Total Synthesis of Aspeverin and Penicimutamide a Part Ii

Total Page:16

File Type:pdf, Size:1020Kb

Total Synthesis of Aspeverin and Penicimutamide a Part Ii PART I: TOTAL SYNTHESIS OF ASPEVERIN AND PENICIMUTAMIDE A PART II: TOTAL CHEMICAL SYNTHESIS OF ALL-L AND ALL-D KRAS(G12V) AND THE FURTHER EXPLORATION OF ISONITRILE- MEDIATED PEPTIDE LIGATIONS A Dissertation Presented to the Faculty of the Weill Cornell Graduate School of Medical Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Adam M. Levinson January 2017 © Adam M. Levinson 2016 PART I: TOTAL SYNTHESIS OF ASPEVERIN AND PENICIMUTAMIDE A PART II: TOTAL CHEMICAL SYNTHESIS AND FOLDING OF ALL-L AND ALL-D KRAS(G12V) AND THE FURTHER EXPLORATION OF ISONITRILE- MEDIATED PEPTIDE LIGATIONS Adam M. Levinson Cornell University 2016 Part I: Fungi serve as a rich source of prenylated indole alkaloids, which exhibit important biological activities including antiproliferative, antibiotic, and antihelminthic properties. Their promise as therapeutics, coupled with their diverse and complex molecular architectures, have made prenylated indole alkaloids popular targets for synthetic chemists in order to probe their activities and develop new synthetic methods. Herein, we describe the first total synthesis of aspeverin, a unique bridged carbamate-containing prenylated indole alkaloid isolated from Aspergillus versicolor. We also describe the synthesis of a closely related congener, penicimutamide A, isolated from a mutant strain of Penicillium purpurogenum. These molecules belong to a recently described subclass of prenylated indoles thought to be degradation products of parent bicyclo[2.2.2]diazaoctane congeners. In this research, we showcase a highly diastereoselective Diels−Alder cycloaddition, followed by an electrophilic Rawal arylation – reductive indolization to forge the pentacyclic scaffold of these natural products. A novel sequence for installation of a geminal dimethyl group was also developed. This involved a carefully devised transannular carbamate cyclization followed by a ring-opening / alkylation sequence. Finally, the bridging carbamate common to both of these natural products was forged using a hypervalent iodine(III)-mediated oxidative cyclization. Part II: The KRas protein is a small GTP-binding protein important in cellular signaling, involved in growth, differentiation, motility, and survival. Oncogenic mutated Ras is involved in approximately 30% of all cancers. Despite the identification of this target in human cancers over 30 years ago, no small molecules targeting KRas have been successful in the clinic, and this target has long been considered “undruggable.” In an effort to develop novel therapeutics, this project seeks to complete a total synthesis of an all-D amino acid variant of the KRas protein. This synthetic protein enantiomer will be used as a tool for mirror-image yeast surface display studies to identify all-D residue peptide ligands for KRas. In this section, the synthesis of biotinylated variants of KRas(G12V) consisting of all-L and all-D amino acid residues is described. Moreover, we demonstrate that this enantiomeric pair of 166-residue proteins bind to nucleotide substrates as well as Ras-binding peptides with enantiospecificity. During our studies on the total synthesis of KRas, we further demonstrate the utility of isonitrile-mediated activation of C-terminal thiocarboxylic acids for peptide ligation. This method is advantageous, in that it does not rely on a cysteine disconnection and takes place under mild conditions in polar aprotic organic solvents. Beyond a synthesis of KRas, we also demonstrate that isonitrile-mediated ligation and native chemical ligation strategies can be combined and applied toward a novel synthesis of HIV-1 protease I66A. BIOGRAPHICAL SKETCH Adam Marc Levinson was born in New York, New York in 1988. He spent a majority of his childhood growing up in Atlanta, Georgia. He entered Emory University in 2007, initially on a pre-medical school track. He ultimately changed his major and career interests to chemistry after taking sophomore organic chemistry with Professors Frank McDonald and Simon Blakey. During Summer 2009, Adam was exposed chemical research while working in the neuropharmacology laboratory of Professor Alvin V. Terry, Jr. at the Medical College of Georgia. Gaining a cursory understanding of spectrophotometric enzyme assays with small molecules, he became interested in how to actually make the molecules he was testing. He spent the remaining two years of college working in the synthetic organic chemistry laboratory of Professor Huw M. L. Davies studying asymmetric reactions of rhodium carbenoids. During Summer 2010, Adam was also fortunate enough to work as an intern in process chemistry at Amgen in Thousand Oaks, CA under the direction of Filisaty Vounatsos. His experiences there helped to solidify his career aspirations of discovering new therapeutics to treat disease. After graduating from Emory University with highest honors in 