<<

R

R * R MLn Me R OH O OH

N OMe * Me Me Atropisomerism O * MeO OH N Axial in Nature and Synthesis H OMe Me

MeO O

X Y Y X OH O Y X X Y OMe

MeO OH Kevin Allan O H MeO * OH Stoltz Group Literature Meeting Al Li Monday 11/14/2005 * O OEt 8 pm OMe 147 Noyes OH O O

O O Nu O Nu

Outline

I. Introduction

a. History and Background b. Conditions for

II. Direct Atroposelective Aryl-Aryl Coupling

a. Diastereoselective Coupling b. Enantioselective Coupling

III. Resolution/Desymmetrization of Prostereogenic Biaryls

a. Configurationally Stable, Axially Achiral b. Configurationally Unstable, Axially Chiral Motokazu Uemura (right) and i. Atropodiastereoselective Bridge Formation Ken Kamikawa (left) ii. Atroposelective Bridge Cleavage / The "Lactone Method" Osaka Prefecture University

IV. Atroposelective Construction of an Aromatic Ring Albert I. Meyers Colorado State University

For a general review of biaryls in synthesis: Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. I. E. 2005, 44, 5384-5427.

Biaryl cross-coupling: Stanforth, S. P. Tetrahedron. 1998, 54, 263-303. Lloyd-Williams, P.; Giralt, E. Chem. Soc. Rev. 2001, 30, 145-157. Broutin, P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113-1128.

Lactone Methodology: Gerhard Bringmann Matthias Breuning Bringmann, G.; Breuning, M.; Tasler, S. Synthesis, 1999, 4, 525-558. Universitat Wurzburg Universitat Wurzburg Bringmann, G.; Tasler, S.; Pfeifer, R.-M.; Breuning, M. J. Organomet. Chem. 2002, 661, 49-65. Atropisomerism is Everywhere OH HO HO HO O OH Me O Me O O

NH2 O HO OH HO Cl O O

CH3(CH2)10 HO Cl OH O O O O OH H H O N N NHMe OH N N N H H H Myristinin B O H Myristica cinnamomea HN O Me HN O COX 2 inhibitor HO2C P H2N Me OH OH M Vancomycin OH OH OMe HO Amycolatopsis orientalis Antibiotic (Gram-positive)

MeO OH

P HO

NH

OH

Michellamine B Ancistrocladus korupensis

Protein kinase C inhibitor, anti-HIV-1,2

Atropisomerism is Everywhere

N NO N Ru Me P O Cl O Ph2P Me Ph P P Ph Me catalyzes enantioselective hydrosilations catalyzes asymmetric homo-coupling Bringmann, G. Tetrahedron: Asymm. 1999, 10, 3025-3031. of 2-naphthols Katsuki, T. Synlett, 2000, 1433-1436.

R H H N N HO N H O M N M Me OH M M O HO Me HO N HO Me

R OH Me catalyzes enantioselective catalyzes enantioselective Me allylation of aldehydes alkylation of aldehydes Hayashi, T. J. Org. Chem. 2003, 68, 6329-6337. Bringmann, G. J. Org. Chem. 2003, 68, 6859-6863. Atropisomerism History & Background

Atropisomerism: a term coined by Richard Kuhn in 1933, it refers to resulting from hindered rotation around a single bond such that the isolation of individual conformers is possible.

From Greek: a - not tropos - to turn

• The first atropisomer was reported in 1922 by G. H. Christie and J. Kenner. A single of 6,6'-dinitro-2,2'-diphenic acid was isolated from the racemic mixture via diastereoselective with a chiral resolving agent:

O2N CO2H

HO2C NO2

Kuhn, R. "Molekulare Asymmetrie" in Stereochemie. Freudenberg, K. ed. Franz-Deutike: Leipzig-Wien, 1933, p. 803. Christie, G. H.; Kenner, J. J. Chem. Soc. 1922, 121, 614-620.

Atropisomerism Conditions for Axial Chirality The Rules: • A generally accepted--though arbitrary--rule states atropisomers are considered physically separable when they have a half-life at room temperature of >1000 s (16.7 min). -1 • !G200 K = 61.6 kJ mol -1 • !G300 K = 93.5 kJ mol

• Steric hindrance at the ortho positions (and to a lesser extent, electron donating/withdrawing character of each of the substituents around each aryl ring) determines the ability of a biaryl system to display atropisomeric behavior.

• When referring to axial (helical) chirality, S and R notation become P (plus) and M (minus), respectively.

