Part I. Inversion of Secondary Cyclic Grignard Reagents

Total Page:16

File Type:pdf, Size:1020Kb

Part I. Inversion of Secondary Cyclic Grignard Reagents This dissertation has been , 69-11,692 microfilmed exactly as received PECHHOLD, Engelbert, 1933- STUDIES OF THE BEHAVIOR AND GENERATION OF GARB ANIONS: PART I. INVERSION OF SECONDARY CYCLIC GRIGNARD REAGENTS. PART II. FRAGMENTATION OF AZOFORMATE SALTS AND ACYLAZO COMPOUNDS WITH BASES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan ©Copyright "by- Engelbert Pechhold 1969 STUDIES OF THE BEHAVIOR MD GENERATION OF CARBANIONS PART I. INVERSION OF SECONDARY CYCLIC GRIGNARD REAGENTS PART II. FRAGMENTATION OF AZOFORMATE SADIS AND ACYLAZO COMPOUNDS WITH BASES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Engelbert Pechhold * # # * * # The Ohio State University 1968 Approved by •pV-gpa.-t— Adviser Department of Chemistry DEDICATION To my wife, Ingrid, and my parents, whose love, understanding, and encouragement have made this venture possible. ii ACKNOWLEDaEMElWS I -wish to express my deepest appreciation to Professor Gideon Fraenkel for suggestinf^ this problem, and for his guidance and encouragement throughout the course of this research. His assistance in the preparation of this dissertation is gratefully acknowledged. It is an understatement to say that without his un­ usual courage of conviction and high standards for academic perfor­ mance, this work could not have come into being. I owe special debt of gratitude to my colleagues for many suimtü-ating discussions of chemical matters and otherwise. In particular, I wish to express my gratitute to Dr. Don Dix, Dr. Dave Mams, and James Morton, who gave me much insight in ny research. I wish also to thank Dr. Ralph Dougherty for his advice and help in interprepreting the mass spectra, Furthermore, I wish to thank Dr. C. J. Pedersen of Du Pont Company who provided us with dicyclohexyl-18-crown-6, and Dr. K. Greenlee of Chemical Samples Company who supplied us with a few alicyclic hydrocarbons. The National Institutes of Health and the United States Air Force are thanked for research assistantships which provided financial support during the course of this work. iii VITA March 10, 1953 ...... Born - Maehr. Ostrau, Czechoslovakia 1953 ..................... Chemotechniker (B.S.), Chemotechnikum Fresenius, Wieshaden, Germany 1955“1962 ............... Research Chemist, Chemische Werke Albert, Wiesbaden, Germany 1962-1968 ............... Research Assistant, Department of Chemistry, The Ohio State University, Columbus, Ohio PIEIDS OF STUDY Major Field; Organic Chemistry Minor Field; Inorganic Chemistry Chemistry of Carhanions Professor Gideon Fraenkel iv TABLE OB’ COWTEHTS Page DEDICATION........................ i ACKNOWLEDGEMENT...................................... ü VITA .................................... iv TABLES................................................ vil ILLUSTRATIONS......... viii PART I CHAPTER I I. INTRODUCTION AND HISTORICAL REVIEW Historical Background .......................... 1 Previous Research................... Ij. II. PURPOSE AND METHOD OF RESEARCH ................. 6 CHAPTER II EXPERIMEIWAL I. CHEMICALS...................................... 8 II. IDENTIFICATION OF SYWDHESIZED COMPOUNDS.......... 9 III. SYKDHESES l-Bromo~3,3-dimethylcyclolDutane................. 10 1-Phenyl-3,5-dimethyIcyclohutanecarho%ylie acid . l4 l-Bromo-2, 2-dimethylcy dopent an e ............... l6 l-Bromo-2,2-dimethylcyclohexane................. I9 l-Bromo-3,3-dimethylcyclohexane................. 