<<

Matthias Beller, Carsten Bolm Transition Metals for Organic Synthesis

Building Blocks and Fine Chemicals

© WILEY-VCH Weinheim • New York • Chichester • Brisbane • Singapore • Toronto Contents

Volume 1

1 General 1

1.1 Basic Aspects of Organic Synthesis with Transition Metals (Barry M. Trost) 3 1.1.1 Chemoselectivity 4 1.1.2 Regioselectivity 6 1.1.3 Diastereoselectivity 7 1.1.4 Enantioselectivity 9 1.1.5 Atom Economy 10 1.1.6 Conclusion 11 References 12

1.2 Concepts for the Use of Transition Metals in Industrial Fine Chemical Synthesis (Wilhelm Keim) 14 1.2.1 General Principles 14 1.2.2 Use of Transition Metals in Fine Chemical Synthesis .... 15 1.2.3 Why are Transition Metals used in Fine Chemical Synthesis? 21 1.2.4 Considerations for the Future 22 References 22

2 Transition Metal-catalyzed Reactions 23

2.1 New Opportunities in Hydroformylation: Selected Syntheses of Intermediates and Fine Chemicals (Carlo Botteghi, Mauro Marchetti, Stefano Paganelli) ... 25 2.1.1 Introduction 25 2.1.2 Building Blocks for Pharmaceutical and Natural Products . 26 2.1.3 Building Blocks for Agrochemicals 40 2.1.4 Concluding Remarks 43 References 45 viii Contents

2.2 Hydrocarboxylation and Hydroesterification Reactions Catalyzed by Transition Metal Complexes (Bassam El Ali, Howard Alper) 49 2.2.1 Introduction 49 2.2.2 Intermolecular Hydrocarboxylation and Hydroesterification of Unsaturated Substrates 49 2.2.2.1 Hydrocarboxylation of 49 2.2.2.2 Hydroesterification of Alkenes 53 2.2.2.3 Hydrocarboxylation and Hydroesterification of Allenes and Dienes 56 2.2.2.4 Hydrocarboxylation and Hydroesterification of Simple and Hydroxyalkynes 57 2.2.3 Intramolecular Cyclocarbonylation of Unsaturated Compounds 62 2.2.4 Conclusion 65 References 66

2.3 Palladium-catalyzed of Allylic and Propargylic Compounds (Jiro Tsuji, Jitsuo Kiji) 68 2.3.1 Carbonylation of Allylic Compounds 68 2.3.1.1 General Scope 68 2.3.1.2 Mechanistic Consideration 68 2.3.1.3 Synthetic Applications 71 2.3.2 Carbonylation of Propargylic Compounds 72 2.3.2.1 General Scope and Mechanistic Consideration 72 2.3.2.2 Mono- and Dicarbonylations 73 2.3.2.3 Domino Carbonylation and Diels-Alder Reaction 75 References 77

2.4 Amidocarbonylation (Klaus Kühlein, Holger Geissler) .... 79 2.4.1 Introduction 79 2.4.2 The Mechanism 79 2.4.3 as Starting Materials 80 2.4.4 Acetals as Starting Materials 83 2.4.5 Olefins as Starting Materials 84 2.4.6 Allylic and Oxiranes as Starting Materials 85 2.4.7 Benzylic Substituted Compounds as Starting Materials ... 86 2.4.8 Amides as Starting Materials 87 2.4.9 General Considerations 88 2.4.9.1 Influence of Hydrogen 88 2.4.9.2 Influence of Amides 88 2.4.10 Summary 88 References 89 Contents ix

2.5 Transition Metal-catalyzed and Hydrocyanations (Albert L. Casalnuovo, T. V. RajanBabu) . 91 2.5.1 Introduction 91 2.5.2 Alkene Hydrocyanation 91 2.5.3 Alkyne Hydrocyanation 93 2.5.3.1 Nickel Phosphite-catalyzed Reactions 93 2.5.3.2 Ni(CN)2~-catalyzed Reactions 93 2.5.3.3 Addition of R3SiCN 94 2.5.4 New Directions in Nickel-catalyzed Alkene Hydrocyanation 95 2.5.4.1 New Ligands 95 2.5.4.2 Catalytic Asymmetrie Hydrocyanation 96 2.5.5 Conclusions 98 References 98