• Hierarchy of functionality is identical to the determination of central (sp3 ) chirality (highest atomic number, etc.). • Hierarchy of aryl substitution is as follows: endocyclic ortho --> ortho --> meta --> para

OH OH HO OH S = P R = M HO OH 3 2 2' 3' 3' 2' 2 3 1 1' 1' 1 4 4' HO OH 4' 4

5 6 6' 5' 5' 6' 6 5 (P )-2,2'-dihydroxybiphenyl (M )-2,2'-dihydroxybiphenyl

OH HO OH pro-P pro-M HO OH

HO OH

HO OH HO OH OH Bringmann, G. Angew. Chem. I. E. 2005, 44, 5384-5427. Direct Atroposelective Aryl-Aryl Coupling Diastereoselective Coupling

Chiral Tether Influences Configuration Ortho Chiral Auxiliary Influences Planar Chiral Element Influences During Intramolecular Coupling Configuration During Intermolecular Configuration During Intermolecular Coupling Coupling

X X

Y* LnM' X X + +

* X X

MLn MLn MLn

LnM'

* * * Y* *

Central-to-axial transfer of chirality Central-to-axial transfer of chirality Planar-to-axial transfer of chirality

Diastereoselective Aryl-Aryl Coupling Intramolecular Coupling with Chiral Tethers - Toward Desertorin A-C

Me OMe

Br

TBSO R O S OBn 3 steps OBn OBn OBn TBSO R O S Br

MeO Me

Lipshutz, B. H.; Kayser, F.; Lui, Z.-P. Angew. Chem., I. E. Engl. 1994, 33, 1842-1844. Kyasnoor, R. V.; Sargent, M. V. Chem. Commun. 1998, 2713-2714. Diastereoselective Aryl-Aryl Coupling Intramolecular Coupling with Chiral Tethers - Toward Desertorin A-C

Me OMe OMe

Br

TBSO R O S O OBn 3 steps OBn 1. BuLi, -78 °C Me OBn P OBn OBn MeO OBn TBSO R O S 2. CuCN, TMEDA O -78 to -40 °C Br 3. O2, -78 °C 40% over 3 steps Me MeO Me single diastereomer

O

O Desertorin A-C

MeO

Me OR RO O O

Me OMe

Lipshutz, B. H.; Kayser, F.; Lui, Z.-P. Angew. Chem., I. E. Engl. 1994, 33, 1842-1844. Kyasnoor, R. V.; Sargent, M. V. Chem. Commun. 1998, 2713-2714.

Diastereoselective Aryl-Aryl Coupling Intramolecular Coupling with Chiral Tethers - Toward Desertorin A-C

Me OMe OMe

Br

TBSO R O S O OBn 3 steps OBn 1. BuLi, -78 °C Me OBn P OBn OBn MeO OBn TBSO R O S 2. CuCN, TMEDA O -78 to -40 °C Br 3. O2, -78 °C 40% over 3 steps Me MeO Me single diastereomer

O Me H

O CH2OBn O Desertorin A-C

MeO O CH2OBn MeO H Me OR RO O O OBn substituents prefer gauche conformation as opposed to axial anti-coplanar

Me OMe

Lipshutz, B. H.; Kayser, F.; Lui, Z.-P. Angew. Chem., I. E. Engl. 1994, 33, 1842-1844. Kyasnoor, R. V.; Sargent, M. V. Chem. Commun. 1998, 2713-2714. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Asymmetric Suzuki Coupling

Me pTol S O DIBAL OMe R1 R1 S pTol R1 S pTol LDA, THF ZnCl2, THF I O 80% I O O 74% I OH O

Broutin, P.-E.; Colobert, F. Org. Lett. 2003, 5(18), 3281-3284.

Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Asymmetric Suzuki Coupling

Me pTol S O DIBAL OMe R1 R1 S pTol R1 S pTol LDA, THF ZnCl2, THF I O 80% I O O 74% I OH O

R1 S pTol I OH O Entry R1 R2 Yield (%) dr*

1 pTol R S 1 Me Me 60 70:30 + Pd(OAc)2, dppf OH O CsF, dioxane * 2 2 Me OMe 27 90:10 B(OH)2 70 °C R R2 3 OMe OMe 61 93:7

*determined by 1H NMR (absolute configuration unknown)

Broutin, P.-E.; Colobert, F. Org. Lett. 2003, 5(18), 3281-3284. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Asymmetric Suzuki Coupling

Me pTol S O DIBAL OMe R1 R1 S pTol R1 S pTol LDA, THF ZnCl2, THF I O 80% I O O 74% I OH O

NaH, MeI DMF, -20 °C 99%

R1 S pTol I OMe O

Broutin, P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113-1128.

Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Asymmetric Suzuki Coupling

Me pTol S O DIBAL OMe R1 R1 S pTol R1 S pTol LDA, THF ZnCl2, THF I O 80% I O O 74% I OH O

NaH, MeI 5 DMF, -20 °C Entry R1 R2 R3 R4 R Yield (%) dr* 99%

1 Me Me CH2 H H 78 75:25 3 B(OR )2 4 2 2 Me OMe CH2 H H 89 80:20 R R + 3 OMe Me CH2 H H 86 90:10 R1 S pTol R5 4 OMe OMe H H H 80 85:15 I OMe O 5 H Me H 99 >99:1

6 H OMe H 99 >99:1 Pd(OAc)2 dppf or PPh 7 Me H CH 88 90:10 3 2 CsF, dioxane 70 °C R1 S pTol 8 OMe H CH2 86 95:5 OMe O *determined by 1H NMR (absolute configuration unknown) R4 * R2

R5 Broutin, P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113-1128. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Aryl Grignard Coupling

R Yield (%) dr (P :M )

MeO R O Br 90 20:80 R OMe i-Pr O Mg + P N CH2OMe 75 40:60 i-Pr THF, ! MeO O CH OBn 80 42:58 OMe N 2 MeO Me 79 90:10 O

CH2OTBS 73 93:7

Grignard additions require EWG at ortho or para position to stabilize developing negative charge.