2011, Adam went on to complete as Masters degree at Columbia University, working under the direction of Professor Scott Snyder in the areas of polyphenol and halogenated sesquiterpene natural products synthesis. Adam later transferred in 2013 to the Tri-Institutional PhD Program in Chemical Biology, studying organic synthesis in the laboratory of Professor Samuel J. Danishefsky. Starting in Fall 2016, Adam will be working in Discovery Chemistry at Eli Lilly and Company in Indianapolis, IN. ACKNOWLEDGMENTS There are many people to thank for guiding me through my experiences at Memorial Sloan Kettering. Foremost, it has been an honor to learn under the direction of Sam Danishefsky. Having taken his organic synthesis class in 2012, Sam’s unique style of teaching helped me to learn not only the basics of named reactions, but more importantly the strategies and logic of synthesis. His historical and encyclopedic knowledge of chemistry is truly remarkable, and it has been a privilege to continue learning from him during my time in TPCB. Sam’s approach toward research, with a constant eye on changing the lives of patients here at MSKCC through basic science, has taught me to always keep the overarching goals of research in mind. You are an inspirational scientist and person, and I cannot thank you enough for the experience you have given me. I would especially also like to thank Sarah Danishefsky for her encouragement and help during the past few years. My committee members Minkui Luo, Sean Brady, and Derek Tan have been instrumental to my graduate success. Coming from a more traditional chemistry background, my interactions with them during meetings have challenged me to expand my knowledge and expertise within the field of chemical biology. I thank Gabriela Chiosis for her role in my thesis defense as well. Derek, in particular, has been an incredible mentor to me, and I cannot express enough thanks. Spending time in your chemical biology course, in journal club, and during joint group meetings, you have taught me how to think critically about problems in organic synthesis and in chemical biology, and you have helped me to become a much better communicator of science. I would like to give thanks to certain labmates, with whom I have spent a great deal of time learning with. Adam Trotta has been by my side all the way through graduate school at Columbia University and in TPCB. You are an extremely bright and talented guy, and you have taught me a ton of chemistry over the years. I know you will go on to do great things after your PhD. Dr. Steven Townsend was also instrumental to my success when I first joined the lab. Your mentorship helped me to complete my total synthesis project, and I especially enjoyed talking about and eating Pizza Park with you! Working with Dr. Andrew Roberts has also been invaluable to my education. Thank you for teaching me the basics of peptide chemistry, for helping me to choose the right experiments, for providing endless banter on synthesis strategies and reaction mechanisms, and for pushing on me your perfectionist attitude when it comes to papers and presentations. Thank you also for selflessly and painstakingly reading this entire thesis multiple times. You are a great friend, and you have made me a much better chemist than I would otherwise be. I look forward to seeing the science that comes out of your independent career! To the rest of the current Danishefsky lab – Dr. Baptiste Aussedat, Dr. Bill Walkowicz, and Dr. Abram Axelrod – thank you for providing a great work environment. You have made graduate school a fun place to be, and I know you will all be very successful. For the second part of my described work, I must acknowledge the other Danishefsky lab members who have taken part in building this project. This includes Dr. Gardner Creech, Dr. Ting Wang, Dr. Andrew Roberts, and Dr. Michael Peterson. Dr. John McGee was instrumental to our project, contributing biochemical and biophysical characterization of our synthetic proteins. I thank him and Professor Gregory Verdine for kindly devoting their time and energy to this project. I need to thank my family, Jane, Keith, Josh, and Amy for raising me to achieve the best I can and for making me who I am. I would not be at this point in school without your support, love and encouragement throughout the years. I would also like to thank my in-laws, Sally, Henry, Bob, and Marge. It has been great being in the same city with you for all these years, and I am so lucky to have four more parents that I can truly call parents. To my dog, Dooley- Thank you for filling my years of graduate school with endless amounts of amusement, and for your constant reminder not to take life too seriously! Finally, I need to thank my wife, Dorothy Abrams. You have been my rock and guide throughout graduate school. You know as well as I do, that your support throughout this process has brought me to where I am. You are my best friend, my voice of reason, and the best partner I could ask for in life.