2.6 (Andreas Pfaltz) 100 2.6.1 Introduction 100 2.6.2 Metal-catalyzed Decomposition of Diazo Compounds . . . 100 2.6.3 Enantioselective Cyclopropanation with Catalysts . 101 2.6.4 Dinuclear Rhodium Catalysts 106 2.6.5 Simmons-Smith Reaction 110 2.6.6 Kulinkovich Hydroxycyclopropane Synthesis 110 References 111

2.7 Cyclomerization of (Helmut Bönnemann, Werner Brijoux) 114 2.7.1 Introduction 114 2.7.2 Transition Metal-catalyzed Syntheses of Six-membered Carbocycles 116 2.7.2.1 Benzenes and Cyclohexadienes 116 2.7.2.2 Quinones 119 2.7.2.3 Phenylenes 119 2.7.3 Transition Metal-catalyzed Syntheses of Six-membered Heterocycles 120 2.7.3.1 Pyrane, Pyrone, Pyridone, and Sulfur Containing Heterocycles 120 2.7.3.2 Pyridines 123 2.7.3.3 Bipyridines 129 2.7.3.4 Miscellanous 130 2.7.4 Abbreviations 131 References 131

2.8 Intramolecular Hydroacylation and Reductive Cyclization (William E. Crowe) 136 2.8.1 Introduction 136 x Contents

2.8.2 Intramolecular Hydroacylation of Unsaturated Aldehydes . 136 2.8.3 Reductive Cyclization of Unsaturated Carbonyl Compounds 139 2.8.3.1 Silane-mediated Catalytic Reductive Cyclization 140 2.8.3.2 Carbonyl Insertion and Lactone Synthesis 141 2.8.3.3 Isonitrile Insertion 143 References 145

2.9 Isomerization of Olefin and the Related Reactions (Sei Otsuka, Kazuhide Toni) 147 2.9.1 Introduction 147 2.9.2 Allylamines 147 2.9.2.1 Characteristics of the 148 2.9.2.2 Mechanisms 149 2.9.2.3 Synthetic Applications 149 2.9.3 Allyl Alcohols 151 2.9.4 Allyl Ethers 153 2.9.5 Unfunctionalized Olefins 154 2.9.6 Asymmetrie Skeletal Rearrangements 155 2.9.6.1 155 2.9.6.2 Aziridines 156 References 156

2.10 Transition Metal-catalyzed Cross Coupling Reactions (Holger Geissler) 158 2.10.1 Introduction 158 2.10.2 Cross Coupling of Organoboron Compounds (Suzuki Reactions) 161 2.10.3 Cross Coupling of Organotin Compounds (Stille Reaction) 165 2.10.4 Cross Coupling of Organocopper Compounds 170 2.10.5 Cross Coupling of Organoaluminum and Zirconium Compounds 173 2.10.6 Cross Coupling of Organomagnesium and Organolithium Compounds 175 2.10.7 Cross Coupling of Compounds 177 2.10.8 Conclusion 177 References 178

2.11 Transition Metal-catalyzed C-N and C-O Bond-forming Reactions (Matthias Beller, Thomas H. Riermeier) 184 2.11.1 Catalytic Amination of Aryl Halides 184 2.11.2 C-O Coupling Reactions 191 References 193 Contents XI

12 Catalytic Enantioselective Alkylation of Alkenes by Chiral (Amir H. Hoveyda) 195 12.1 Introduction 195 12.2 Zr-Catalyzed Enantioselective Carbomagnesation Reactions 195 12.2.1 Catalytic Enantioselective Addition Reactions 195 12.2.2 Zr-Catalyzed Kinetic Resolution of Unsaturated Heterocycles 201 12.2.3 Zr-Catalyzed Kinetic Resolution of Cyclic Allylic Ethers . . 204 12.2.4 Other Related Catalytic Enantioselective Olefin Alkylations 205 12.3 Summary and Outlook 206 References 206

13 Palladium-catalyzed Olefinations of Aryl Halides () and Related Transformations (M. Beller, T. H. Riermeier, G. Stark) 208 13.1 Introduction 208 13.2 Mechanism 209 13.3 Catalysts 211 13.4 Asymmetrie Heck Reactions using Chiral Palladium Catalysts 214 13.4.1 Mechanistic Features of Asymmetrie Heck Reactions .... 216 13.4.2 New Catalyst Systems for Asymmetrie Heck Reactions . . . 218 13.5 Recent Applications of Heck Reactions for the Synthesis of Natural Products, Complex Organic Building Blocks and Pharmaceuticals 220 13.6 Miscellaneous 234 13.7 Concluding Remarks 235 References 236