Meyers, A. I.; Nelson, T. D.; Moorlag, H.; Rawson, D. J.; Meier, A. Tetrahedron, 2004, 60, 4459-4473.

Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Aryl Grignard Coupling

MeO R Br R OMe i-Pr R OMe Mg O + P N i-Pr N THF, ! MeO O MeO i-Pr OMe N MeO Mg MeO O Br

Grignard additions require EWG at ortho or para 180° rotation position to stabilize developing negative charge.

Br O N R OMe MeO R MeO MeO Mg i-Pr O O N R OMe N MeO i-Pr MeO MeO Mg i-Pr MeO Mg

Br Br

Meyers, A. I.; Nelson, T. D.; Moorlag, H.; Rawson, D. J.; Meier, A. Tetrahedron, 2004, 60, 4459-4473. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Ullmann Homocoupling

OMe MeO O i-Pr Br N MeO Cu N i-Pr MeO O P DMF, 150 °C N i-Pr 40 h MeO MeO O OMe MeO OMe 58% 93:7 dr

Nelson, T. D.; Meyers, A. I. Tetrahedron Lett. 1993, 34, 3061-3062. Nelson, T. D.; Meyers, A. I. Tetrahedron Lett. 1994, 35, 3259-3262.

Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Ullmann Homocoupling

OMe MeO O i-Pr Br N MeO Cu N i-Pr MeO O P DMF, 150 °C N i-Pr 1 h MeO MeO O OMe MeO OMe 56% 62:38 dr

Nelson, T. D.; Meyers, A. I. Tetrahedron Lett. 1993, 34, 3061-3062. Nelson, T. D.; Meyers, A. I. Tetrahedron Lett. 1994, 35, 3259-3262. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Ullmann Homocoupling

OMe MeO O i-Pr Br N MeO Cu N i-Pr MeO O P DMF, 150 °C N i-Pr 40 h MeO MeO O OMe MeO OMe

OMe Non-selective coupling OMe MeO then MeO O thermodynamic deracemization O

MeO MeO N i-Pr ! N i-Pr M Cu P Cu N i-Pr N i-Pr MeO MeO

O H i-Pr O MeO O O MeO N N OMe M i-Pr H P OMe Cu Cu N i-Pr H N O O H i-Pr Nelson, T. D.; Meyers, A. I. Tetrahedron Lett. 1993, 34, 3061-3062. Nelson, T. D.; Meyers, A. I. Tetrahedron Lett. 1994, 35, 3259-3262.

Diastereoselective Aryl-Aryl Coupling Planar Arene-Metal Complexes - Asymmetric Suzuki Coupling

R1 B(OH) 2 1 1 Pd(PPh3)4, Na2CO3 R R + P + M 2 2 MeOH/H2O R OMe MeO R Br Cr(CO)3 (CO)3Cr R2 OMe

Cr(CO)3 syn anti major minor

Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61, 1375-1384. Diastereoselective Aryl-Aryl Coupling Planar Arene-Metal Complexes - Asymmetric Suzuki Coupling

R1 B(OH) 2 1 1 Pd(PPh3)4, Na2CO3 R R + P + M 2 2 MeOH/H2O R OMe MeO R Br Cr(CO)3 (CO)3Cr R2 OMe

Cr(CO)3 syn anti

!

toluene or xylenes

Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61, 1375-1384.

Diastereoselective Aryl-Aryl Coupling Planar Arene-Metal Complexes - Asymmetric Suzuki Coupling

R1 B(OH) 2 1 1 Pd(PPh3)4, Na2CO3 R R + P + M 2 2 MeOH/H2O R OMe MeO R Br Cr(CO)3 (CO)3Cr R2 OMe

Cr(CO)3 syn anti

!

Entry R1 R2 Yield (%) dr (P :M ) toluene or xylenes

1 Me Me 96 100:0

2 Me CH2OH 77 100:0

3 OMe Me 94 97:3

4 CHO Me 95 0:100

5 CHO CHO 43 0:100

6 OMe CHO 85 4:96

7 Me CHO 82 100:0

Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61, 1375-1384. Diastereoselective Aryl-Aryl Coupling Planar Arene-Metal Complexes - Asymmetric Suzuki Coupling

R1 B(OH) 2 1 1 Pd(PPh3)4, Na2CO3 R R + P + M 2 2 MeOH/H2O R OMe MeO R Br Cr(CO)3 (CO)3Cr R2 OMe

Cr(CO)3 syn anti

!