Recommended publications
  • Porphyrin Carbene Complexes: (5,10,15,20-Tetra-P-Tolylporphyrinato )
    Chemistry Publications Chemistry 8-1994 Properties and Molecular Structures of Osmium(ll) Porphyrin Carbene Complexes: (5,10,15,20-Tetra-p-tolylporphyrinato )osmium Di-p-tolylmethylidene and (5,10,15,20-Tetra-p- tolylporphyrinato)osmium (Trimethylsilyl)methylidene Jean-Pierre Djukic Iowa State University Daniel A. Smith Iowa State University Victor G. Young Jr. Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs L. Keith Woo IowaP Satrate of U ntheiversitCyhe, kmiwoo@istryas Ctaommonte.edu s The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/727. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Properties and Molecular Structures of Osmium(ll) Porphyrin Carbene Complexes: (5,10,15,20-Tetra-p-tolylporphyrinato )osmium Di-p- tolylmethylidene and (5,10,15,20-Tetra-p-tolylporphyrinato)osmium (Trimethylsilyl)methylidene Abstract The first molecular structures of two (porphyrinato)osmium(II) alkylidene complexes are described. The carbene fragments of (5,10,15,20-tetra-p-tolylporphyrinato)osmium (trimethylsilyl) methylidene (1) and (5,10,15,20-tetra-p-tolylporphyrinato)osmium di-p-tolylmethylidene (2) adopt different conformations in the solid state. With respect to the porphyrin ring nitrogen atoms, a staggered conformation is found for the complex 1 carbene moiety (dos-e = 1.
    [Show full text]
  • The Role of Biocatalysis in the Asymmetric Synthesis of Alkaloids – an Update Cite This: RSC Adv.,2021,11, 28223 Emmanuel Cigan, † Bettina Eggbauer, † Joerg H
    RSC Advances REVIEW View Article Online View Journal | View Issue The role of biocatalysis in the asymmetric synthesis of alkaloids – an update Cite this: RSC Adv.,2021,11, 28223 Emmanuel Cigan, † Bettina Eggbauer, † Joerg H. Schrittwieser * and Wolfgang Kroutil Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine Received 29th May 2021 biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes Accepted 30th July 2021 towards these important natural products. The present review summarises modern developments in DOI: 10.1039/d1ra04181a chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to rsc.li/rsc-advances take an increasingly ‘central’ role. Creative Commons Attribution 3.0 Unported Licence. 1 Introduction originally derived – but also amides, nitro, and nitroso compounds, while excluding primary metabolites such as The alkaloids are a large and structurally diverse group of amino acids, proteins, and porphyrins.1a,d Between 25 000 and nitrogen-containing secondary metabolites that
    [Show full text]
  • Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media
    catalysts Article Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media Gonçalo A. O. Tiago 1, Kamran T. Mahmudov 1,2,*, M. Fátima C. Guedes da Silva 1,* , Ana P. C. Ribeiro 1,* , Luís C. Branco 3, Fedor I. Zubkov 4 and Armando J. L. Pombeiro 1 1 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal; [email protected] (G.A.O.T.); [email protected] (A.J.L.P.) 2 Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan 3 LAQV-REQUINTE, Departamento de Química, Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; [email protected] 4 Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian; [email protected] * Correspondence: [email protected] or [email protected] (K.T.M.); [email protected] (M.F.C.G.d.S.); [email protected] (A.P.C.R.) Received: 22 February 2019; Accepted: 15 March 2019; Published: 20 March 2019 0 Abstract: The novel Ag(I) and Cu(II) coordination polymers [Ag(m3-1κO;2:3κO ;4κN-HL)]n·n/2H2O(1) − and [Cu(en)2(m-1κO;2κN-L)]n·nH2O(2) [HL = 2-(2-(1-cyano-2-oxopropylidene)hydrazinyl)benzene sulfonate] were synthesized and characterized by IR and ESI-MS spectroscopies, elemental and single crystal X-ray diffraction analyses.