14 Coupling Reactions Involving CH Activation (Gerald Dy her) 241 14.1 Intramolecular CH Activation by a Precoordinated Transition Metal 241 14.2 Intramolecular CH Activation via Palladacycles 244 14.3 Transition Metal-catalyzed Intermolecular CH Activation . 247 14.4 Conclusion 248 References 248

15 Palladium-catalyzed Allylic Substitutions (Andreas Heumann) 251 15.1 Introductory Remarks and Historical Background 251 15.2 Reactions of 7r-Allylpalladium Complexes 252 15.3 Catalytic Introduction of 253 15.4 Mechanism—Stereochemistry 254 xii Contents

2.15.5 Allylic Reductions—Hydrogenolysis—Eliminations .... 255 2.15.6 Protective Groups 256 2.15.7 Trimethylenemethane (TMM) Cycloadditions 256 2.15.8 Allylic Rearrangements 256 2.15.9 Enantioselective Reactions 257 2.15.10 Preparative Glossary 259 References and Notes 259

2.16 Palladium-catalyzed Cyclization of Allylic Acetates with Alkenes and Allenes (Takashi Takahashi, Takayuki Doi, and Keiji Yamamoto) . 265 2.16.1 Introduction 265 2.16.2 An Approach to Prostaglandin Skeleton 266 2.16.3 Tandem Cyclization of the Pd(0)-catalyzed Reaction with Intramolecular Alkene 267 2.16.4 Tandem Cyclization of Pd(0)-catalyzed Reaction with Intramolecular Allene and Alkene 269 2.16.4.1 Synthesis of Isoiridomyrmecin by Pd(0)-catalyzed Cyclization-Carbonylation 270 2.16.4.2 Other Intramolecular Reactions of 7r-Allylpalladium Complexes and Allenes: Tandem Cyclization-Carbonylation 272 References 273

2.17 Application of (Matthias Schuster and Siegfried Blechert) 275 2.17.1 Introduction 275 2.17.2 Synthetic Applications 276 2.17.2.1 Ring-closing Metathesis (RCM) 276 2.17.2.2 Crossed Metathesis 279 2.17.2.3 Ring-opening Metathesis (ROM) 281 2.17.2.4 Tandem Reactions 282 2.17.3 Perspectives 282 References 283

2.18 Homometallic Lanthanoids in Synthesis: Lanthanide Triflate-catalyzed Synthetic Reactions (Shü Kobayashi) ... 285 2.18.1 Introduction 285 2.18.2 Lewis Catalysis in Aqueous Media 285 2.18.2.1 Aldol Reactions 286 2.18.2.2 Allylation Reactions 287 2.18.2.3 Diels-Alder Reactions 288 2.18.2.4 Micellar Systems 288 2.18.2.5 Recovery and Reuse of the Catalyst 289 Contents Xlii

2.18.3 Activation of Nitrogen-containing Compounds 290 2.18.3.1 Mannich-type Reaction 291 2.18.3.2 Aza Diels-Alder Reactions 294 2.18.3.3 1,3-DipolarCycloaddition 297 2.18.3.4 Reactions of Imines with Alkynyl Sulfides 298 2.18.4 Asymmetrie Catalysis 298 2.18.4.1 Asymmetrie Diels-Alder Reaction 298 2.18.4.2 Asymmetrie [2+ 2]-Cycloaddition 303 2.18.4.3 Asymmetrie Aza Diels-Alder Reaction 304 2.18.4.4 Asymmetrie 1,3-Dipolar Cycloaddition 305 2.18.5 Miscellaneous 306 References 308

2.19 Heterometallic Lanthanoids in Organic Synthesis (Masakatsu Shibasaki and Hiroaki Sasai) 313 2.19.1 Introduction 313 2.19.2 Representative Applications of Catalytic Asymmetrie Nitroaldol Reactions Promoted by LnLB Catalysts 313 2.19.3 Second-generation LLB Catalyst 317 2.19.4 Catalytic Asymmetrie Michael Reactions Promoted by LSB 318 2.19.5 Catalytic Asymmetrie Hydrophosphonylation of Imines Promoted by Rare Earth-Potassium-Binaphthoxide Catalyst (LnPB) 322 2.19.6 Conclusion 323 References 323