Entry R1 R2 Yield (%) dr (P :M ) toluene or xylenes

1 Me Me 96 100:0

2 Me CH2OH 77 100:0

3 OMe Me 94 97:3

4 CHO Me 95 0:100 o-carbonyl substituents may result in chemical 5 CHO CHO 43 0:100 atropisomerization to the more thermodynamically stable (anti ) product. 6 OMe CHO 85 4:96

7 Me CHO 82 100:0

Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61, 1375-1384.

Diastereoselective Aryl-Aryl Coupling Planar Arene-Metal Complexes - Asymmetric Suzuki Coupling

R1 B(OH) 2 1 1 Pd(PPh3)4, Na2CO3 R R + P + M 2 2 MeOH/H2O R OMe MeO R Br Cr(CO)3 (CO)3Cr R2 OMe

Cr(CO)3 syn anti

h!, O Entry R1 R2 Yield (%) dr (P :M ) 2

1 Me Me 96 100:0

2 Me CH2OH 77 100:0

3 OMe Me 94 97:3 R1 R1 P + M 4 CHO Me 95 0:100 R2 OMe MeO R2

5 CHO CHO 43 0:100

6 OMe CHO 85 4:96

7 Me CHO 82 100:0

Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61, 1375-1384. Diastereoselective Aryl-Aryl Coupling Planar Arene-Metal Complexes - Asymmetric Suzuki Coupling

OMe H OMe R Ph3P PPh3 Ph3P PPh3 Pd Pd

RS R RS H Cr(CO)3 Cr(CO)3

OMe OMe H R PPh rotation to form the biaryl axis (CO) Cr 3 PPh3 3 Pd during reductive elimination occurs (CO)3Cr Pd PPh3 so as to minimize steric interactions RS PPh3 with the bulky PPh3 ligands. RS R H

H R RS RS P M

OMe OMe (CO)3Cr R (CO)3Cr H

Kamikawa, K.; Uemura, M. Synlett 2000, 7, 938-949.

Diastereoselective Aryl-Aryl Coupling Planar Arene-Metal Complexes - Asymmetric Suzuki Coupling

R3 B(OH) 2 3 3 Pd(PPh3)4, Na2CO3 R R + P + M 2 1 1 2 MeOH/H2O R R R R Br Cr(CO)3 (CO)3Cr R2 R1

Cr(CO)3 syn anti

Entry R1 R2 R3 Yield (%) dr (P :M )

1 OMe Me H 88 100:0

2 OMe CHO H 89 100:0

3 OMe CH2OH H 86 100:0 O 4 OMe Me 85 100:0 O 5 Me H Me 70 85:15

6 OMe H Me 71 71:29

7 Me H OMe 78 97:3

Kamikawa, K.; Uemura, M. Synlett 2000, 7, 938-949. Direct Atroposelective Aryl-Aryl Coupling Enantioselective Coupling

Chiral Leaving Group Influences Chiral Metal Complex Influences Configuration During Configuration During Intermolecular Intermolecular Coupling Coupling

X* X

+ +

Y Y

Oxidative: • Copper * Vanadium MLn MLn •

Redox-Neutral: • Kumada • Suzuki • Aryl-Lead Species * *

Central-to-axial transfer of chirality Central-to-axial transfer of chirality

Enantioselective Aryl-Aryl Coupling Chiral Leaving Groups

R*ONa O O DMF, 50 °C Br N R*O N

Wilson, J. A.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 881-884. Wilson, J. A.; Cram, D. J. J. Org. Chem. 1984, 49, 4930-4943. Enantioselective Aryl-Aryl Coupling Chiral Leaving Groups

O R*ONa THF, -20 °C O O DMF, 50 °C 1-10 h N Br N R*O N M OMe +

Li OMe

Wilson, J. A.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 881-884. Wilson, J. A.; Cram, D. J. J. Org. Chem. 1984, 49, 4930-4943.

Enantioselective Aryl-Aryl Coupling Chiral Leaving Groups

O R*ONa THF, -20 °C O O DMF, 50 °C 1-10 h N Br N R*O N M OMe +

Li OMe

N R* = O O H O MeO bornyl (R )-menthyl N quininyl H H O N !-fenchyl

MeO quinidinyl O

N Wilson, J. A.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 881-884. Wilson, J. A.; Cram, D. J. J. Org. Chem. 1984, 49, 4930-4943. Enantioselective Aryl-Aryl Coupling Chiral Leaving Groups

O R*ONa THF, -20 °C O O DMF, 50 °C 1-10 h N Br N R*O N M OMe +

Li OMe

N R* = O O H O MeO bornyl (R )-menthyl 67% yield 68% yield N 8% ee >95% ee quininyl H 20% yield H 87% ee O N !-fenchyl 88% yield MeO quinidinyl O 77% ee 22% yield -84% ee N Wilson, J. A.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 881-884. Wilson, J. A.; Cram, D. J. J. Org. Chem. 1984, 49, 4930-4943.

