TERMODYNAMIK En Kort Historik Christoffer Norberg

Total Page:16

File Type:pdf, Size:1020Kb

TERMODYNAMIK En Kort Historik Christoffer Norberg ISRN LUTMDN/TMHP-08/3032-SE ISSN 0282-1990 Institutionen f¨or Energivetenskaper TERMODYNAMIK en kort historik Christoffer Norberg Joules skovelanordning fr˚an 1845/7 f¨or att best¨amma den mekaniska v¨armeekvivalenten. Phil. Trans. Roy. Soc. 140 (1850). januari 2008 F¨orord Denna skrift g¨or inga anspr˚ak p˚aatt vara komplett eller utt¨ommande. D¨aremot har jag i m¨ojligaste m˚an f¨ors¨okt vara korrekt n¨ar det g¨aller ˚artal, biografiska data och prioritet av originalarbeten. F¨or en mer utt¨ommande beskrivning (fram till 1800-talets slut) re- kommenderas From Watt to Clausius av Donald Cardwell ([5]). Kommentarer och f¨orslag till korrigeringar emottages tacksamt. Portr¨att ¨ar huvudsakligen h¨amtade fr˚an Internet samt [2, 6, 25, 28, 20, 27], biografiska data v¨asentligen ur [1, 28, 7, 12, 21, 26, 30] och originalreferenser mestadels ur bibliotekss¨okningar, tillg¨angliga tidskrifter inom LU-n¨atet samt [23, 30]. 8 januari 20081 Christoffer Norberg Tel. 046-2228606 Christoff[email protected] Levnads˚ar f¨or 35 pionj¨arer inom termodynamikens historiska utveckling. Tjocka linjer motsvarar ˚aldern 20–65 ˚ar. “But although, as a matter of history, statistical mechanics owes its origin to investigations in thermodynamics, it seems eminently worthy of an independent development, both on account of the elegance and simplicity of its principles, and because it yields new results and places old truths in a new light in departments quite outside of thermodynamics.” Willard Gibbs 1Sedan tryckningen fr˚an januari 2008 har det gjorts ett par uppdateringar av biografiska data, liksom sm¨arre justeringar och till¨agg i texten samt i den bibliografiska delen; 15 december 2013. Inneh˚all F¨orord 1 1 Den vetenskapliga revolutionen 3 2 Tryck 4 3 Termometrar 5 4 Angmaskinen˚ 6 5 V¨arme 9 6 Samband mellan tryck, temperatur och volym 11 7 Sadi Carnot 13 8 F¨orsta huvudsatsen — energiprincipen 15 9 Klassisk termodynamik 17 10 Kolvmotorer 21 11 Kinetisk gasteori 22 12 Kyl- och kryoteknik 23 13 1900–tal 25 14 Slutord 27 15 Biografiska data 28 16 Originalarbeten 37 Referenser 54 Personregister 56 2 1 Den vetenskapliga revolutionen Ordet termodynamik kommer av grekiskans termo´s (varm) och dy´namis (kraftverkan, f¨orm˚aga till kraft). Denna ben¨amning, inf¨ord av Lord Kelvin 1849 [25] ¨ar naturlig d˚a(klas- sisk) termodynamik i m˚angt och mycket handlar om processer f¨or att via v¨armeutbyte ˚astadkomma kraftverkan eller arbete.2 F¨orhistorien till termodynamik som vetenskap handlar till stora delar om m¨anniskans stora intresse f¨or vatten, eld, v¨ader och vind, dess str¨avan till att konstruera och an- v¨anda maskiner, samt att kunna f¨orst˚aoch p˚averka ¨amnens egenskaper. N˚agon h˚allbar teoribildning inom termodynamik skedde dock inte f¨orr¨an p˚a1600-talet. Under senare delen av 1500-talet och med utg˚angspunkt i Italien skedde en dramatisk omsv¨angning fr˚an den av kyrkan s˚auppbackade traditionella naturl¨aran enligt Aristoteles till ett t¨ankande som var l˚angt mer praktiskt inriktat; den s.k. modernismen. Den engelske naturfilosofen Francis Bacon var en drivande kraft i denna utveckling. I hans kanske mest k¨anda verk Novum Organum