2.20 Metal-catalyzed Addition of Cyanides to Aldehydes (Nobuki Oguni) 325 2.20.1 Introduction 325 2.20.2 Enantioselective Addition of Cyanide Anion by Chiral Metal Catalysts 325 References 330

3 Transition Metal-mediated Reactions 333

3.1 Fischer-type Carbene Complexes (Karl Heinz Dötz and Jürgen Pfeiffer) 335 3.1.1 Introduction 335 3.1.2 Synthesis and Reactivity 335 3.1.3 Carbene-Ligand Centered Reactions 337 3.1.3.1 Aldol- and Michael-addition Reactions 337 3.1.3.2 Reaction of Nucleophiles with a,a-Unsaturated Carbene Complexes—1,2-vs. 1,4-Addition 339 Contents

1.3.3 Cycloaddition Reactions 341 1.4 Metal Centered Interligand Coupling Reactions 345 1.5 Cyclopropanation and Olefin Metathesis 350 1.6 Photoinduced Carbene-CO Coupling 352 1.7 Summary and Outlook 355 References 356

2 Titanium-Carbene Mediated Reactions (Nicos A. Petasis) 361 2.1 Introduction 361 2.1.1 Precursors to Titanium Carbenes 361 2.1.2 Geminal Dimetallic Derivatives 363 2.2 Carbonyl Olefinations 364 2.2.1 Carbonyl Methylenations with the Tebbe Reagent 365 2.2.2 Carbonyl Olefinations with Dimethyl Titanocene and Related Derivatives 367 2.2.3 Carbonyl Methylenations with CH2Br2~Zn-TiCl4 and Related Systems 370 2.2.4 Carbonyl Allenations 372 2.3 Alkyne Reactions 373 2.4 Reactions 373 2.5 Olefin Metathesis Reactions 375 2.6 Ring-opening Metathesis (ROMP) 376 References 377

3 The McMurry Reaction and Related Transformations (Alois Fürstner) 381 3.1 Introduction 381 3.2 Some Lessons from Inorganic : The Family of McMurry Reagents 382 3.3 Recommended Procedures 383 3.3.1 Titanium-Graphite and Other Supported Titanium Reagents 383 3.3.2 The TiCl3/Zn Reagent Combinations 385 3.3.3 Activation of Commercial Titanium 387 3.4 McMurry Coupling Reactions in Natural Product Synthesis 389 3.5 Nonnatural Products 390 3.6 Titanium-induced Cross-Coupling Reactions 393 3.6.1 Mixed Couplings of Aldehydes and 393 3.6.2 Keto- Cyclizations 394 3.6.3 Synthesis of Aromatic Heterocycles 395 References 398 Contents xv

3.4 Vanadium Mediated Couplings (Heiner Jendralla) 402 3.4.1 Pinacol Couplings 402 3.4.1.1 Intermolecular Couplings 402 3.4.1.2 Intramolecular Pinacol Couplings 413 3.4.1.3 Compatibility of Reagent [V2C13(THF)6]2 [Zn2Cl6] 413 3.4.2 Cyclization of 5,6-Enals 414 3.4.3 Deoxygenative Couplings 414 3.4.4 Related Nb-mediated Couplings 415 References 416

3.5 Chromiuni(II)-mediated C-C Coupling Reactions (David M. Hodgson, Paul J. Comina) 418 3.5.1 Introduction 418 3.5.2 Allylic Halides 418 3.5.3 gem-Dihalides 420 3.5.4 Alkenyl and Aryl Halides (and Enol Triflates) 421 3.5.5 Alkynyl Halides 422 3.5.6 Halides 422 3.5.7 Asymmetrie and Catalytic Developments 423 References 423

3.6 Samarium-mediated Reactions (Xin Gu, Dennis P. Curran) 425 3.6.1 Introduction 425 3.6.2 Samarium(II) Reagents and General Features of Reactions 425 3.6.3 Organosamarium-mediated Reactions 427 3.6.3.1 Samarium Barbier, Grignard and Related Reactions .... 427 3.6.3.2 Samarium Aldol, Reformatsky, and Related Reactions . . . 430 3.6.3.3 Reductive Coupling of Two 7r-Bonds 431 3.6.3.4 Radical Reactions 433 3.6.3.5 Cascade Reactions 434 3.6.3.6 Cycloaddition Reactions 434 References 435