Enantioselective Aryl-Aryl Coupling Chiral Leaving Groups - Menthol

O OMe CO R MgBr 2 MgBr

PhH, 80 °C THF, -20 °C

OMe P M CO2R CO2R

% Yield % ee R % Yield % ee

95 80 i-Pr 92 97

93 76 (R )-menthyl 81 98

74 91 (R )-phenylethyl 85 91

Wilson, J. A.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 881-884. Wilson, J. A.; Cram, D. J. J. Org. Chem. 1984, 49, 4930-4943. Enantioselective Aryl-Aryl Coupling Chiral Leaving Groups - Menthol

RL R R H M non-chelation OR Br OR control

O O O Mg O Mg H R Br R RM L

chelation R control L RM H Br R L RM naphO H Br i-Pr O Mg OR H RL O Mg OR RM O

OMe O

OMe M P CO2R CO2R

Wilson, J. A.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 881-884. Wilson, J. A.; Cram, D. J. J. Org. Chem. 1984, 49, 4930-4943.

Enantioselective Aryl-Aryl Coupling Oxidative Homocoupling - Copper

• Copper-amine complexes are the most widely investigated due to the ease of ligand screening.

CO2Me CuI (2-10 mol%) CO2Me diamine L* (2-10 mol%) OH M O , CH Cl OH OH 2 2 2 48 h

CO2Me

Ligand Screen

H 1 Ph Ph Et N R N NH 2 H2N NH2 H2N NH2 Ph R N H R1 N

N N N R2

Li, X.; Yang, J.; Kozlowski, M. Org. Lett. 2001, 3(8), 1137-1140. Enantioselective Aryl-Aryl Coupling Oxidative Homocoupling - Copper

• Copper-amine complexes are the most widely investigated due to the ease of ligand screening.

CO2Me CuI (2-10 mol%) CO2Me diamine L* (2-10 mol%) OH M O , CH Cl OH OH 2 2 2 48 h

CO2Me

Ligand Screen

H N R1 Ph Ph Et N NH 2 H2N NH2 H2N NH2 Ph R N H R1 N

N N N R2

Li, X.; Yang, J.; Kozlowski, M. Org. Lett. 2001, 3(8), 1137-1140.

Enantioselective Aryl-Aryl Coupling Oxidative Homocoupling - Copper

• Copper-amine complexes are the most widely investigated due to the ease of ligand screening.

CO2Me CuI (2-10 mol%) CO2Me diamine L* (2-10 mol%) OH M O , CH Cl OH OH 2 2 2 48 h

CO2Me

Ligand Screen

% Yield % ee R1 1 2 N R = R = H 60 91 R1 = H, R2 = Me 53 79 R1 = R2 = Me 43 3 N R1 = R2 = Bn 72 22 2 1 2 R R = R = CH2CF3 NR

Li, X.; Yang, J.; Kozlowski, M. Org. Lett. 2001, 3(8), 1137-1140. Enantioselective Aryl-Aryl Coupling Oxidative Homocoupling - Copper

• Copper-amine complexes are the most widely investigated due to the ease of ligand screening.

CO2Me CuI (2-10 mol%) CO2Me diamine L* (2-10 mol%) OH M O , CH Cl OH OH 2 2 2 48 h CO Me H 2 N rotation of aromatic ring H O 2 II O2 away from ligand and HO Cu tautomerization to binol N H O H H cat CO2Me MeO N O H CuII N O MeO O N I open Cu H O H N MeO N H H O I Cu cat O N H H cat-Sub

blocked

Li, X.; Yang, J.; Hewgley, B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. J. Org. Chem. 2003, 68, 5500-5511.

Enantioselective Aryl-Aryl Coupling Oxidative Homocoupling - Vanadium

R1 R3

R1 R3 VO(acac)2, O2 R2 OH 2 CH Cl R OH R2 OH 2 2

R1 R3

Entry R1 R2 R3 % Yield

1 H H H 92

2 Br H H 90

3 H OMe H 76

4 H H CO2Me 35

Mechanism unknown

Hwang, D.-R.; Chen, C.-P.; Uang, B.-J. Chem. Commun. 1999, 1207-1208. Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. Chem. Commun. 2001, 980-981. Chu, C.-Y.; Uang, B.-J. Tetrahedron: Asymm. 2003, 14, 53-55. Enantioselective Aryl-Aryl Coupling Oxidative Homocoupling - Vanadium

R1 R3

R1 R3 catalyst, O2 R2 OH M 2 TMSCl or TMSOTf R OH R2 OH CH2Cl2 R1 R3

Entry R1 R2 R3 % Yield % ee

Bn O 1 H H H 82 51

N O 2 Br H H 91 51 V H 3 H OMe H 50 51 O O

Me 4 H H CO2Me trace --- catalyst Mechanism unknown

Hwang, D.-R.; Chen, C.-P.; Uang, B.-J. Chem. Commun. 1999, 1207-1208. Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. Chem. Commun. 2001, 980-981. Chu, C.-Y.; Uang, B.-J. Tetrahedron: Asymm. 2003, 14, 53-55.

