Transition Metals for Organic Synthesis
Total Page:16
File Type:pdf, Size:1020Kb
Matthias Beller, Carsten Bolm Transition Metals for Organic Synthesis Building Blocks and Fine Chemicals © WILEY-VCH Weinheim • New York • Chichester • Brisbane • Singapore • Toronto Contents Volume 1 1 General 1 1.1 Basic Aspects of Organic Synthesis with Transition Metals (Barry M. Trost) 3 1.1.1 Chemoselectivity 4 1.1.2 Regioselectivity 6 1.1.3 Diastereoselectivity 7 1.1.4 Enantioselectivity 9 1.1.5 Atom Economy 10 1.1.6 Conclusion 11 References 12 1.2 Concepts for the Use of Transition Metals in Industrial Fine Chemical Synthesis (Wilhelm Keim) 14 1.2.1 General Principles 14 1.2.2 Use of Transition Metals in Fine Chemical Synthesis .... 15 1.2.3 Why are Transition Metals used in Fine Chemical Synthesis? 21 1.2.4 Considerations for the Future 22 References 22 2 Transition Metal-catalyzed Reactions 23 2.1 New Opportunities in Hydroformylation: Selected Syntheses of Intermediates and Fine Chemicals (Carlo Botteghi, Mauro Marchetti, Stefano Paganelli) ... 25 2.1.1 Introduction 25 2.1.2 Building Blocks for Pharmaceutical and Natural Products . 26 2.1.3 Building Blocks for Agrochemicals 40 2.1.4 Concluding Remarks 43 References 45 viii Contents 2.2 Hydrocarboxylation and Hydroesterification Reactions Catalyzed by Transition Metal Complexes (Bassam El Ali, Howard Alper) 49 2.2.1 Introduction 49 2.2.2 Intermolecular Hydrocarboxylation and Hydroesterification of Unsaturated Substrates 49 2.2.2.1 Hydrocarboxylation of Alkenes 49 2.2.2.2 Hydroesterification of Alkenes 53 2.2.2.3 Hydrocarboxylation and Hydroesterification of Allenes and Dienes 56 2.2.2.4 Hydrocarboxylation and Hydroesterification of Simple and Hydroxyalkynes 57 2.2.3 Intramolecular Cyclocarbonylation of Unsaturated Compounds 62 2.2.4 Conclusion 65 References 66 2.3 Palladium-catalyzed Carbonylation of Allylic and Propargylic Compounds (Jiro Tsuji, Jitsuo Kiji) 68 2.3.1 Carbonylation of Allylic Compounds 68 2.3.1.1 General Scope 68 2.3.1.2 Mechanistic Consideration 68 2.3.1.3 Synthetic Applications 71 2.3.2 Carbonylation of Propargylic Compounds 72 2.3.2.1 General Scope and Mechanistic Consideration 72 2.3.2.2 Mono- and Dicarbonylations 73 2.3.2.3 Domino Carbonylation and Diels-Alder Reaction 75 References 77 2.4 Amidocarbonylation (Klaus Kühlein, Holger Geissler) .... 79 2.4.1 Introduction 79 2.4.2 The Mechanism 79 2.4.3 Aldehydes as Starting Materials 80 2.4.4 Acetals as Starting Materials 83 2.4.5 Olefins as Starting Materials 84 2.4.6 Allylic Alcohols and Oxiranes as Starting Materials 85 2.4.7 Benzylic Substituted Compounds as Starting Materials ... 86 2.4.8 Amides as Starting Materials 87 2.4.9 General Considerations 88 2.4.9.1 Influence of Hydrogen 88 2.4.9.2 Influence of Amides 88 2.4.10 Summary 88 References 89 Contents ix 2.5 Transition Metal-catalyzed Alkene and Alkyne Hydrocyanations (Albert L. Casalnuovo, T. V. RajanBabu) . 91 2.5.1 Introduction 91 2.5.2 Alkene Hydrocyanation 91 2.5.3 Alkyne Hydrocyanation 93 2.5.3.1 Nickel Phosphite-catalyzed Reactions 93 2.5.3.2 Ni(CN)2~-catalyzed Reactions 93 2.5.3.3 Addition of R3SiCN 94 2.5.4 New Directions in Nickel-catalyzed Alkene Hydrocyanation 95 2.5.4.1 New Ligands 95 2.5.4.2 Catalytic Asymmetrie Hydrocyanation 96 2.5.5 Conclusions 98 References 98 2.6 Cyclopropanation (Andreas Pfaltz) 100 2.6.1 Introduction 100 2.6.2 Metal-catalyzed Decomposition of Diazo Compounds . 