond excited state lifetimes at room Received 12th September 2019 À temperature, with radiative rates exceeding 106 s 1. Yellow organic light-emitting diodes (OLEDs) based Accepted 12th November 2019 on a 7-ring gold amide were fabricated by thermal vapor deposition, while the sky-blue to warm-white DOI: 10.1039/c9sc04589a mechanochromic behavior of the gold phenothiazine-5,5-dioxide complex enabled fabrication of the rsc.li/chemical-science first CMA-based white light-emitting OLED.
    [Show full text]
  • Transmetalation
    Organic Chemistry IV Organometallic Chemistry for Organic Synthesis Prof. Paul Knochel LMU 2015 1 OCIV Prüfung: Freitag 17. Juli 2015 9-11 Uhr Wieland HS Wiederholungsklausur: Donnerstag 17. September 2015 12-14 Uhr Baeyer HS 2 Recommended Literature 1. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Fifth Edition Part A and Part B, Springer, 2008, ISBN-13: 978-0-387-68346-1 2. R. Brückner, Organic Mechanisms, Springer, 2010, ISBN: 978-3-642- 03650-7 3. L. Kürti, B. Czako, Strategic applications of named reactions in organic synthesis, Elsevier, 2005, ISBN-13: 978-0-12-429785-2 4. N. Krause, Metallorganische Chemie, Spektrum der Wissenschaft, 1996, ISBN: 3-86025-146-5 5. R. H. Crabtree, The organometallic chemistry of transition metals, Wiley- Interscience, 2005, ISBN: 0-471-66256-9 6. M. Schlosser, Organometallics in Synthesis – A manual, 2nd edition, Wiley, 2002, ISBN: 0-471-98416-7 7. K. C. Nicolaou, T. Montagnon, Molecules that changed the world, Wiley- VCH, 2008, ISBN: 978-527-30983-2 8. J. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, Palgrave Macmillan, 2009, ISBN-13: 978-1891389535 9. P. Knochel, Handbook of Functionalized Organometallics, Volume 1 und 2, Wiley-VCH, 2005, ISBN-13: 978-3-527-31131-6 3 Importance of organometallics 4 Industrial production Industrial annual production of various organometallics Organometallic production [T / year] Si 700 000 Pb 600 000 Al 50 000 Sn 35 000 Li 900 5 Organometallic reagents and catalysts for the organic synthesis 6 Historic point of view 1757 - Louis Cadet de Gassicourt (parisian apothecary) E. Frankland (1848), University of Marburg, initial goal: synthesis of an ethyl radical Universität Marburg (1848) 7 Organometallic chemistry of the XIX century 8 Organometallic chemistry of the XIX century 9 Reactivity of the Grignard reagents 10 Historic point of view Victor Grignard (1900) Karl Ziegler (1919) 11 Historic point of view first transition metal organometallics: Hein (1919) 12 Historic point of view 1951 : synthesis of ferrocene Pauson (Scotland) 7.
    [Show full text]
  • Arenechromium Tricarbonyl Complexes: Conformational
    η6 – ARENECHROMIUM TRICARBONYL COMPLEXES: CONFORMATIONAL ANALYSIS, STEREOCONTROL IN NUCLEOPHILIC ADDITION AND APPLICATIONS IN ORGANIC SYNTHESIS by HARINANDINI PARAMAHAMSAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Prof. Anthony J. Pearson Department of Chemistry CASE WESTERN RESERVE UNIVERSITY May 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Harinandini Paramahamsan candidate for the Ph.D. degree*. (signed) Prof. Philip P. Garner (Chair of the Committee, Department of Chemistry, CWRU) Prof. Anthony J. Pearson (Department of Chemistry, CWRU) Prof. Fred L. Urbach (Department of Chemistry, CWRU) Dr. Zwong-Wu Guo (Department of Chemistry, CWRU) Dr. Stuart J. Rowan (Department of Macromolecular Science and Engineering, CWRU) Date: 14th January 2005 *We also certify that written approval has been obtained for any propriety material contained therein. To Amma, Naina & all my Teachers Table of Contents List of Tables………………………………………………………………………..……iv List of Figures…………………………………………………………………….…........vi List of Schemes…………………………………………………………………….….….ix List of Equations………………………………………………………...……….……….xi Acknowledgements………………………………………………………….…..……….xii List of Abbreviations……………………………………………………………………xiv Abstract………………………………………………………………………………….xvi CHAPTER I........................................................................................................................ 1 I.1 Structure and Bonding ...........................................................................................
    [Show full text]