Enantioselective Aryl-Aryl Coupling Oxidative Homocoupling - Vanadium

R1 R3

R1 R3 catalyst, O2 R2 OH M TMSCl or TMSOTf R2 OH R2 OH CH2Cl2 R1 R3

i-Bu O Entry R1 R2 R3 % Yield % ee N O 1 H H H 62 90 V O O 2 Br H H 98 90 O O 3 H OMe H 95 95 V O 4 H OEt H 99 96 N O 5 H On-Bu H 99 94 i-Bu O 6 H OBn H 80 95 catalyst 7 H H OBn trace ---

Mechanism unknown

Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. Angew. Chem. I. E. 2002, 41(23), 4532-4535. Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Kumada Cross-Coupling

Me

3 R1 R Ph2P Fe Br 4-10 mol% R1 P + 2 NiBr2 (2-5 mol %) R Et2O/toluene MgBr < -15 °C R2

Entry R1 R2 R3 % Yield % ee

1 Me Me OMe 69 95

2 Me H OMe 25 16

3 H Me OMe 92 83

4 H Me OEt 82 68

5 H Me H 81 1

Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 8153-8156.

Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Kumada Cross-Coupling

Me

3 R1 R Ph2P Fe Br 4-10 mol% R1 P + 2 NiBr2 (2-5 mol %) R Et2O/toluene MgBr < -15 °C R2

Entry R1 R2 R3 % Yield % ee

1 Me Me OMe 69 95 Me Br Ph

2 Me H OMe 25 16 MeO P Fe Mg 3 H Me OMe 92 83 R2 4 H Me OEt 82 68 Ph

5 H Me H 81 1

Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 8153-8156. Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Suzuki Cross-Coupling

Me

3 R1 R Ph2P Fe I 6 mol% R1 P + 2 PdCl2 (3 mol%) R 2 Ba(OH)2 B(OR )2 DME/H2O, reflux Me

• Suzuki cross-coupling is a convenient, versatile method for the formation of atropisomeric biaryls with a wide range of functionality due to the mild nature of boronic acids/esters as nucleophilic arene species.

Cammidge, A. N.; Crepy, K. V. L. Chem. Commun. 2000, 1723-1724.

Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Suzuki Cross-Coupling

Me

3 R1 R Ph2P Fe I 6 mol% R1 P + 2 PdCl2 (3 mol%) R 2 Ba(OH)2 B(OR )2 DME/H2O, reflux Me

Entry R1 R2 R3 % Yield % ee

1 H H OMe 74 14

2 H H NMe2 44 63

3* Me CH2 NMe2 50 85 * used DME as solvent, CsF as additive, 6 days.

Cammidge, A. N.; Crepy, K. V. L. Chem. Commun. 2000, 1723-1724. Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Suzuki Cross-Coupling

O NMe2 P PCy2 1 Br (OR )2 O P 0.8-3.3 mol% 1 + (OR )2 Pd (dba) (0.5-2 mol%) * 2 3 R2 K PO B(OH) 3 4 2 toluene, 60-80 °C R2

Entry R1 R2 % Yield % ee*

1 OEt Me 98 87 (+)

2 OEt Et 96 92 (+)

3 OEt i-Pr 89 85 (+)

4 OEt Ph 74 74 (+)

5 OMe Me 91 84 (+)

* absolute configuration undetermined.

Buchwald, S. L.; Yin, J. J. Am. Chem. Soc. 2000, 122, 12051-12052.

Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Aryl-Lead Triacetate

OH Pb(OAc)3 OH R' pyr (xs) R + R' R + Pb(OAc)2

Saito, S.; Kano, T.; Muto, H.; Nakadai, M.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 8943-8944. Kano, T.; Ohyabu, Y.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 5365-5373. Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Aryl-Lead Triacetate

OH Pb(OAc)3 OH R' pyr (xs) R + R' R + Pb(OAc)2

AcO AcO N Pb O

R R'

Saito, S.; Kano, T.; Muto, H.; Nakadai, M.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 8943-8944. Kano, T.; Ohyabu, Y.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 5365-5373.

Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Aryl-Lead Triacetate

OLi Pb(OAc)3 OH R' brucine (6 equiv) R + R' R + Pb(OAc)2 toluene, -40 °C % Yield Entry Phenol Aryl-Lead Product (dl:meso ) % ee

OH Pb(OAc)3 OH Ph 1 68 83 Ph Ph (>99:1)

OH Pb(OAc)3 OH 2 >99 51 (2:1)

OH OH Pb(OAc)3 H N MeO 3 Ph 55 93 H Ph Ph (6.9:1) MeO N MeO OMe MeO OMe H H O O OH Pb(OAc)3 OH H 4 i-Pr 99 85 brucine Ph

Pb(OAc)3 OH 5 99 20 OH

Saito, S.; Kano, T.; Muto, H.; Nakadai, M.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 8943-8944. Kano, T.; Ohyabu, Y.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 5365-5373. Enantioselective Aryl-Aryl Coupling Redox-Neutral Coupling - Aryl-Lead Triacetate

OLi Pb(OAc)3 OH Ph M fast brucine (6 equiv) + toluene, -40 °C Ph

O O H axial attack Ph H R S Ph

Ph O O Pb O brucine Ph Ph - AcOLi O L L O L L O OLi pseudo-rotation O Pb -or- Pb O L L L L L L

L = brucine or AcO

Saito, S.; Kano, T.; Muto, H.; Nakadai, M.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 8943-8944. Kano, T.; Ohyabu, Y.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 5365-5373.

