The Sima De Los Huesos Crania: Analysis of the Cranial Breakage Patterns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Homo Heidelbergensis: the Ot Ol to Our Success Alexander Burkard Virginia Commonwealth University
Virginia Commonwealth University VCU Scholars Compass Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship 2016 Homo heidelbergensis: The oT ol to Our Success Alexander Burkard Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/auctus Part of the Archaeological Anthropology Commons, Biological and Physical Anthropology Commons, and the Biology Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/auctus/47 This Social Sciences is brought to you for free and open access by VCU Scholars Compass. It has been accepted for inclusion in Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Homo heidelbergensis: The Tool to Our Success By Alexander Burkard Homo heidelbergensis, a physiological variant of the species Homo sapien, is an extinct spe- cies that existed in both Europe and parts of Asia from 700,000 years ago to roughly 300,000 years ago (carbon dating). This “subspecies” of Homo sapiens, as it is formally classified, is a direct ancestor of anatomically modern humans, and is understood to have many of the same physiological characteristics as those of anatomically modern humans while still expressing many of the same physiological attributes of Homo erectus, an earlier human ancestor. Since Homo heidelbergensis represents attributes of both species, it has therefore earned the classifica- tion as a subspecies of Homo sapiens and Homo erectus. Homo heidelbergensis, like anatomically modern humans, is the byproduct of millions of years of natural selection and genetic variation. It is understood through current scientific theory that roughly 200,000 years ago (carbon dat- ing), archaic Homo sapiens and Homo erectus left Africa in pursuit of the small and large animal game that were migrating north into Europe and Asia. -
Application of Micro Tomography to the Mandibular Incisors of Sima De Los Huesos
Podium - Wed 4th (18h00) Application of micro tomography to the mandibular incisors of Sima de los Huesos Annabelle Lockey *† 1, María Martinón-Torres 1,2, Laura Martín- Francés 3,4, Juan Luis Arsuaga 5,6, José María Bermúdez de Castro 1,7 1 Department of Anthropology, University College London (UCL), London, United Kingdom 2 Laboratorio de Evolución Humana (LEH), Departamento de Ciencias Historia y Geografia, Universidad de Burgos, Burgos, Spain 3 de la Préhistoire à l'Actuel : Culture, Environnement et Anthropologie (PACEA), UMR5199, CNRS, Université de Bordeaux, Pessac, France 4 Fundación Atapuerca, Burgos, Spain 5 Centro UCM-ISCIII de Investigación sobre la Evolución y Comportamiento Humanos, Spain 6 Departamento de Paleontología, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, Spain 7 Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain Dental tissue proportions are regularly reported as a diagnostic feature within hominin characterization, and are linked to dietary reconstructions and non-masticatory function. Until recently dental tissue proportions were inferred from linear measurements extracted from physifically slicing teeth, or observing natural random fractures in teeth; these irregular and destructive methods have been critiqued heavily. Microtomography has led to advancements in this field, with standardised non- destructive methods applied to valuable fossils, allowing for larger samples to be analysed with high resolution. Hominoid incisors are severely under investigated in the archaeological record for all aspects of dental tissue measurements, despite implications to non-dietary behaviour. Studies into Neanderthal anterior dentition have reported that they are larger than expected, and adapted to heavy wear and frequent loading. Important excavations at SH represent a Middle Pleistocene population belonging to a much wider group of sites found at Sierra de Atapuerca (Burgos, Spain), widely renowned for significant contributions to the study of human evolution. -
Discovery of Oldest DNA Scrambles Human Origins Picture
Discovery of Oldest DNA Scrambles Human Origins Picture Scientists reveal the surprising genetic identity of early human remains from roughly 400,000 years ago in Spain. The bones were first thought to belong to European Neanderthals, but analysis showed they are genetically closer to the Siberian Denisovans. PHOTOGRAPH BY JAVIER TRUEBA, MADRID SCIENTIFIC FILMS Karl Gruber for National Geographic PUBLISHED DECEMBER 4, 2013 New tests on human bones hidden in a Spanish cave for some 400,000 years set a new record for the oldest human DNA sequence ever decoded—and may scramble the scientific picture of our early relatives. Analysis of the bones challenges conventional thinking about the geographical spread of our ancient cousins, the early human species called