24 l-Bromo-4,4-dimethylcyclohexane................. 35 IV. EREPARAIIOW OF THE ORGMOMETAELIC COMPOIMDS Solvents, Metals............................... 2'9 ÏÏMR Sample Tubes.............................. 50 Instrumentation.............................. 30 Procedure for the Preparation of Organometallic Compounds.................................... 32 Grignard Reagents........... .......... 32 3,3-Dimethylcyclohutyllithium . ........... .35 CHAPTER III RESUITS Al® DISCUSSION Syntheses of Cyclic Bromides ....................... 3^ Grignard Reagents.................................. 43- General Considerations.... .......................... 42 BIBLIOGRAPHY........................... .5 3 PART II CHAPTER I I. INTRODUCTION AND HISTORICAL REVIEW Historical Background ......................... 55 Preparative Methods of Organometallic Compounds of Group lA-IITA..................... 56 II. PURPOSE AND METHOD OF R E S E A R C H ................. I. CHEMICALS...................................... 71 II. IDENDIFICATION OF SYNTHESIZED COMPOUITDS.......... 73 III. SYNTHESES Potassium Phenylazoformate..................... 7 j^ Benz oylphenyld i imide ............. ^......... 76 Phenyl-£-toluoyldiimide............ '.......... 77 (Dimethoxyphosphinyl ) phenyldiimide............. 77 Benzoyl-t-hutyldi imide......................... 7 ° Carhmethoxy-t-hutyldiimide ............. ^ Dicyclohexyl-lS-crovm-ô....................... °3 vi IV. FRAGMENTATION REACTIONS Decarboxylation of Potassium Phenyl­ azoformate ....................................... 86 General Procedure for the Base-catalyzed Fragmentation of Acylazo Compounds ............... 88 Fragmentations of Benzoylphenyldiimide.............89 Fragmentation of Phenyl-£-toluoyldiimide .......... 91 Fragmentations of Benzoyl-t-butyldiimide .......... 9^ V. REACTION OF t-BUTYLLITHIUM WITH METHYL BENZOATE Products .................................... .9 7 VI. METHYL BENZOATE(2 ,1^.,6-da) Preparation.................................... 105 Reaction with t-Butyllithium..................... 105 VII. REACTIONS OF COMPOUND X X X V I I ...................... .I06 CHAPTER III RESULTS AND DISCUSSION Syntheses of Azoformate Salts......................... 109 Decarboxylation of Azoformate Salts................... 110 Syntheses of Acylazo Compounds ................11^ Base-catalyzed Fragmentations of Acylazo Compounds . .11° Reaction of t-Butyllithium with Methyl Benzoate........ 130 BIBLIOGRAPHY.......................... 159 TABLES • Table No. Page 1 . Chemical Reagents, Part I ......................... 8 2 . Chemical Reagents, Part I I ........................ 71 3 * Fragmentation of Acylazo Compounds........... H 7 k. Fragmentation of Benzoyl- and £-Toluoylphenyl- diimide with Potassium Methoxide ................... 121 5. Fragmentation of Benzoyl-t-butyldiimide withSodium and Potassium Methoxide.............................122 6 . Products from the Reaction of Methyl Benzoate with t-Butyllthium........... ?-29 vxx ILLUSTRATIONS Figure Page 1 . Apparatus for Grignard and Organolithium Preparations ............ ......... 31 2 . Nmr Spectrum(6o MHz) of 3 ,)-Dimethylcyclobuty- magnesium Bromide, 1.5 M in Di g l y m e ................. 44 3 . Nmr Spectrum of 3 ,3-Dimethylcyclobutylmagnesium Bromide, Methyl Region, Expanded Scale............... 4-5 4-. Nmr Spectrum(6o MHz) of 2 ,2-Dimethylcyclopentyl- magnesium Bromide, Methyl Region ................ 46 5. Nmr Spectrum(6o MHz) of 2 ,2-Dimethylcyclohexyl- magnesium Bromide, Methyl Region, a) at 6o°, and b) at 1T0° .................................. 