Scientiarum (Vetenskapens nya verktyg) fr˚an 1620 h¨avdas t.ex. att kunskap om naturens lagar m˚aste grundas p˚afaktiska iakttagelser som kan kon- trolleras genom experiment (experiment och induktion). Avsikten med denna k¨annedom om naturens lagar var enligt Bacon att kunna befr¨amja den tekniska utvecklingen. Francis Bacon Ren´eDescartes 1561–1626 1596–1650 En annan mycket inflytelserik t¨ankare och filosof var fransmannen Ren´eDescartes (Carte- sius). Descartes f¨orordade i motsats till Bacon en vetenskaplig metod3 baserad p˚avissa enkla sj¨alvklara principer (axiom) och som kombinerat med matematik kunde beskriva ett rent mekanistiskt universum (matematik och deduktion). [8] Varken Bacon eller Descartes bidrog sj¨alva med n˚agot v¨asentligt till teoribildning inom naturvetenskaperna. Deras vikti- gaste bidrag var ist¨allet att˚astadkomma den avg¨orande brytningen med medeltidens bild- ningstradition (skolastiken). De f¨orsta4 naturvetenskapliga akademierna grundades f¨oljd- 2Mekaniskt arbete = kraft × f¨orflyttning i kraftens riktning. 3Sammanfattat i arbetet Discours de la M´ethode. Pour bien conduire sa raison, et chercher la v´erit´e dans les sciences, Leyden: Ian Maire, 1637. 4Den florentiska Accademia del Cimento (Experimentens akademi) bildades 1657 men uppl¨ostes redan tio ˚ar senare. Italiens storhetstid f¨orbleknade i slutet av 1600-talet; mycket p.g.a. av handelns f¨orskjutning fr˚an medelhavet till kusterna mot atlanten (England, Frankrike och Holland). [21] 3 riktigt i England och Frankrike (Royal Society i London 1660; Acad´emie de Sciences i Paris 1666). Akademiernas intr¨ade m¨ojliggjorde framf¨orallt ett v¨asentligt ¨oppnare vetenskapligt klimat j¨amf¨ort med de p˚aden tiden inbundna och av religion f¨orm¨orkade universiteten. Svenska Vetenskapsakademien instiftades i Stockholm 2 juni 1739. [17] 2 Tryck Begreppet tryck och dess verkningar i gaser5 och v¨atskor studerades i b¨orjan p˚a1600-talet av italienaren Torricelli, som ocks˚akonstruerade ocks˚aden f¨orsta barometern (kvicksil- verbarometern, 1643). Ytterligare teoribildning skedde i mitten av 1600-talet genom den franske matematikern, filosofen och fysikern Blaise Pascal (fluiders statik).6 Borgm¨astaren i Magdeburg, Otto von Guericke, demonstrerade 1654, med all t¨ankv¨ard tydlighet inf¨or kejsaren och p˚astadens torg, den enorma kraft som ett vakuum kunde pro- ducera (Magdeburgska halvkloten). Guericke7 bidrog visserligen inte till n˚agon ny teori men hans demonstration tog effektivt och slutgiltigt d¨od p˚aden gamla aristoteliska myten om att ett vakuum inte existerar (horror vacui). Guericke tillverkade ocks˚aden f¨orsta luft- pumpen (1661). BlaisePascal RobertBoyle 1623–1662 1627–1691 Robert Boyle, en av grundarna till Royal Society, angav 1661 att trycket i en gas ¨ar omv¨ant proportionellt mot dess volym, ett samband som tidigare observerats av hans landsm¨an Richard Towneley (c.1629–1707)8 och Henry Power (c.1623–1668). [5, 30] Att detta endast g¨aller vid l˚aga tryck och vid konstant temperatur visades f¨orst 15 ˚ar senare av fransmannen Edm´eMariotte, publicerat 1679 (Boyle-Mariottes lag).9 5Ordet gas (flaml¨andska f¨or kaos) myntades av belgaren Johann Baptista van Helmont (1579–1644). 