Neanderthals and Denisovans. Until now, these sister families of early humans were thought to have resided in prehistoric Europe and Siberia, respectively. (See also: "The New Age of Exploration.") But paleontologists write in a new study that the bones of what they thought were European Neanderthals appear genetically closer to the Siberian Denisovans, as shown by maternally inherited "mitochondrial" DNA found in a fossil thighbone uncovered at Spain's Sima de los Huesos cave. "The fact that they show a mitochondrial genome sequence similar to that of Denisovans is irritating," says Matthias Meyer of Germany's Max Planck Institute for Evolutionary Anthropology in Leipzig, lead author of the study, published Wednesday in Nature. "Our results suggest that the evolutionary history of Neanderthals and Denisovans may be very complicated and possibly involved mixing between different archaic human groups," he said. Neanderthals and Denisovans arose hundreds of thousands of years before modern-looking humans spread worldwide from Africa more than 60,000 years ago. -
Cranial Suture Mesenchymal Stem Cells: Insights and Advances
biomolecules Review Cranial Suture Mesenchymal Stem Cells: Insights and Advances Bo Li 1, Yigan Wang 1, Yi Fan 2, Takehito Ouchi 3 , Zhihe Zhao 1,* and Longjiang Li 4,* 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; [email protected] (B.L.); [email protected] (Y.W.) 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; [email protected] 3 Department of Physiology, Tokyo Dental College, Tokyo 1010061, Japan; [email protected] 4 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China * Correspondence: [email protected] (Z.Z.); [email protected] (L.L.) Abstract: The cranial bones constitute the protective structures of the skull, which surround and protect the brain. Due to the limited repair capacity, the reconstruction and regeneration of skull defects are considered as an unmet clinical need and challenge. Previously, it has been proposed that the periosteum and dura mater provide reparative progenitors for cranial bones homeostasis and injury repair. In addition, it has also been speculated that the cranial mesenchymal stem cells reside in the perivascular niche of the diploe, namely, the soft spongy cancellous bone between the interior and exterior layers of cortical bone of the skull, which resembles the skeletal stem cells’ distribution pattern of the long bone within the bone marrow. -
Ancient Genomes Link Early Farmers from Atapuerca in Spain to Modern-Day Basques
Ancient Genomes link early farmers from Atapuerca in Spain to modern-day Basques Supplementary Information Torsten Günther*, Cristina Valdiosera*, Helena Malmström, Irene Ureña, Ricardo Rodriguez- Varela, Óddny Sverrisdóttir, Evangelia A. Daskalaki, Pontus Skoglund, Thijessen Naidoo, Emma M. Svensson, José María Bermúdez de Castro, Eudald Carbonell, Michael Dunn, Jan Storå, Eneko Iriarte, Juan Luis Arsuaga, José Miguel Carretero, Anders Götherström, Mattias Jakobsson† *These authors contributed equally †correspondence to: [email protected] 1 Table of Contents S1. The El Portalón site stratigraphic and cultural sequence..................................................3 S1.1. Early Chalcolithic (Pre-Bell Beaker) funerary context, Bronze Age and disturbed layers from the El Portalón cave.......................................................................................................3 S1.2. Sample provenance and radiocarbon dating.................................................................5 S2. Sample preparation, DNA extraction, library construction and sequencing......................7 S2.1. Bone and teeth DNA extraction.....................................................................................7 S2.2. Sequencing Library Building..........................................................................................7 S3. Sequence processing and alignment...............................................................................8 S3.1. Mitochondrial DNA haplogroups....................................................................................8 -
Modelling Suture Ossification: a View from the Cranial Capsule
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-1992 Modelling Suture Ossification: A View from the Cranial Capsule Hugh Bryson Matternes University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Anthropology Commons Recommended Citation Matternes, Hugh Bryson, "Modelling Suture Ossification: A View from the Cranial Capsule. " Master's Thesis, University of Tennessee, 1992. https://trace.tennessee.edu/utk_gradthes/4192 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Hugh Bryson Matternes entitled "Modelling Suture Ossification: A View from the Cranial Capsule." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology. Richard L. Jantz, Major Professor We have read this thesis and recommend its acceptance: Lyle W. Konigsberg, William M. Bass Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: -