47 6. Nmr Spectrum(6o MHz) of 3 ,3-Dimethylcyclohexyl- magnesium Bromide, Methyl Region................... 48 7 . Nmr Spectrum(6o MHz) of 3 ,3-Dimethylcyclohexyl- magnesium Bromide. 1.4 M in D i g l y m e ......... 49 8. Nmr Spectrum(6o MHz) of 4 ,4-Dimethylcyclohexyl- magnesium Bromide. Methyl Region ................. 50 9. Nmr Spectrum(6o MHz) of 4 ,4-Dimethylcyclohexyl- magnesium Bromide as a Function of Temperature, Methyl Region, a) at75 ° b) at 175 °. c) at 200° . 51 10. Nmr Spectrum(6o MHz) of 3 ,3-Dimethylcyclobutyl- lithium, 1.3 M in B e n z e n e ......................... 5^ 11. Apparatus for the Fragmentation of Acylazo Confounds........................................ °5 12. Nmr Spectrum(6o MHz) of Q,-t-butylbenzyl- alcohol (XXXII ) ........" .............................i45 13. Nmr Spectrum(6o MHz) of l-Pivaloyl-4-t-butyl- cyclohexadiene-1 ,5 (XXXIII ) .........................l46 14 . Nmr Spectrum(6o MHz) of l-Pivaloyl-4-t-butyl- cyclohexadiene-2 ,5(XL), Vinyl Region ............... l47 15. Nmr Spectrum(6o MHz) of ,(%-Dimethyl-2-t-butyl- propiophenone (XXXIV ) .............................. l4 8 16. Nmr Spectrum(6o MHz) of Q:,of-Di-'t-butylbenzyl- alcohol(XXXV)............ 7 ........................l49 17. Nmr Spectrum(6o MHz) of a,c/-Di-t-butylbenzyl- alcohol-2 ,4 ,6-ds (XXXV-dg ). 7 ............. 150 18. Nmr Spectrum(60 MHz) of (j-p-Di-;fc-butylbenzyl- alcohol (XXXVI ) ............. ............ 151 19. Nmr Spectrum(60 MHz) of Compound X X X V I I .............. 152 20. Nmr Spectrum(lOO MHz) of Compound XXXVII after Decoupling of the Vinyl Pr o t o n s ............. 1 55 viii 21. Nmr Spectrum(6o MHz) of Compound XXXVII-dg........... 15^1- 22. Nmr Spectium(6o MHz) of Compound XKXVII-da........... 155 25. Nmr Spectrum(60 MHz) of Confound XL I I ............... 15^ 24. Nmr Spectrum(6o MHz) of Congound XXXVIII............. 157 25. Nmr Spectrum(60 MHz) of Compound XXXVIII-dg.......... 158 ix PART I CHAPTER I I. INTRODUCTION AND HISTORICAL REVIEW During the last decade the chemistry of organometallic compounds has undergone considerable progress and has become of great interest in the field of synthetic organic chemistry. Indeed, fundamental organometallic chemistry now represents one of the most fruitful sources of useful synthetic methods and mechanistic studies in the discipline of organic chemistry. The first preparation of an organometallic cong)ound was reported in l8k^ when Frankland (l) accidently
Recommended publications
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Development of Novel Metal-Catalysed Methods for the Transformation of Ynamides Thesis Submitted in Accordance with the Requirements of The University of Edinburgh for the Degree of Doctor of Philosophy By Donna L. Smith Supervised by Dr. Hon Wai Lam School of Chemistry College of Science and Engineering 2013 Declaration I hereby declare that, except where specific reference is made to other sources, the work contained within this thesis is the original work of my own research since the registration of the PhD degree in September 2009, and any collaboration is clearly indicated. This thesis has been composed by myself and has not been submitted, in whole or part, for any other degree, diploma or other qualification. Donna L. Smith 2 Abstract I. Rhodium-Catalysed Carbometalation of Ynamides using Organoboron Reagents As an expansion of existing procedures for the carbometalation of ynamides, it was discovered that [Rh(cod)(MeCN)2]BF4 successfully promotes the carbometalation of ynamides with organoboron reagents.