6 Sedan 1971 ¨ar pascal den vedertagna SI-enheten f¨or tryck, enhetsbeteckning Pa. 7Guericke var i svensk tj¨anst som ingenj¨or 1631–36, under det trettio˚ariga kriget. Guericke blev adlad 1666. M˚anga av hans experiment finns beskrivna i Experimenta Nova (ut vocantur) Magdeburgica de Vacuo Spatio, Amsterdam: Joannem Janssonium `aWaesberge, 1672. 8Boyle kallar sambandet f¨or Towneleys hypotes. [5] 9I Frankrike enbart ben¨amnt Mariottes lag. Amagat bekr¨aftade 1869 lagens giltighet ned till ca. 10 Pa. Vid Amagats omfattande experiment uppn˚addes som h¨ogst tryckniv˚aer kring 300 MPa (1893). 4 3 Termometrar Den f¨orsta egentliga termometern presenterades under mitten av 1600-talet av storher- tigen Ferdinand II av Toscana, en av grundarna till den Florentinska akademien f¨or experi- mentella studier. Termometern inneh¨oll vinsprit och var av sluten typ till skillnad fr˚an Galileos variant fr˚an 1592 som var ¨oppen och d¨arf¨or kraftigt p˚averkades av omgivnings- trycket (termoskop). Fransmannen Amontons konstruerade 1702 en lufttermometer baserad p˚aden av honom funna principen att luftens tryck vid konstant volym ¨ar proportionell mot dess tempera- tur (kallas ibland f¨or Amontons lag). Som en konsekvens f¨oreslog Amontons 1703 att det borde finnas en absolut nollpunkt10 f¨or temperaturen. Enligt Amontons m¨atdata skulle den absoluta nollpunkten ligga vid ca. −240 ◦C, [13] att j¨amf¨ora med det idag fastslagna −273.15 ◦C (ITS-90). Enligt Amontons modell f¨or luftens“sp¨anstighet”[13] f¨oregreps dess- utom det faktum att Mariottes lag inte kan g¨alla vid h¨oga tryck. IsaacNewton AndersCelsius 1642–1727 1701–1744 En rad olika temperaturskalor lanserades i slutet p˚a1600-talet och i b¨orjan av 1700- talet. Som kuriosa kan n¨amnas den fr˚an 1701 anonymt anf¨orda d¨ar temperaturen noll sattes vid sm¨altpunkten f¨or vatten och tolv (12) vid den h¨ogsta uppm¨atbara tempera- turen hos en (frisk) m¨anniska. Det visade sig senare att artikeln var skriven av Sir Isaac Newton.11 Holl¨andaren Fahrenheit anvisade 1706 sin skala d¨ar temperaturen noll sat- tes vid det kallaste han kunde ˚astadkomma med en blandning av isvatten och salmiak och v¨ardet 96 vid temperaturen hos “blodet p˚aen frisk man”. Detta gav 32 resp. 212 vid sm¨alt- resp. kokpunkten f¨or vatten vid normalt tryck. Fahrenheit f¨orfinade ocks˚a olika m¨atmetoder f¨or temperatur och 1714 konstruerade han den f¨orsta egentliga12 kvick- silvertermometern; sprittermometern uppfanns 1730 av fransmannen R´eaumur; platina- 10Tanken om en absolut nollpunkt˚aterkom under 1730-talet efter studier av den skotske l¨akaren George Martine (1700–1741). [5] 11Framg˚ar t.ex. av Celsius uppsats fr˚an 1742 (Observationer om tw¨anne best¨andiga Grader p˚aen Thermometer). 12Astronomen och geofysikern Edmond Halley f¨oreslog 1693 kvicksilver som l¨amplig termometerv¨atska. Vissa konstruktionsid´eer till sina termometrar fick Fahrenheit fr˚an den danske astronomen Olaus R¨omer (Ole R¨omer Kristenson, 1644–1710). [13] R¨omer var f.¨o. den f¨orste att ber¨akna ljusets hastighet (1675). 5 resistans-termometern beskrevs 1870 av Werner von Siemens (1816–1892) och full¨andades 1886 av Hugh Longbourne Callendar. Celsiusskalan h¨arstammar fr˚an den av den svenske (Uppsala) astronomen Anders Celsius f¨oreslagna 1742. Celsius anvisade noll grader vid vattens kokpunkt vid normalt lufttryck och hundra grader vid vattens sm¨altpunkt (sm¨altande sn¨o).