    [Show full text]
  • Trimethylsilyl Trifluoromethanesulfonate-Mediated Additions to Acetals, Nitrones, and Aminals Chelsea Safran
    University of Richmond UR Scholarship Repository Honors Theses Student Research 4-1-2013 Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals Chelsea Safran Follow this and additional works at: http://scholarship.richmond.edu/honors-theses Recommended Citation Safran, Chelsea, "Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals" (2013). Honors Theses. Paper 71. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals By Chelsea Safran Honors Thesis In Program In Biochemistry and Molecular Biology University of Richmond Richmond, VA Spring 2012 Advisor: Dr. C. Wade Downey This thesis has been accepted as part of the honors requirements in the Program in Biochemistry and Molecular Biology ______________________________ _________________ (advisor signature) (date) ______________________________ _________________ (reader signature) (date) Table of Contents i. Acknowledgements ii ii. Abstract iii iii. Chapter I: Introduction 1-4 iv. Chapter II: Amides 4-15 v. Chapter III: I. Bisthione Synthesis 16-18 II. Reactions with other N,O-acetals 18-22 vi. Chapter IV: I. Additions to Nitrones 22-25 II. Future Work 25 vii. Chapter V: Experimental I. N,O-acetal Formation 25-28 II. Addition to Nitrones 28-29 viii. Chapter VI: References 30 i Acknowledgments I would like to acknowledge my research Dr. Wade Downey for all of his time and dedication to my research for the past two years.
    [Show full text]
  • Divergent Enantioselective Synthesis of Hapalindole-Type Alkaloids Using Catalytic Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Divergent enantioselective synthesis of hapalindole-type alkaloids using catalytic Cite this: Chem. Sci.,2016,7,4725 asymmetric hydrogenation of a ketone to construct the chiral core structure† Yang Liu,‡a Li-Jie Cheng,‡a Hai-Tao Yue,a Wen Che,a Jian-Hua Xie*a and Qi-Lin Zhouab A divergent enantioselective approach to hapalindole-type alkaloids is described. The route features a ruthenium-catalyzed asymmetric hydrogenation of a ketone via DKR to construct the chiral trans-1- indolyl-2-isopropenylcyclohexane skeleton and a switchable sequence of methylation and acetylation/ aldol reaction to access a chiral quaternary stereocenter. (+)-Hapalindole Q (1, 13 steps, 5.9% overall Received 15th February 2016 yield), (À)-12-epi-hapalindole Q isonitrile (2, 15 steps, 5.5% overall yield), (À)-hapalindole D (3, 14 steps, Accepted 12th April 2016 2.3% overall yield), and (+)-12-epi-fischerindole U isothiocyanate (4, 14 steps, 3.0% overall yield) were Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c6sc00686h synthesized in 13–15 steps from a commercially available material to demonstrate the application of this www.rsc.org/chemicalscience approach. Introduction (+)-p-menth-1-en-9-ol.3,5f However, only one catalytic enantiose- lective synthesis of a hapalindole-type alkaloid has been re- 7 Owing to the unique and diverse molecular architectures of ported: Kinsman and Kerr used an organocatalyzed hapalindole-type alkaloids and their broad range of biological asymmetric Diels–Alder reaction as a key step in the synthesis of activities, they have recently attracted great interest as synthetic (+)-hapalindole Q (1).