100 2.6.3 Enantioselective Cyclopropanation with Copper Catalysts . 101 2.6.4 Dinuclear Rhodium Catalysts 106 2.6.5 Simmons-Smith Reaction 110 2.6.6 Kulinkovich Hydroxycyclopropane Synthesis 110 References 111 2.7 Cyclomerization of Alkynes (Helmut Bönnemann, Werner Brijoux) 114 2.7.1 Introduction 114 2.7.2 Transition Metal-catalyzed Syntheses of Six-membered Carbocycles 116 2.7.2.1 Benzenes and Cyclohexadienes 116 2.7.2.2 Quinones 119 2.7.2.3 Phenylenes 119 2.7.3 Transition Metal-catalyzed Syntheses of Six-membered Heterocycles 120 2.7.3.1 Pyrane, Pyrone, Pyridone, and Sulfur Containing Heterocycles 120 2.7.3.2 Pyridines 123 2.7.3.3 Bipyridines 129 2.7.3.4 Miscellanous 130 2.7.4 Abbreviations 131 References 131 2.8 Intramolecular Hydroacylation and Reductive Cyclization (William E. Crowe) 136 2.8.1 Introduction 136 x Contents 2.8.2 Intramolecular Hydroacylation of Unsaturated Aldehydes . 136 2.8.3 Reductive Cyclization of Unsaturated Carbonyl Compounds 139 2.8.3.1 Silane-mediated Catalytic Reductive Cyclization 140 2.8.3.2 Carbonyl Insertion and Lactone Synthesis 141 2.8.3.3 Isonitrile Insertion 143 References 145 2.9 Isomerization of Olefin and the Related Reactions (Sei Otsuka, Kazuhide Toni) 147 2.9.1 Introduction 147 2.9.2 Allylamines 147 2.9.2.1 Characteristics of the Catalysis 148 2.9.2.2 Mechanisms 149 2.9.2.3 Synthetic Applications 149 2.9.3 Allyl Alcohols 151 2.9.4 Allyl Ethers 153 2.9.5 Unfunctionalized Olefins 154 2.9.6 Asymmetrie Skeletal Rearrangements 155 2.9.6.1 Epoxides 155 2.9.6.2 Aziridines 156 References 156 2.10 Transition Metal-catalyzed Cross Coupling Reactions (Holger Geissler) 158 2.10.1 Introduction 158 2.10.2 Cross Coupling of Organoboron Compounds (Suzuki Reactions) 161 2.10.3 Cross Coupling of Organotin Compounds (Stille Reaction) 165 2.10.4 Cross Coupling of Organocopper Compounds 170 2.10.5 Cross Coupling of Organoaluminum and Zirconium Compounds 173 2.10.6 Cross Coupling of Organomagnesium and Organolithium Compounds 175 2.10.7 Cross Coupling of Organosilicon Compounds 177 2.10.8 Conclusion 177 References 178 2.11 Transition Metal-catalyzed C-N and C-O Bond-forming Reactions (Matthias Beller, Thomas H. Riermeier) 184 2.11.1 Catalytic Amination of Aryl Halides 184 2.11.2 C-O Coupling Reactions 191 References 193 Contents XI 12 Catalytic Enantioselective Alkylation of Alkenes by Chiral Metallocenes (Amir H. Hoveyda) 195 12.1 Introduction 195 12.2 Zr-Catalyzed Enantioselective Carbomagnesation Reactions 195 12.2.1 Catalytic Enantioselective Addition Reactions 195 12.2.2 Zr-Catalyzed Kinetic Resolution of Unsaturated Heterocycles 201 12.2.3 Zr-Catalyzed Kinetic Resolution of Cyclic Allylic Ethers . 204 12.2.4 Other Related Catalytic Enantioselective Olefin Alkylations 205 12.3 Summary and Outlook 206 References 206 13 Palladium-catalyzed Olefinations of Aryl Halides (Heck Reaction) and Related Transformations (M. Beller, T. H. Riermeier, G. Stark) 208 13.1 Introduction 208 13.2 Mechanism 209 13.3 Catalysts 211 13.4 Asymmetrie Heck Reactions using Chiral Palladium Catalysts 214 13.4.1 Mechanistic Features of Asymmetrie Heck Reactions .... 