Front Matter
Cambridge University Press 978-1-107-01145-8 - Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation Edited by G. Richard Scott and Joel D. Irish Frontmatter More information Cambridge Studies in Biological and Evolutionary Anthropology 66 Anthropological Perspectives on Tooth Morphology Researchers have long had an interest in dental morphology as a genetic proxy to reconstruct population history. Much interest was fostered by the use of standard plaques and associated descriptions that constitute the Arizona State University Dental Anthropology System, developed by Christy G. Turner II and students. This system has served as the foundation for hundreds of anthropo- logical studies for more than 30 years. In recognition of this success, this volume brings together some of the world’s leading dental morphologists to expand upon the concepts and methods pre- sented in the popular The Anthropology of Modern Human Teeth (Cambridge 1997), leading the reader from method to applied research. After a preparatory section on the current knowledge of heritability and gene expression, a series of case studies demonstrate the utility of dental morphological study in both fossil and more recent populations (and individuals), from local to global scales. G. Richard Scott is Emeritus Professor of Anthropology, University of Alaska Fairbanks, and is currently Associate Professor and Chair of Anthropology at the University of Nevada Reno. He coauthored The Anthropology of Modern Human Teeth with Christy G. Turner II (Cambridge 1997). Joel D. Irish is Professor in the Research Centre in Evolutionary Anthropology and Palaeoecology at Liverpool John Moores University. He has three coed- ited volumes – two in the CSBEA series; was associate editor of the American Journal of Physical Anthropology; and has more than 60 publications, with an emphasis on dental morphology. -
It Was a Tooth! • Leyre Prado Simon •
ISSN 1846-6273 ISSN www.paleodontology.com • Year: 2007 • Volume: 1 • Number: 1 • Pages: 1-8 • It was a tooth! • Leyre Prado Simon • The Sierra de Atapuerca is situated near the mediaeval city of Burgos (northern Spain). It contains a unique and rich complex of archaeo - palaeontological sites which were inscribed in the UNESCO’s world heritage list in 2000. It is widely known that anatomical evidences of hominids are very rare but precious findings. Thousands of human and non-human fossils from different chronologies and species, as well as lithic tools of different technologies have been found in Atapuerca. This is one of the reasons why it is considered such a historical treasure. In the Galería del Sílex site, a Neolithic sanctuary of the Bronze age has been discovered. In the Sima de los Huesos site, more than 5000 human fossil remains of at least 28 individuals of Homo heidelbergensis (ca. 500.000 years) have been found so far. In July 1994, in the TD6 level of the Gran Dolina site, near a hundred human fossil remains were found, and a new specie, Homo antecessor (800.000 years), was named. New human fossils and lithic tools are found every year during the excavation period in Atapuerca. More than a hundred years ago, an English railway company created a trench for a railroad in the middle of Atapuerca mountain range. This project was operative only during a few years, but the creation of the trench exposed several caves infillings that compose nowadays the group of three sites called the Trinchera del Ferrocarril (Railroad Trench): Gran Dolina, Galería and Sima del Elefante. -
Cranial Sutures & Funny Shaped Heads: Radiological Diagnosis
Objectives • The objectives of this presentation are to: – Review the imaging features of normal cranial sutures – Identify the characteristics of abnormal skull shape on imaging – Review the characteristics of the most common non- syndromic and syndromic causes of craniosynostosis Anatomical Review Anatomical Review • The bony plates of the skull communicate at the cranial sutures • The anterior fontanelle occurs where the coronal & metopic sutures meet • The posterior fontanelle occurs where the sagittal & lambdoid sutures meet Anatomical Review • The main cranial sutures & fontanelles include: Metopic Suture Anterior Fontanelle Coronal Sutures Squamosal Sutures Posterior Fontanelle Sagittal Suture Lambdoid Sutures Anatomical Review • Growth of the skull occurs perpendicular to the cranial suture • This is controlled by a complex signalling system including: – Ephrins (mark the suture boundary) – Fibroblast growth factor receptors (FGFR) – Transcription factor TWIST Anatomical Review • The cranial sutures are important for rapid skull growth in-utero & infancy • The cranial sutures can usually be visualised on imaging into late adulthood Normal Radiological Appearances Normal Radiological Appearances • The cranial sutures can be visualised on plain radiographs • Standard views include: – PA – Lateral – Townes PA Skull radiograph Sagittal Suture Left Coronal Suture Right CoronalRight lambdoidSutureSuture Metopic Suture Left lambdoid Suture Townes View Sagittal Suture Left Coronal Suture Right Coronal Suture Right Lambdoid Suture Left -