    [Show full text]
  • Structural Features
    1 Structural features As defined by the International Union of Pure and Applied Chemistry gly- cans are structures of multiple monosaccharides linked through glycosidic bonds. The terms sugar and saccharide are synonyms, depending on your preference for Arabic (“sukkar”) or Greek (“sakkēaron”). Saccharide is the root for monosaccha- rides (a single carbohydrate unit), oligosaccharides (3 to 20 units) and polysac- charides (large polymers of more than 20 units). Carbohydrates follow the basic formula (CH2O)N>2. Glycolaldehyde (CH2O)2 would be the simplest member of the family if molecules of two C-atoms were not excluded from the biochemical repertoire. Glycolaldehyde has been found in space in cosmic dust surrounding star-forming regions of the Milky Way galaxy. Glycolaldehyde is a precursor of several organic molecules. For example, reaction of glycolaldehyde with propenal, another interstellar molecule, yields ribose, a carbohydrate that is also the backbone of nucleic acids. Figure 1 – The Rho Ophiuchi star-forming region is shown in infrared light as captured by NASA’s Wide-field Infrared Explorer. Glycolaldehyde was identified in the gas surrounding the star-forming region IRAS 16293-2422, which is is the red object in the centre of the marked square. This star-forming region is 26’000 light-years away from Earth. Glycolaldehyde can react with propenal to form ribose. Image source: www.eso.org/public/images/eso1234a/ Beginning the count at three carbon atoms, glyceraldehyde and dihydroxy- acetone share the common chemical formula (CH2O)3 and represent the smallest carbohydrates. As their names imply, glyceraldehyde has an aldehyde group (at C1) and dihydoxyacetone a carbonyl group (at C2).
    [Show full text]
  • Arenechromium Tricarbonyl Complexes: Conformational
    η6 – ARENECHROMIUM TRICARBONYL COMPLEXES: CONFORMATIONAL ANALYSIS, STEREOCONTROL IN NUCLEOPHILIC ADDITION AND APPLICATIONS IN ORGANIC SYNTHESIS by HARINANDINI PARAMAHAMSAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Prof. Anthony J. Pearson Department of Chemistry CASE WESTERN RESERVE UNIVERSITY May 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Harinandini Paramahamsan candidate for the Ph.D. degree*. (signed) Prof. Philip P. Garner (Chair of the Committee, Department of Chemistry, CWRU) Prof. Anthony J. Pearson (Department of Chemistry, CWRU) Prof. Fred L. Urbach (Department of Chemistry, CWRU) Dr. Zwong-Wu Guo (Department of Chemistry, CWRU) Dr. Stuart J. Rowan (Department of Macromolecular Science and Engineering, CWRU) Date: 14th January 2005 *We also certify that written approval has been obtained for any propriety material contained therein. To Amma, Naina & all my Teachers Table of Contents List of Tables………………………………………………………………………..……iv List of Figures…………………………………………………………………….…........vi List of Schemes…………………………………………………………………….….….ix List of Equations………………………………………………………...……….……….xi Acknowledgements………………………………………………………….…..……….xii List of Abbreviations……………………………………………………………………xiv Abstract………………………………………………………………………………….xvi CHAPTER I........................................................................................................................ 1 I.1 Structure and Bonding ...........................................................................................