Recommended publications
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Redalyc.On the Sackur-Tetrode Equation in an Expanding Universe
    Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Pereira, S.H. On the Sackur-Tetrode equation in an expanding universe Revista Mexicana de Física, vol. 57, núm. 1, junio, 2011, pp. 11-15 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57024209002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ENSENANZA˜ REVISTA MEXICANA DE FISICA´ E 57 (1) 11–15 JUNIO 2011 On the Sackur-Tetrode equation in an expanding universe S.H. Pereira Universidade Federal de Itajuba,´ Campus Itabira, Rua Sao˜ Paulo, 377 – 35900-373, Itabira, MG, Brazil, e-mail: [email protected] Recibido el 5 de abril de 2010; aceptado el 2 de febrero de 2011 In this work we investigate the thermodynamic properties satisfied by an expanding universe filled with a monoatomic ideal gas. We show that the equations for the energy density, entropy density and chemical potential remain the same of an ideal gas confined to a constant volume V . In particular the Sackur-Tetrode equation for the entropy of the ideal gas is also valid in the case of an expanding universe, provided that the constant value that represents the current entropy of the universe is appropriately chosen. Keywords: Expanding universe; ideal gas; Sackur-Tetrode equation. En el presente trabajo investigamos las propriedades termodinamicas´ que son satisfechas por un universo en expansion,´ el cual es lleno por un gas ideal monoatomico.´ Se prueba que las ecuaciones para la densidad de la energ´ıa, la densidad de la entrop´ıa y el potencial qu´ımico son las mismas que las de un gas ideal, el cual se encuentra confinado en un volumen V.
    [Show full text]
  • August/September 2009
    August-September 2009 Volume 18, No. 8 TM www.aps.org/publications/apsnews PhysicsQuest APS NEWS Goes to Kenya A PublicAtion of the AmericAn PhysicAl society • www.aps.org/PublicAtions/apsnews See page 5 APS Awards Three Hildred Blewett Scholarships Presidents Two This year APS has announced electrical properties. three women as recipients of the “It was amazing how many ses- M. Hildred Blewett scholarship. sions there were on graphene at the Chosen by the Committee on March Meeting,” Guikema said. the Status of Women in Physics, She plans to use funds from the three are Janice Guikema at the Blewett Scholarship to further Johns Hopkins University, Marija research the feasibility of using Nikolic-Jaric at the University of graphene as a sensitive magnetic Manitoba, and Klejda Bega at Co- detector. She said that graphene has lumbia University. a lot of potential for use as a Hall Each year the committee se- effect detector to detect nanoscale lects women who are returning to particles and map out magnetic their research careers that had been Janice guikema structures. Currently she is continu- interrupted for family or other rea- ing to look for ways to make the sons. The scholarship is a one-year as a second-time recipient of the material as sensitive as possible. grant of up to $45,000 that can be Blewett Scholarship. She currently In addition she will use scanning used towards a wide range of ne- has a part-time research position at probe microscopy to further ex- cessities, including equipment pro- Johns Hopkins University, where plore the nature of graphene.