    [Show full text]
  • CO2 Derivatives of Molecular Tin Compounds. Part 1: † Hemicarbonato and Carbonato Complexes
    inorganics Review CO2 Derivatives of Molecular Tin Compounds. Part 1: y Hemicarbonato and Carbonato Complexes Laurent Plasseraud Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR-CNRS 6302, Université de Bourgogne Franche-Comté, 9 avenue A. Savary, F-21078 Dijon, France; [email protected] Paper dedicated to Professor Georg Süss-Fink on the occasion of his 70th birthday. y Received: 31 March 2020; Accepted: 24 April 2020; Published: 29 April 2020 Abstract: This review focuses on organotin compounds bearing hemicarbonate and carbonate ligands, and whose molecular structures have been previously resolved by single-crystal X-ray diffraction analysis. Most of them were isolated within the framework of studies devoted to the reactivity of tin precursors with carbon dioxide at atmospheric or elevated pressure. Alternatively, and essentially for the preparation of some carbonato derivatives, inorganic carbonate salts such as K2CO3, Cs2CO3, Na2CO3 and NaHCO3 were also used as coreagents. In terms of the number of X-ray structures, carbonate compounds are the most widely represented (to date, there are 23 depositions in the Cambridge Structural Database), while hemicarbonate derivatives are rarer; only three have so far been characterized in the solid-state, and exclusively for diorganotin complexes. For each compound, the synthesis conditions are first specified. Structural aspects involving, in particular, the modes of coordination of the hemicarbonato and carbonato moieties and the coordination geometry around tin are then described and illustrated (for most cases) by showing molecular representations. Moreover, when they were available in the original reports, some characteristic spectroscopic data are also given for comparison (in table form).
    [Show full text]
  • EI-ICHI NEGISHI Herbert C
    MAGICAL POWER OF TRANSITION METALS: PAST, PRESENT, AND FUTURE Nobel Lecture, December 8, 2010 by EI-ICHI NEGISHI Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, U.S.A. Not long ago, the primary goal of the synthesis of complex natural products and related compounds of biological and medicinal interest was to be able to synthesize them, preferably before anyone else. While this still remains a very important goal, a number of today’s top-notch synthetic chemists must feel and even think that, given ample resources and time, they are capable of synthesizing virtually all natural products and many analogues thereof. Accepting this notion, what would then be the major goals of organic synthesis in the twenty-first century? One thing appears to be unmistakably certain. Namely, we will always need, perhaps increasingly so with time, the uniquely creative field of synthetic organic and organometallic chemistry to prepare both new and existing organic compounds for the benefit and well-being of mankind. It then seems reasonably clear that, in addition to the question of what compounds to synthesize, that of how best to synthesize them will become increasingly important. As some may have said, the primary goal would then shift from aiming to be the first to synthesize a given compound to seeking its ultimately satisfactory or “last synthesis”. If one carefully goes over various aspects of organic synthetic methodology, one would soon note how primitive and limited it had been until rather recently, or perhaps even today. For the sake of argument, we may propose here that the ultimate goal of organic synthesis is “to be able to synthesize any desired and fundamentally synthesizable organic compounds (a) in high yields, (b) efficiently (in as few steps as possible, for example), (c) selectively, preferably all in t98–99% selectivity, (d) economically, and (e) safely, abbreviated hereafter as the y(es)2 manner.” with or without catalyst R1M + R2X R1R2 + MX R1, R2: carbon groups.
    [Show full text]
  • Transition Metals for Organic Synthesis