216 13.4.2 New Catalyst Systems for Asymmetrie Heck Reactions . 218 13.5 Recent Applications of Heck Reactions for the Synthesis of Natural Products, Complex Organic Building Blocks and Pharmaceuticals 220 13.6 Miscellaneous 234 13.7 Concluding Remarks 235 References 236 14 Coupling Reactions Involving CH Activation (Gerald Dy her) 241 14.1 Intramolecular CH Activation by a Precoordinated Transition Metal 241 14.2 Intramolecular CH Activation via Palladacycles 244 14.3 Transition Metal-catalyzed Intermolecular CH Activation . 247 14.4 Conclusion 248 References 248 15 Palladium-catalyzed Allylic Substitutions (Andreas Heumann) 251 15.1 Introductory Remarks and Historical Background 251 15.2 Reactions of 7r-Allylpalladium Complexes 252 15.3 Catalytic Introduction of Nucleophiles 253 15.4 Mechanism—Stereochemistry 254 xii Contents 2.15.5 Allylic Reductions—Hydrogenolysis—Eliminations .... 255 2.15.6 Protective Groups 256 2.15.7 Trimethylenemethane (TMM) Cycloadditions 256 2.15.8 Allylic Rearrangements 256 2.15.9 Enantioselective Reactions 257 2.15.10 Preparative Glossary 259 References and Notes 259 2.16 Palladium-catalyzed Cyclization of Allylic Acetates with Alkenes and Allenes (Takashi Takahashi, Takayuki Doi, and Keiji Yamamoto) . 265 2.16.1 Introduction 265 2.16.2 An Approach to Prostaglandin Skeleton 266 2.16.3 Tandem Cyclization of the Pd(0)-catalyzed Reaction with Intramolecular Alkene 267 2.16.4 Tandem Cyclization of Pd(0)-catalyzed Reaction with Intramolecular Allene and Alkene 269 2.16.4.1 Synthesis of Isoiridomyrmecin by Pd(0)-catalyzed Cyclization-Carbonylation 270 2.16.4.2 Other Intramolecular Reactions of 7r-Allylpalladium Complexes and Allenes: Tandem Cyclization-Carbonylation 272 References 273 2.17 Application of Olefin Metathesis (Matthias Schuster and Siegfried Blechert) 275 2.17.1 Introduction 275 2.17.2 Synthetic Applications 276 2.17.2.1 Ring-closing Metathesis (RCM) 276 2.17.2.2 Crossed Metathesis 279 2.17.2.3 Ring-opening Metathesis (ROM) 281 2.17.2.4 Tandem Reactions 282 2.17.3 Perspectives 282 References 283 2.18 Homometallic Lanthanoids in Synthesis: Lanthanide Triflate-catalyzed Synthetic Reactions (Shü Kobayashi) ... 285 2.18.1 Introduction 285 2.18.2 Lewis Acid Catalysis in Aqueous Media 285 2.18.2.1 Aldol Reactions 286 2.18.2.2 Allylation Reactions 287 2.18.2.3 Diels-Alder Reactions 288 2.18.2.4 Micellar Systems 288 2.18.2.5 Recovery and Reuse of the Catalyst 289 Contents Xlii 2.18.3 Activation of Nitrogen-containing Compounds 290 2.18.3.1 Mannich-type Reaction 291 2.18.3.2 Aza Diels-Alder Reactions 294 2.18.3.3 1,3-DipolarCycloaddition 297 2.18.3.4 Reactions of Imines with Alkynyl Sulfides 298 2.18.4 Asymmetrie Catalysis 298 2.18.4.1 Asymmetrie Diels-Alder Reaction 298 2.18.4.2 Asymmetrie [2+ 2]-Cycloaddition 303 2.18.4.3 Asymmetrie Aza Diels-Alder Reaction 304 2.18.4.4 Asymmetrie 1,3-Dipolar Cycloaddition 305 2.18.5 Miscellaneous 306 References 308 2.19 Heterometallic Lanthanoids in Organic Synthesis (Masakatsu Shibasaki and Hiroaki Sasai) 313 2.19.1 Introduction 313 2.19.2 Representative Applications of Catalytic Asymmetrie Nitroaldol Reactions Promoted