    [Show full text]
  • Enantioselective Synthesis of (-)-Vallesine: Late- Stage C17-Oxidation Via Complex Indole Boronation
    Enantioselective synthesis of (-)-vallesine: late- stage C17-oxidation via complex indole boronation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Antropow, Alyssa H., et al., "Enantioselective synthesis of (-)-vallesine: late-stage C17-oxidation via complex indole boronation." Organic Letters 20, 12 (2018): p. 3647-50 doi 10.1021/ acs.orglett.8b01428 ©2018 Author(s) As Published 10.1021/acs.orglett.8b01428 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125882 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Org Lett Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 June 15. Published in final edited form as: Org Lett. 2018 June 15; 20(12): 3647–3650. doi:10.1021/acs.orglett.8b01428. Enantioselective Synthesis of (−)-Vallesine: Late-stage C17- Oxidation via Complex Indole Boronation Alyssa H. Antropow, Nicholas R. Garcia, Kolby L. White, and Mohammad Movassaghi* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Abstract The first enantioselective total synthesis of (−)-vallesine via a strategy that features a late-stage regioselective C17-oxidation, followed by a highly stereoselective transannular cyclization is reported. The versatility of this approach is highlighted by divergent synthesis of the archetypal alkaloid of this family, (+)-aspidospermidine, and an A-ring oxygenated derivative (+)- deacetylaspidospermine, the precursor to (−)-vallesine, from a common intermediate.
    [Show full text]
  • Electrochemistry and Photoredox Catalysis: a Comparative Evaluation in Organic Synthesis
    molecules Review Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis Rik H. Verschueren and Wim M. De Borggraeve * Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-7693 Received: 30 March 2019; Accepted: 23 May 2019; Published: 5 June 2019 Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis. Keywords: electrosynthesis; electrocatalysis; photocatalysis; photochemistry; electron transfer; redox catalysis; radical chemistry; organic synthesis; green chemistry 1. Introduction Both electrochemistry as well as photoredox catalysis have gone through a recent renaissance, bringing forth a whole range of both improved and new transformations previously thought impossible. In their growth, inspiration was found in older established radical chemistry, as well as from cross-pollination between the two toolboxes. In scientific discussion, photoredox catalysis and electrochemistry are often mentioned alongside each other. Nonetheless, no review has attempted a comparative evaluation of both fields in organic synthesis. Both research areas use electrons as reagents to generate open-shell radical intermediates. Because of the similar modes of action, many transformations have been translated from electrochemical to photoredox methodology and vice versa.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0056513 A1 Hedrick Et Al
    US 2017.0056513A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0056513 A1 Hedrick et al. (43) Pub. Date: Mar. 2, 2017 (54) THERAPEUTIC COMPOSITIONS Publication Classification COMPRISING N-ALKYL-HYDROXY POLYMERS (51) Int. Cl. A6II 47/48 (2006.01) (71) Applicant: INTERNATIONAL BUSINESS A6IR 48/00 (2006.01) MACHINES CORPORATION, A63L/73 (2006.01) Armonk, NY (US) (52) U.S. Cl. CPC ...... A61K 47/48192 (2013.01); A61 K3I/713 (72) Inventors: James Hedrick, San Jose, CA (US); (2013.01); A61K 48/00 (2013.01) Dylan BODAY, San Jose, CA (US); Jeannette GARCIA, San Jose, CA (US); Rudy WOJTECKI, San Jose, (57) ABSTRACT CA (US); Yi Yan YANG, The Nanos (SG); Chuan Yang. The Nanos (SG) The disclosure describes methods and therapeutic composi tions comprising polymers modified with N-alkyl-hydroxy (21) Appl. No.: 14/836,614 groups comprising one or more carbon atoms. The compo sitions are useful for gene delivery, and exhibit broad (22) Filed: Aug. 26, 2015 spectrum antiviral activity and low toxicity in vitro. Patent Application Publication Mar. 2, 2017 Sheet 1 of 2 US 2017/0056513 A1 10. 0.15 eq. Paraformaldehyde 2 9. 8 s 5 4. c 3. 2 s g & S As ss N. Concentration (ng) Figure 1A 1. 0.30 eg. Paraformaidehyde 9 - 8 f S 5 a 30 2 . xx 22---- 2 S. $, $ so tie is is S s & 9 y & Sy sys s & S Concentration (ng) Figure 1B Patent Application Publication Mar. 2, 2017. Sheet 2 of 2 US 2017/0056513 A1 0.75 eg.