    Matthias Beller, Carsten Bolm Transition Metals for Organic Synthesis Building Blocks and Fine Chemicals © WILEY-VCH Weinheim • New York • Chichester • Brisbane • Singapore • Toronto Contents Volume 1 1 General 1 1.1 Basic Aspects of Organic Synthesis with Transition Metals (Barry M. Trost) 3 1.1.1 Chemoselectivity 4 1.1.2 Regioselectivity 6 1.1.3 Diastereoselectivity 7 1.1.4 Enantioselectivity 9 1.1.5 Atom Economy 10 1.1.6 Conclusion 11 References 12 1.2 Concepts for the Use of Transition Metals in Industrial Fine Chemical Synthesis (Wilhelm Keim) 14 1.2.1 General Principles 14 1.2.2 Use of Transition Metals in Fine Chemical Synthesis .... 15 1.2.3 Why are Transition Metals used in Fine Chemical Synthesis? 21 1.2.4 Considerations for the Future 22 References 22 2 Transition Metal-catalyzed Reactions 23 2.1 New Opportunities in Hydroformylation: Selected Syntheses of Intermediates and Fine Chemicals (Carlo Botteghi, Mauro Marchetti, Stefano Paganelli) ... 25 2.1.1 Introduction 25 2.1.2 Building Blocks for Pharmaceutical and Natural Products . 26 2.1.3 Building Blocks for Agrochemicals 40 2.1.4 Concluding Remarks 43 References 45 viii Contents 2.2 Hydrocarboxylation and Hydroesterification Reactions Catalyzed by Transition Metal Complexes (Bassam El Ali, Howard Alper) 49 2.2.1 Introduction 49 2.2.2 Intermolecular Hydrocarboxylation and Hydroesterification of Unsaturated Substrates 49 2.2.2.1 Hydrocarboxylation of Alkenes 49 2.2.2.2 Hydroesterification of Alkenes 53 2.2.2.3 Hydrocarboxylation and Hydroesterification of Allenes and Dienes
    [Show full text]
  • Catalytic Systems Based on Cp2zrx2 (X = Cl, H), Organoaluminum
    catalysts Article Catalytic Systems Based on Cp2ZrX2 (X = Cl, H), Organoaluminum Compounds and Perfluorophenylboranes: Role of Zr,Zr- and Zr,Al-Hydride Intermediates in Alkene Dimerization and Oligomerization Lyudmila V. Parfenova 1,* , Pavel V. Kovyazin 1, Almira Kh. Bikmeeva 1 and Eldar R. Palatov 2 1 Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Prospekt Oktyabrya, 141, 450075 Ufa, Russia; [email protected] (P.V.K.); [email protected] (A.K.B.) 2 Bashkir State University, st. Zaki Validi, 32, 450076 Ufa, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-347-284-3527 i i Abstract: The activity and chemoselectivity of the Cp2ZrCl2-XAlBu 2 (X = H, Bu ) and [Cp2ZrH2]2- ClAlEt2 catalytic systems activated by (Ph3C)[B(C6F5)4] or B(C6F5)3 were studied in reactions with 1-hexene. The activation of the systems by B(C6F5)3 resulted in the selective formation of head- to-tail alkene dimers in up to 93% yields. NMR studies of the reactions of Zr complexes with organoaluminum compounds (OACs) and boron activators showed the formation of Zr,Zr- and Zr,Al-hydride intermediates, for which diffusion coefficients, hydrodynamic radii, and volumes were estimated using the diffusion ordered spectroscopy DOSY. Bis-zirconium hydride clusters of type x[Cp ZrH ·Cp ZrHCl·ClAlR ]·yRnAl(C F ) − were found to be the key intermediates of alkene 2 2 2 2 6 5 3 n dimerization, whereas cationic Zr,Al-hydrides led to the formation of oligomers. Citation: Parfenova, L.V.; Kovyazin, P.V.; Bikmeeva, A.K.; Palatov, E.R.
    [Show full text]
  • Of Grignard Reagent Formation. the Surface Nature of the Reaction
    286 Ace. Chem. Res. 1990,23, 286-293 Mechanism of Grignard Reagent Formation. The Surface Nature of the Reaction H. M. WALBORSKY Dittmer Laboratory of Chemistry, Florida State University, Tallahassee, Florida 32306 Received February 23, 1990 (Revised Manuscript Received May 7, 1990) The reaction of organic halides (Br, C1, I) with mag- Scheme I nesium metal to yield what is referred to today as a Kharasch-Reinmuth Mechanism for Grignard Reagent Grignard reagent has been known since the turn of the Formation century,' The name derives from its discoverer, Nobel (1)(Mg0)AMg*)2y + RX 4 [(M~'~(MQ')~~-,('MQX)+ R.] + laureate Victor Grignard. How this reagent is formed, (Mgo)x-2(MQ')2~MgX)(MgR) that is, how a magnesium atom is inserted into a car- bon-halogen bond, is the subject of this Account. ('4 (Ms0),-*(M9')2~MgX)(MgR) + + (Mg0)x-dMg*)2y+2 + 2RMgX RX + Mg - RMgX Kharasch and Reinmuth,, persuaded by the work of late under the same conditions gave Itl = 6.2 X s-l. Another system that meets the above criterion is the Gomberg and Bachmad as well as by product analyses of many Grignard formation reactions that existed in vinyl system. The lack of reactivity of vinyl halides toward SN1reactions is well-known and is exemplified the literature prior to 1954,speculated that the reaction involved radicals and that the radical reactions might by the low solvolysis rate of 2-propenyl triflate5 in 80% involve "surface adherent radicals, at least in part". The ethanol at 25 OC, kl being 9.8 X s-l.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • Submitted to the Requirements For