    [Show full text]
  • Acta Technica Jaurinensis
    Acta Technica Jaurinensis Győr, Transactions on Engineering Vol. 3, No. 1 Acta Technica Jaurinensis Vol. 3. No. 1. 2010 The Historical Development of Thermodynamics D. Bozsaky “Széchenyi István” University Department of Architecture and Building Construction, H-9026 Győr, Egyetem tér 1. Phone: +36(96)-503-454, fax: +36(96)-613-595 e-mail: [email protected] Abstract: Thermodynamics as a wide branch of physics had a long historical development from the ancient times to the 20th century. The invention of the thermometer was the first important step that made possible to formulate the first precise speculations on heat. There were no exact theories about the nature of heat for a long time and even the majority of the scientific world in the 18th and the early 19th century viewed heat as a substance and the representatives of the Kinetic Theory were rejected and stayed in the background. The Caloric Theory successfully explained plenty of natural phenomena like gas laws and heat transfer and it was impossible to refute it until the 1850s when the Principle of Conservation of Energy was introduced (Mayer, Joule, Helmholtz). The Second Law of Thermodynamics was discovered soon after that explanation of the tendency of thermodynamic processes and the heat loss of useful heat. The Kinetic Theory of Gases motivated the scientists to introduce the concept of entropy that was a basis to formulate the laws of thermodynamics in a perfect mathematical form and founded a new branch of physics called statistical thermodynamics. The Third Law of Thermodynamics was discovered in the beginning of the 20th century after introducing the concept of thermodynamic potentials and the absolute temperature scale.
    [Show full text]
  • Kinetyczno-Molekularnego Modelu Budowy Materii
    Roskal Z. E.: Prekursorzy kinetycznej teorii gazów. Zenon E. Roskal Prekursorzy kinetycznej teorii gazów Twórcy kinetycznej teorii gazów są dobrze znani zarówno fizykom jak i filozo- fom przyrody1, ale wiedza na temat prekursorów tej teorii jest na ogół mniej dostępna i równie słabo rozpowszechniona. Według opinii S. Brusha2 kinetyczno-molekularny model budowy materii, a ściślej kinetyczną teorię gazów3, w istotny sposób inicjuje4 dopiero publikacja niemieckiego przyrodnika A. K. Kröniga z 1856. W tym roku mija zatem dokładnie 150 lat od tego wydarzenia5. Praca Kröniga nie pozostała niezauważona w XIX wieku. Powoływał się na nią – obok prac Joule’a i Clausiusa – J. C. Maxwell6. Twórcy kinetyczno-molekularnego mo- 1 W pierwszej kolejności zaliczamy w poczet twórców tej teorii R. Clausiusa (1822-1888) J. C. Maxwella (1831-1879), L. Boltzmanna (1844-1906) i J. W. Gibbsa (1839-1903). Popularne i skrótowe przedstawienie historii kinetycznej teorii gazów można znaleźć m.in. w E. Mendoza, A Sketch for a History of the Kinetic Theory of gases, ,,Physics Today’’ 14 nr 3 (1961): 36-39. 2 Por. S. G. Brush, The development of the kinetic theory of gases: III. Clausius, ,,Annals of Science’’, 14 (1958): 185-196. Na opinię tę powołuje się m.in. E. Daub, Waterston, Rankine, and Clausius on the Kinetic Theory of Gases, ,,Isis’’ 61 nr 1 (1970): 105, ale mylnie podaje, imię niemieckiego fizyka pisząc o Adolfie Krönigu. Tamże, s. 105. 3 W pierwotnym sformułowaniu tej teorii podanym przez J. C. Maxwella była ona nazywana dynamiczna teorią gazów. Taką nazwę zawierał np. tytuł wykładu Maxwella (Illustrations of the Dynamical Theory of Gases) przedstawionego w Aberdeen w 1859 r.