3.7 Manganese(III)-based Oxidative Free-radical Cyclizations (Barry B. Snider) 439 3.7.1 Introduction 439 3.7.2 Oxidizable Functionality 440 3.7.3 Oxidants and Solvents 441 3.7.4 Common Side Reactions 442 3.7.5 Cyclization Substrates 443 References 445 XVI Contents

3.8 Titanium-mediated Reactions (Rudolf O. Duthaler, Andreas Hafner) 447 3.8.1 Introduction—Preparation of Titanium Reagents 447 3.8.2 Addition of Allyl Nucleophiles to Aldehydes and 'Ene'-reactions 448 3.8.3 Aldol-type Addition of Enolates to Aldehydes 453 3.8.4 Addition of Alkyl-Nucleophiles to Aldehydes 457 3.8.5 Cycloadditions and Miscellaneous Reactions 460 References 463

3.9 -mediated Reactions (Paul Knöchel) 467 3.9.1 Introduction 467 3.9.2 Preparation of Organozinc Reagents 468 3.9.2.1 Preparation of Organozinc Halides 468 3.9.2.2 Preparation of Diorganozincs 471 3.9.2.3 Preparation and Reactions of Organozincates 475 3.9.3 Reactions of Organozinc Reagents 476 3.9.3.1 Uncatalyzed Reactions 476 3.9.3.2 Transition Metal-catalyzed Reactions 480 3.9.4 Asymmetrie Reactions Mediated by Zinc Organometallic Reagents 493 3.9.5 Conclusion 496 References and Notes 496

3.10 Conjugate Addition Reactions (Alexandre Alexakis) 504 3.10.1 Introduction 504 3.10.2 General Aspects of Reactivity 504 3.10.3 Enantioselective Additions 507 References and Notes 511

3.11 Carbometalation Reactions (Ilane Marek, Jean F. Normant) 514 3.11.1 Introduction 514 3.11.2 Diastereoselective Allylmetalation of Vinyl Metals 515 3.11.3 Intramolecular Carbometalation Reactions 516 3.11.4 Intermolecular Carbometalation of Alkenes Stabilized by Intramolecular Chelation 519 3.11.5 Conclusions 520 References and Notes 520

3.12 Iron Acyl Complexes (Karola Rück-Braun) 523 3.12.1 Acyl Complexes Derived from Pentacarbonyl Iron 523 3.13.2 Cyclopentadienyl(dicarbonyl)iron Acyl Complexes, Phosphine-substituted Chiral-at-Iron Derivatives and Analoeues 524 Contents xvn

3.12.3 Diiron Enoyl Acyl Complexes in Cycloaddition Reactions . 530 References 532

3.13 Iron-Diene Complexes (Hans-Joachim Knölker) 534 3.13.1 Introduction 534 3.13.2 Preparation of Iron-Diene Complexes 534 3.13.3 Iron-mediated Synthesis of Cyclopentadienones 536 3.13.4 Synthetic Applications of Iron-Butadiene Complexes .... 538 3.13.5 Synthetic Applications of Iron-Cyclohexadiene Complexes 541 3.13.5.1 Iron-mediated Total Synthesis of Carbazole Alkaloids . . . 542 3.13.5.2 Iron-mediated Diastereoselective Spiroannulations 545 References 547

3.14 Chromium-arene Complexes (Hans-Günther Schmalz, Stephan Siegel) 550 3.14.1 Introduction 550 3.14.2 Preparation of Arene-Cr(CO)3 Complexes 551 3.14.3 Nucleophilic Additions to the Arene Ring 551 3.14.4 Ring Lithiation 553 3.14.5 Side-chain Activation via Stabilization of Negative Charge 553 3.14.6 Side-chain Activation via Stabilization of Positive Charge . 554 3.14.7 Other Transformations 555 3.14.8 Arene-Cr(CO)3 Complexes as Catalysts 555 References 556

3.15 Pauson-Khand Reactions (N. Jeong) 560 3.15.1 General Consideration 560 3.15.2 Variations of the Pauson-Khand Reaction 561 3.15.3 Regioselectivity 562 3.15.4 Promoter Assisted Pauson-Khand Reactions 563 3.15.5 Catalytic Pauson-Khand Reactions 566 3.15.6 Stereoselective Pauson-Khand Reactions 568 3.15.7 Synthetic Applications 571 3.15.8 Conclusion and Outlooks 575 References 575