    THE SYNTIIE$IS OP C LABELLED 2, 4-DICI LOROi-EENOÇYAGETIC ACID by ERNEST GEORGE AWORSKI A THESIS submitted to OREGON STA1 COLLEGE in partial fulfillment or the requirements for the degree of MAS2R 0F SCIENCE June 1950 PROVED: professor ot Clie'thlstry Department In Charge of Major Head of Department of' Chemistry Chairman of School Graduate Conimittee Dean of Graduate School Date thesis is presented Typed by Clara Homyar ACNOWLEDGMNTS The author wishes to express his appreciation to Dr. oseph S. Butts for his eneouragem.ent and generous direction in r4laking this work possible. Grateful aoknowledgnient is given to Dr. Albert V. Logan for his assistance in methodical diff i- culties. This research project was supported by an Atoniic inergy Commission grant carried under Navy contract N7-onr-3 7602. TABLE OF CONTENTS Page I. INTRODUCTION I II. STNTHESI OF ALPHA METH'LENB LABELLED2,14-D . , * 4 A. Apparatus ......*,*., B Method . 7 C. Analysis and }hysica1 Constants 3.7 In. StfliSIs OF C CABBOXTh LABELLED 2LD 19 A. Apparatus . 19 B )kethoc3. , , , , , 23. C. Analysis and PhjsLoa3. Constants 26 Iv DISCUSSION . , , . , , V. SUL2&RY . e e . 30 LTTERATUREOITED .......... 31 I1N1)I. 3 2 THE SYNTHESIS OF C LABELLED 2, 4-DICHLOROHENOXThCETIC ACID I. INTRODUCTION The synthesis or C labelled 2,4-dichlorophen- oxyacetic acid (hereafter referred to as 2,4V-D) was undertaken In order to study the process by which lt exerts its selective herbicidal effect on soiae noxious plants. Should this method prove fruitful, it would be useful for a more systematic approach to the study of ooitounds having potential herbicidal properties.
    [Show full text]
  • Download This Article PDF Format
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Nickel-catalyzed cyclization of alkyne-nitriles with organoboronic acids involving anti- Cite this: Chem. Sci.,2016,7,5815 carbometalation of alkynes† Xingjie Zhang, Xin Xie and Yuanhong Liu* A nickel-catalyzed regioselective addition/cyclization of o-(cyano)phenyl propargyl ethers with arylboronic acids has been developed, which provides an efficient protocol for the synthesis of highly functionalized Received 16th March 2016 1-naphthylamines with wide structural diversity. The reaction is characterized by a regioselective and Accepted 19th May 2016 anti-addition of the arylboronic acids to the alkyne and subsequent facile nucleophilic addition of the DOI: 10.1039/c6sc01191h resulting alkenylmetal to the tethered cyano group. Mechanistic studies reveal that a Ni(I) species might www.rsc.org/chemicalscience be involved in the catalytic process. to an exo-alkene upon cyclization3,4 (Scheme 1, eqn (1)). Creative Commons Attribution 3.0 Unported Licence. Introduction Cyclizations involving the regioselective formation of the Transition-metal-catalyzed cascade reactions consisting of alkenylmetal with a metal a-to the R1 substituent such as syn-B 5 multiple carbometalation steps have attracted considerable are quite rare (Scheme 1, eqn (2)), possibly because the attention in organic synthesis since these processes enable the subsequent cyclization process will involve a highly strained rapid assembly of complex structures in an efficient, atom- transition state. Thus,
    [Show full text]
  • Discovery of ZACA Reaction: Zr-Catalyzed Asymmetric
    Issue in Honor of Prof. Usein M. Dzhemilev ARKIVOC 2011 (viii) 34-53 Discovery of ZACA reaction : Zr-catalyzed asymmetric carboalumination of alkenes Ei-ichi Negishi Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA E-mail: [email protected] This paper is dedicated to Professor U. M. Dzhemilev in recognition and appreciation of his pioneering contributions to organometallic chemistry Abstract A single-stage, i.e., degree of polymerization of one, and enantioselective version of the Ziegler- Natta alkene polymerization was envisioned as a potentially significant and useful method for catalytic asymmetric C–C bond formation, shortly after the corresponding alkyne version involving Zr-catalyzed alkylalumination of alkynes was discovered in 1978. However, the discovery of such an asymmetric reaction proved to be a major challenge. At least three widely observable unwanted side reactions, i.e., (1) cyclic carbometalation, (2) β-H transfer hydrometalation, and (3) alkene polymerization, represented by the Ziegler-Natta polymerization, were noted and were to be avoided. With Zr as the metal at the catalytic center, we eventually came up with a notion that di- or multiple alkylation of Zr was to be avoided for achieving superior acyclic asymmetric carbometalation. This, in turn, led us to avoid the use of highly nucleophilic alkylmetals containing alkali metals and Mg. Aluminum used in Ziegler- Natta polymerization that can selectively monoalkylate Zr proved to be one of a very limited number of favorable metals. Even so, undesirable cyclic carbozirconation can occur in nonpolar solvents via intricate bimetallic routes to cyclic organozirconium species.