    [Show full text]
  • MOTION MOUNTAIN the Adventure of Physics – Vol.Iv Quantum Theory: the Smallest Change
    Christoph Schiller MOTION MOUNTAIN the adventure of physics – vol.iv quantum theory: the smallest change www.motionmountain.net Christoph Schiller Motion Mountain The Adventure of Physics Volume IV Quantum Theory: The Smallest Change Edition 24.1, available as free pdf at www.motionmountain.net Editio vicesima tertia. Proprietas scriptoris © Christophori Schiller secundo anno Olympiadis vicesimae nonae. Omnia proprietatis iura reservantur et vindicantur. Imitatio prohibita sine auctoris permissione. Non licet pecuniam expetere pro aliquo, quod partem horum verborum continet; liber pro omnibus semper gratuitus erat et manet. Twenty-third edition, ISBN 978-300-021946-7. Copyright © 2009 by Christoph Schiller, the second year of the 29th Olympiad. This pdf file is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany Licence,whosefulltextcanbefoundonthewebsite creativecommons.org/licenses/by-nc-nd/3.0/de, with the additional restriction that reproduction, distribution and use, in whole or in part, in any product or service, be it commercial or not, is not allowed without the written consent of the copyright owner. The pdf file was and remains free for everybody to read, store and print for personal use, and to distribute electronically, but only in unmodified form and at no charge. To Britta, Esther and Justus Aaron τῷ ἐμοὶ δαὶμονι Die Menschen stärken, die Sachen klären. PREFACE Primum movere, deinde docere.* Antiquity “ ” Motion Mountain – The Adventure of Physics pdf file available free of charg This book is written for anybody who is curious about nature and motion. Have you ever asked: Why do people, animals, things, images and space move? The answer leads to many adventures; this volume presents those due the discovery that there is a smallest change in nature.
    [Show full text]
  • Planck's Quantum Theory of Ideal
    Pursuing an Idea: Planck’s Quantum Theory of Ideal Gas ∗ Massimiliano Badino† 1 Prelude: One Hundred Years of ‘Quantitude’ Many years later, as he faced the firing squad, Erwin Planck was to remember that distant afternoon when his father took him to discover the quantum. It was indeed in a day at the beginning of the last century, during a walk in the Grunewald Forest, that Max Planck in- formed his youngest son that his recent discovery was the greatest since the time of Newton. After that day, physics was never the same again. From the mysterious realm of the interac- tion between matter and radiation, the quantum spread out both in the theory of radiation and in the theory of matter and eventually changed our picture of the physical world. Planck played a foremost role in this revolution till the mid-1920 and especially his work on the ap- plication of quantum hypothesis to the ideal gas was instrumental in setting the stage for quantum mechanics. In this paper I will give a cursory outline of this work and, centering on the argumen- tative structure, I will argue that Planck’s theory of gas was framed according to a theoretical strategy he had already adopted in his previous work on radiation theory. The thrust of this strategy consists in focussing on the general features of the system and leaving aside spe- cific assumptions on the micro-processes. Throughout the years Planck reconfigured and reorganized his arguments and the great flexibility of his theoretical strategy allowed him to maintain a consistent outlook on the problem.