A Heads up on Craniosynostosis
Volume 1, Issue 1 A HEADS UP ON CRANIOSYNOSTOSIS Andrew Reisner, M.D., William R. Boydston, M.D., Ph.D., Barun Brahma, M.D., Joshua Chern, M.D., Ph.D., David Wrubel, M.D. Craniosynostosis, an early closure of the growth plates of the skull, results in a skull deformity and may result in neurologic compromise. Craniosynostosis is surprisingly common, occurring in one in 2,100 children. It may occur as an isolated abnormality, as a part of a syndrome or secondary to a systemic disorder. Typically, premature closure of a suture results in a characteristic cranial deformity easily recognized by a trained observer. it is usually the misshapen head that brings the child to receive medical attention and mandates treatment. This issue of Neuro Update will present the diagnostic features of the common types of craniosynostosis to facilitate recognition by the primary care provider. The distinguishing features of other conditions commonly confused with craniosynostosis, such as plagiocephaly, benign subdural hygromas of infancy and microcephaly, will be discussed. Treatment options for craniosynostosis will be reserved for a later issue of Neuro Update. Types of Craniosynostosis Sagittal synostosis The sagittal suture runs from the anterior to the posterior fontanella (Figure 1). Like the other sutures, it allows the cranial bones to overlap during birth, facilitating delivery. Subsequently, this suture is the separation between the parietal bones, allowing lateral growth of the midportion of the skull. Early closure of the sagittal suture restricts lateral growth and creates a head that is narrow from ear to ear. However, a single suture synostosis causes deformity of the entire calvarium. -
Calculated Or Caring? : Neanderthal Healthcare in Social Context
This is a repository copy of Calculated or caring? : Neanderthal healthcare in social context. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/126290/ Version: Accepted Version Article: Spikins, Penny orcid.org/0000-0002-9174-5168, Needham, Andrew, Tilley, Lorna et al. (1 more author) (2018) Calculated or caring? : Neanderthal healthcare in social context. World Archaeology. ISSN 1470-1375 https://doi.org/10.1080/00438243.2018.1433060 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Calculated or caring? Neanderthal healthcare in social context Submitted to World Archaeology Penny Spikins Andy Needham Lorna Tilley Gail Hitchens Abstract Explanations for patterns of healed trauma in Neanderthals have been a matter of debate for several decades. Despite widespread evidence for recovery from injuries or survival despite impairments, apparent evidence for healthcare is given limited attention. Moreover, interpretations of Neanderthal’s approach to injury and suffering sometimes assume a calculated or indifferent attitude to others. -
Chapter 7 Body Systems
Identification and Palpation of Individual Joints of the Body 1 Joints of the Skull Cranial sutures 2 The four cranial sutures are the coronal suture, the sagittal suture, the squamous suture, and the lambdoidal suture. The coronal suture is located on the top of the skull above the eyebrows. The sagittal suture is midway between the top of the ear and the eye. The squamous suture arcs above the ear, and the lambdoidal suture is behind the ear, just above the mastoid process in an arc superiorly and posteriorly. Joints of the Skull Temporomandibular joint 4 The temporomandibular joint consists of the temporal bone and mandible and is a synovial modified hinge joint. The TMJ is one of the strongest joints in the body and is the only biarticular joint in the body. Joints of the Shoulder Glenohumeral joint 6 The glenohumeral joint is the main joint in the shoulder and the most mobile joint in the human body. The previous figure shows the ligaments of the shoulder. Joints of the Shoulder Sternoclavicular joint 8 The movements of the sternoclavicular joint follow the movements of the scapula and clavicle because no muscle works directly on this joint. A decrease or loss of mobility in this joint directly affects shoulder movement. This joint is the only direct connection between the axial skeleton and the shoulder girdle and arm. Joints of the Shoulder Acromioclavicular 10 Although a small joint, the acromioclavicular joint is important for shoulder movements. Some people do not have an acromioclavicular joint because the bones have fused. Joints of the Elbow Ulnohumeral and radiohumeral joints 12 These two joints allow flexion and extension.