    [Show full text]
  • Characterisation of the Reaction Mechanism Between Ammonia and Formaldehyde from the Topological Analysis of ELF and Catastrophe Theory Perspective
    Struct Chem DOI 10.1007/s11224-017-1024-x ORIGINAL RESEARCH Characterisation of the reaction mechanism between ammonia and formaldehyde from the topological analysis of ELF and catastrophe theory perspective Agnieszka Ćmikiewicz1 & Agnieszka J. Gordon1 & Sławomir Berski1 Received: 11 November 2016 /Accepted: 9 August 2017 # The Author(s) 2017. This article is an open access publication Abstract A prototypical reaction between ammonia and Introduction formaldehyde has been investigated at the DFT(M06)/6- 311++G(d,p) computational level using the Bonding The reaction of ammonia with formaldehyde was investigated Evolution Theory (BET). BET is a very useful tool for study- in 1835 by Liebig [1]. Among its products were hemiaminals— ing reaction mechanisms as it combines topological analysis molecular compounds containing amino and hydroxyl groups, of electron localisation function with the catastrophe theory. bound to the same carbon. Hemiaminal is an initial product of Each of two studied reactions: H2C=O + NH3 ↔ HO–C(H2)– the reaction between aldehyde or ketone and amine. NH2 (hemiaminal) and HO–C(H2)–NH2 ↔ HN = CH2 (Schiff Hemiaminals obtained from primary amines have been gener- base) + H2O consists of six steps. Formation of hemiaminal ally considered unstable [2]. In 2010, Barys et al. [3] developed starts from a nucleophillic attack of nitrogen lone pair in NH3 a new general method for stable hemiaminals preparation. The on the carbon atom in H2C=O and is subsequently followed synthesis has been performed using 4-amino-1,2,4-triazole and by hydrogen transfer within the N–H..O bridge. A Schiff base nitro-substituted benzaldehydes in acetonitrile [3].
    [Show full text]
  • A General N-Alkylation Platform Via Copper Metallaphotoredox and Silyl Radical Activation of Alkyl Halides
    ll Article A general N-alkylation platform via copper metallaphotoredox and silyl radical activation of alkyl halides Nathan W. Dow, Albert Cabre´, David W.C. MacMillan [email protected] Highlights General, room temperature N- alkylation via copper metallaphotoredox catalysis Broad reactivity across diverse alkyl bromides, N-heterocycles, and pharmaceuticals Convenient approach to N- cyclopropylation using easily handled bromocyclopropane Readily extended to functionalization of unactivated secondary alkyl chlorides Traditional substitution reactions between nitrogen nucleophiles and alkyl halides feature well-established, substrate-dependent limitations and competing reaction pathways under thermally induced conditions. Herein, we report that a metallaphotoredox approach, utilizing a halogen abstraction-radical capture (HARC) mechanism, provides a valuable alternative to conventional N-alkylation. This visible-light-induced, copper-catalyzed protocol is successful for coupling >10 classes of N-nucleophiles with diverse primary, secondary, or tertiary alkyl bromides. Moreover, this open-shell platform alleviates outstanding N-alkylation challenges regarding regioselectivity, direct cyclopropylation, and secondary alkyl chloride functionalization. Dow et al., Chem 7,1–16 July 8, 2021 ª 2021 Elsevier Inc. https://doi.org/10.1016/j.chempr.2021.05.005 Please cite this article in press as: Dow et al., A general N-alkylation platform via copper metallaphotoredox and silyl radical activation of alkyl halides, Chem (2021), https://doi.org/10.1016/j.chempr.2021.05.005
    [Show full text]