    [Show full text]
  • On the 100Th Anniversary of the Sackur–Tetrode Equation
    On the 100th Anniversary of the Sackur–Tetrode Equation Walter Grimus (University of Vienna) Seminar Particle Physics March 8, 2012, University of Vienna Walter Grimus (University of Vienna) On the 100th Anniversary of the Sackur–Tetrode Equation Sackur–Tetrode equation Entropy of a monoatomic ideal gas: 3 E V S(E, V , N)= kN ln + ln + s 2 N N 0 1912: Otto Sackur and Hugo Tetrode independently determined 3 4πm 5 s = ln + 0 2 3h2 2 Sackur–Tetrode equation = absolute entropy of a monoatomic ideal gas Walter Grimus (University of Vienna) On the 100th Anniversary of the Sackur–Tetrode Equation Contents 1 Motivation 2 Tetrode’s derivation 3 Sackur’s derivation 4 Test of the Sackur–Tetrode equation 5 Concluding remarks Walter Grimus (University of Vienna) On the 100th Anniversary of the Sackur–Tetrode Equation Motivation Absolute entropy: Boltzmann (1875), Planck (1900): S = k ln W + const. Argument: Nernst’s heat theorem (1906) (third law of thermodynamics) S should be calculable without any additive constant ⇒ Massive particles: phase space volume of “elementary cells” unknown Sackur (1911): Entropy of a monoatomic ideal gas as a function of the volume of elementary cell Walter Grimus (University of Vienna) On the 100th Anniversary of the Sackur–Tetrode Equation Tetrode’s derivation Ansatz: n degrees of freedom ⇒ n Elementary domains of volume σ = δq δp δqn δpn = (zh) 1 1 · · · N identical particles ⇒ W ′ S = k ln N! W ′ = number of configurations in phase space Total admissible volume in phase space space given E, V , N: 3 3 3 3 (E, V , N)=
    [Show full text]
  • John James Waterston a Pioneer of the Kinetic Theory of Gases Jaime Wisniak*
    PARA QUITARLE EL POLVO La química en la historia, para la enseñanza. John James Waterston A pioneer of the kinetic theory of gases Jaime Wisniak* Resumen mostly in straight lines, except when deflected with John James Waterston (1811-1883) puede ser consid- occasional collisions with the walls of the containing erado el último de los pioneros de la teoría cinética. vessel and with each other. The colliding particles El mejoró en forma notable la teoría desarrollada por are supposed to act upon each other only within very Herapath y demostró que la velocidad cuadrática small distances and for very short times before and media de las moléculas de un gas, puro o mezclado, after collision, their motion being free in the intervals está conectada directamente con su temperatura ab- between such distances and times (free path). The soluta. Fue el primero en publicar el teorema de duration of free paths are assumed to be indefinitely equipartición de la energía y demostró cómo su large as compared to the durations of the encounters teoría podía ser utilizada para calcular la velocidad and of the mutual actions. The motion as a whole is del sonido así como el diámetro de una molécula. conserved by reason of the absolute elasticity of the Lamentablemente su publicación fundamental su- moving particles, while the directions of the move- frió el mismo destino que la de Herapath: su rechazo ments of the individual particles are persistently por la Sociedad Real y, por tanto, desconocida por changed by their mutual collisions. Molecules of el mundo científico. Afortunadamente, Lord different gases differ in mass, but all molecules of the Rayleigh la encontró y publicó años después de la same gas have the same mass.
    [Show full text]
  • On the 100Th Anniversary of the Sackur-Tetrode Equation
    UWThPh-2011-34 On the 100th anniversary of the Sackur–Tetrode equation W. Grimus∗ University of Vienna, Faculty of Physics Boltzmanngasse 5, A–1090 Vienna, Austria 23 January 2013 Abstract In 1912, Otto Sackur and Hugo Tetrode independently put forward an equation for the absolute entropy of a monoatomic ideal gas and published it in “Annalen der Physik.” The grand achievement in the derivation of this equation was the discretization of phase space for massive particles, expressed as δqδp = h, where q and p are conjugate variables and h is Planck’s constant. Due to the dependence of the absolute entropy on Planck’s constant, Sackur and Tetrode were able to devise a test of their equation by applying it to the monoatomic vapor of mercury; from the satisfactory numerical comparison of h obtained from thermodynamic data on mercury with Planck’s value from black-body radiation, they inferred the correctness of their equation. In this review we highlight this almost forgotten episode of physics, discuss the arguments leading to the derivation of the Sackur–Tetrode equation and outline the method how this equation was tested with thermodynamic data. arXiv:1112.3748v2 [physics.hist-ph] 23 Jan 2013 PACS: 05.70.-a, 51.30.+i ∗E-mail: [email protected] 1 1 Introduction The formula for the absolute entropy of a monoatomic ideal gas is named after Otto Sackur and Hugo Tetrode who independently derived it in 1912 [1, 2, 3]. In classical thermodynamics the entropy of a monoatomic ideal gas is 3 E V S(E,V,N)= kN ln + ln + s0 , (1) 2 N N where E, V and N are the kinetic energy, the volume and the number of atoms, respec- tively.