    [Show full text]
  • Guide to the Jonas and Edna Kamlet / Kamlet Laboratories Records, 1913-1989
    Guide to the Jonas and Edna Kamlet / Kamlet Laboratories records, 1913-1989 Descriptive Summary Title : Jonas and Edna Kamlet / Kamlet Laboratories records Creator: Kamlet, Jonas Kamlet, Edna Dates : N/A ID Number : K27 Size: 190 boxes Abstract: This collection consists of records related to the Kamlet Laboratory and its founders. Chemist. Jonas kamlet and his wife, Edna, founded The Kamlet Laboratory (1940-1979) in New York City. The laboratory's work centered on the research and development of new methods for chemical products as well as identifying interested clients and selling rights to them. The laboratory also provided consultation services to a variety of businesses. Included are: personal papers, correspondence, professional correspondence, magazine clippings, newspaper clippings, photographs, drafts, publications, advertisements, announcements, price quotes, technical reports, test results, and scrapbooks. Includes personal papers, correspondence, professional correspondence, magazine clippings, newspaper clippings, photographs, drafts, publications, advertisements, announcements, price quotes, technical reports, test results, and scrapbooks. Language(s): English Repository: Special Collections University of South Florida Libraries 4202 East Fowler Ave., LIB122 Tampa, Florida 33620 Phone: 813-974-2731 - Fax: 813-396-9006 Contact Special Collections Administrative Summary Provenance: Kamlet, Jonas Kamlet, Edna Acquisition Information: Donation. Access Conditions: The contents of this collection may be subject to copyright. Visit the United States Copyright Office's website at http://www.copyright.gov/ for more information. Processing History: processed; Eight separate finding aids were initially made for these collections. However, these finding aids are now being combined to form one collection. Preferred Citation: Kamlet Laboratories Records, Special Collections Department, Tampa Library, University of South Florida, Tampa, Florida.
    [Show full text]
  • Carbonation of a Grignard Preparation of Benzoic Acid
    CARBONATION OF A GRIGNARD PREPARATION OF BENZOIC ACID INTRODUCTION The Grignard is one of the most versatile reactions in organic chemistry. It was used to produce 2-methyl-2-hexanol from bromobutane and acetone. Carboxylic acids may also be prepared by the Grignard reagent. The “Grignard” is an organometallic compound that contains one the most powerful nucleophiles. This carbanion is capable of reacting with something that is only slightly basic like carbon dioxide. This reaction will convert bromobenzene to benzoic acid. The bromobenzene is converted to the Grignard and then added to solid carbon dioxide. The carbon dioxide acts as a reactant and as the means to keep the reaction cold. The Grignard is prepared by the process of reflux with addition. In this reaction the glassware and reactants must be kept absolutely dry, as the presence of water will inhibit the reaction. Reactions: Br MgBr Ether + Mg MgBr COOH + H3O + CO2 Week One PROCEDURE 1. PREPARATION OF THE GRIGNARD REAGENT Add 0.1 mole of Mg metal ( 2.43 grams ) to a 100 ml round bottom flask and add 30 ml of anhydrous ether to cover the metal. Clamp the flask to the grid at a height that will allow enough room for heating and cooling. Add 0.1 mole of bromobenzene to a separatory funnel. Attach a Claisen adapter to the round bottom flask and fit the adapter just above with a water cooled column. Attach the separatory funnel to the other connection. Prepare an ice/water bath and position it so that the reaction mixture may be cooled by raising the bath to the round bottom with a lab jack.
    [Show full text]