    [Show full text]
  • Nascimentos Da Fısica
    56 Revista Brasileira de Ensino de F´ısica, vol. 20, no. 1, marc¸o, 1998 Nascimentos da F´ısica Jose´ Maria Filardo Bassalo Departamento de F´ısica da UFPA, 66075-900 - Belem,´ Para´ e-mail:[email protected] home-page: http://amazon.com.br/bassalo Trabalho recebido em 6 de junho de 1996 Com este trabalho, iniciamos uma nova saga. Desta vez, a exemplo do escritor uruguaio Eduardo Hughes Galeano (1940- ) em sua fantastica´ trilogia Memoria´ do Fogo (Nascimentos, 1986; As Caras e as Mascaras´ , 1985; OSeculo´ do Vento, 1988 - Editora Nova Fronteira), apresentaremos em forma de verbetes, e na ordem cronologica´ (seguindo a divisao˜ classica´ das idades historicas),´ os principais fatos (nascimentos) referentes aos conceitos f´ısicos, os quais serao˜ apresentados por temas separados. Para isso, basicamente, usaremos os dados que coletamos nos quatro tomos de nossas Cronicasˆ da F´ısica (EUFPA: 1987, 1990, 1992, 1994) e nas referenciasˆ a´ı indicadas. With this work, we begin a new saga. This time, as the Uruguayan writer Eduardo Hughes Galeano (1940- ) made in his fantastic trilogy Memoria´ do Fogo (Nascimentos, 1986; As Caras e as Mascaras´ , 1985; OSeculo´ do Vento, 1988 - Editora Nova Fronteira), we present in entries, and in chronological order (following the classical division of historical ages), the main events (births) concerned to the physical concepts, which will be presented in separated subjects. For that, basically, we use the data that we gather in our four books Cronicasˆ da F´ısica (EUFPA: 1987, 1990, 1992, 1994) and in the references therein. Idade Moderna: Calor Dalton demonstrou que se um gas´ e´ composto de uma mistura de gases, entao˜ a pressao˜ total e´ a soma das pressoes˜ Primeira Metade do Seculo´ 19 (1801-1850) parciais dos gases componentes.
    [Show full text]
  • Principle of Equipartition of Energy -Dr S P Singh (Dept of Chemistry, a N College, Patna)
    Principle of Equipartition of Energy -Dr S P Singh (Dept of Chemistry, A N College, Patna) Historical Background 1843: The equipartition of kinetic energy was proposed by John James Waterston. 1845: more correctly proposed by John James Waterston. 1859: James Clerk Maxwell argued that the kinetic heat energy of a gas is equally divided between linear and rotational energy. ∑ Experimental observations of the specific heat capacities of gases also raised concerns about the validity of the equipartition theorem. ∑ Several explanations of equipartition's failure to account for molar heat capacities were proposed. 1876: Ludwig Boltzmann expanded this principle by showing that the average energy was divided equally among all the independent components of motion in a system. ∑ Boltzmann applied the equipartition theorem to provide a theoretical explanation of the Dulong-Petit Law for the specific heat capacities of solids. 1900: Lord Rayleigh instead put forward a more radical view that the equipartition theorem and the experimental assumption of thermal equilibrium were both correct; to reconcile them, he noted the need for a new principle that would provide an "escape from the destructive simplicity" of the equipartition theorem. 1906: Albert Einstein provided that escape, by showing that these anomalies in the specific heat were due to quantum effects, specifically the quantization of energy in the elastic modes of the solid. 1910: W H Nernst’s measurements of specific heats at low temperatures supported Einstein's theory, and led to the widespread acceptance of quantum theory among physicists. Under the head we deal with the contributions of translational and vibrational motions to the energy and heat capacity of a molecule.
    [Show full text]