Resolution/Desymmetrization of Prostereogenic Biaryls

• Biaryl axis formed non-selectively prior to introduction of axial chirality.

Configurationally Stable, Axially Achiral Configurationally Unstable, Axially Chiral

Introduction/Transformation of Aryl Introduction of Chiral Bridge Atroposelective Cleavage of a Bridge Substituent (The Lactone Method) (Desymmetrization) (Resolution) (Resolution)

Y X X X X Y Y

CS-symmetric macroscopically achiral macroscopically achiral

A Z Nuc*H A *

Y X X Nuc* Z * X * Y * * Y H Resolution/Desymmetrization of Prostereogenic Biaryls Introduction/Transformation of an Ortho Substituent

• Very little investigation into this method. • Usually no rationalization of . • Most systems lack broad applicability due to substrate requirements or have low functional group tolerance.

N N

CO2H Me Me 1. n-BuLi, (-)-sparteine Me Me Me Me 2. CO2 HO2C

70% yield 40% ee

Engelhardt, L. M.; Leung, W.-P.; Raston, C. L.; Salem, G.; Twiss, P.; White, A. H. J. Chem. Soc. Dalton Trans. 1988, 2403-2409.

Resolution/Desymmetrization of Prostereogenic Biaryls Introduction/Transformation of an Ortho Substituent

• Very little investigation into this method. • Usually no rationalization of stereochemistry. • Most systems lack broad applicability due to substrate requirements or have low functional group tolerance.

R1 R1 R3MgBr R2 LiBr or LiI R2 M TfO OTf Me Me R3 OTf Me N Cl Pd P Cl Ph Ph PdCl2[(S )-alaphos]

Entry R1 R2 R3 Yield (%) % ee

1 H Me Ph 85 95

2 H Me Ph3Si 87 85

3 H Ph Ph 80 94

4 H Ph Ph3Si 88 99

5 Ph 92 94

6 Ph3Si 88 92

Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J. Am. Chem. Soc. 1995, 117, 9101-9102. Kamikawa, T.; Hayashi, T. Tetrahedron 1999, 55, 3455-3466. Resolution/Desymmetrization of Prostereogenic Biaryls Introduction of a Chiral Bridge

H2N O O X OH O O X X Ph Ph Ph RO N + N toluene, reflux O O Me Me

major minor

X = CH2: 95%, >95% de X = N: 72%, >95% de

Penhoat, M.; Levachet, V.; Dupas, G. J. Org. Chem. 2003, 68, 9517-9520.

Resolution/Desymmetrization of Prostereogenic Biaryls Introduction of a Chiral Bridge

H2N O O X OH O O X X Ph Ph Ph RO N + N toluene, reflux O O Me Me

major minor

Ph Ph O O X HN Me HN RO X O Me OR + O Ph rings oriented trans, axis rotates away from Ph Ph oxazolidine Ph. O O X HN O N Me OR H RO O Me X Ph rings oriented cis, axis rotates away from benzylic Me. Penhoat, M.; Levachet, V.; Dupas, G. J. Org. Chem. 2003, 68, 9517-9520. Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

O O O catalyst M P Br R O R O R O NaOAc DMA 130 °C R R R

Coupling Yields

catalyst A: Pd(OAc)2 (10 mol%) Entry R A B PPh3 (20 mol%) 1 H 80 91 Me

catalyst B: (1 mol%) Ar2 2 Me 75 87 P O O Pd Pd 3 OMe 77 90 O O P Ar2 4 Et 71 83 Me 5 i-Pr 72 82

6 t-Bu 44 81

Bringmann, G.; Breuning, M.; Henschel, P.; Hinrichs, J. Org. Synth. 2002, 79, 72-83.

Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

H N O Me

O Me O HO R HO Me KHN S

Me NaO Me R = OMe: 97%, 76% de R Me R = Me: 95%, 86% de R = OMe: 70%, 82% de R = Me: 85%, 90% de

O O H Ph Ph M P R O R O

N O , BH3, THF, 30 °C B Me R R R = OMe: 88%, 91% de R = Me: 78%, 94% de p-Tol S Li O

O H OH P Al O OEt HO R p-Tol R = OMe: 94%, 95% de Li S R = Me: 97%, 94% de O O Me OH R Bringmann, G. Org. Synth. 2002, 79, 72-83. Bringmann, G. Angew. Chem. I. E. Engl. 1992, 31, 761-762. 73%, 0% de Bringmann, G. Synthesis 1999, 525-558. chemically atropisomerizes Bringmann, G. Eur. J. Org. Chem. 1999, 3047-3055. Me Bringmann, G. Chem. Eur. J. 1999, 5, 3029-3038. Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

H Ph Ph

N O O B OH Me , BH3, THF, 30 °C M R O HO R

R R R = OMe: 88%, 91% de R = Me: 78%, 94% de

Bringmann, G. Synthesis 1999, 4, 525-558.

Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

H Ph Ph

N O O B OH Me , BH3, THF, 30 °C M R O HO R

R R R = OMe: 88%, 91% de R = Me: 78%, 94% de

Ph R O Me B O Ph N O Re H B H R H

Bringmann, G. Synthesis 1999, 4, 525-558. Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

eq H R R O

O H ax

ax R H

R

O O

H eq

Bringmann, G. Synthesis 1999, 4, 525-558.

Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

eq H R R O

O H ax

ax R H

R

O O

H eq

Bringmann, G. Synthesis 1999, 4, 525-558. Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

eq H R R Re face R R O attack O O

H O H ax

ax R H R Si face H R R attack O O O O

H eq

Bringmann, G. Synthesis 1999, 4, 525-558.

Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

H

O H+ R HO R R O H R O major eq H R R Re face R R O attack O O

H O H ax

ax R H R Si face H R R attack O O O O

H eq H O R R OH H+ R H O R O minor Bringmann, G. Synthesis 1999, 4, 525-558. Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

H

O H+ R HO R R

O rate? H R O major eq H R R R Re face R R R O attack O O O H

H O H O ax stereochemical stereochemical leakage leakage ax R R H R O Si face H R R R attack H O O O O O

H rate? eq H O R R OH H+ R H O R O minor Bringmann, G. Synthesis 1999, 4, 525-558.

Resolution/Desymmetrization of Prostereogenic Biaryls Atroposelective Cleavage of a Bridge - The Lactone Method

H

O H+ R HO R R O H R O major eq H For optimal selectivity: R R Re face • use a reactive nucleophile in cases R R involving an intermediate ketone or O attack O aldehyde, in order to avoid "stereochemical O leakage" use bulkier chiral nucleophiles for better O • H H facial selectivity. ax • optimal reactivity/selectivity with Me-CBS and catechol borane.

ax H Ph H R Ph O OH N O B H R B O Me [H] O O HO R H eq

R major

Bringmann, G. Synthesis 1999, 4, 525-558. Atroposelective Construction of an Aromatic Ring

• Newest and least developed method for the formation of atropisomeric biaryls. • Most intermediates/transition states unknown.

Transfer of Chirality from Benzylic [2+2+2] Cycloaddition with Chiral Metal Complexes sp3 Center to Biaryl Axis

* M

* *

Atroposelective Construction of an Aromatic Ring Central-to-Axial Transfer of Chirality - Diaryl-2,2-dichlorocyclopropylmethanols

Cl Cl Cl

Cl Cl Me TiCl4 Me TBSOTf Me OH OH CH2Cl2, -78 °C CH2Cl2, 0 °C

Nishii, Y.; Yoshida, T.; Tanabe, Y. Tetrahedron Lett. 1997, 38(41), 7195-7198. Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126, 5358-5359. Atroposelective Construction of an Aromatic Ring Central-to-Axial Transfer of Chirality - Diaryl-2,2-dichlorocyclopropylmethanols

Cl Cl Cl

Cl Cl Me TiCl4 Me TBSOTf Me R1 OH R2 R1 R2 R1 OH R2 CH2Cl2, -78 °C CH2Cl2, 0 °C

Entry R1 R2 % Yield % ee Entry R1 R2 % Yield % ee

1 Cl H 97 >99 1 Me H 41 45

2 Cl Cl 70 >99

3 OMe Me 71 >99

4 OMe Cl 65 >99

5 Me Cl 47 >99

Nishii, Y.; Yoshida, T.; Tanabe, Y. Tetrahedron Lett. 1997, 38(41), 7195-7198. Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126, 5358-5359.

Atroposelective Construction of an Aromatic Ring Central-to-Axial Transfer of Chirality - Diaryl-2,2-dichlorocyclopropylmethanols

Cl Cl Cl

Cl Cl Me TiCl4 Me TBSOTf Me R1 OH R2 R1 R2 R1 OH R2 CH2Cl2, -78 °C CH2Cl2, 0 °C

Cl Cl

Cl Cl Me TiCl4 Me O OH 2 R2 R1 H R R1 SiR3 OTf

R1 rotates away from R1 rotates away from chelated TiCl4 chelated TBSOTf

Nishii, Y.; Yoshida, T.; Tanabe, Y. Tetrahedron Lett. 1997, 38(41), 7195-7198. Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126, 5358-5359. Atroposelective Construction of an Aromatic Ring Central-to-Axial Transfer of Chirality - Diaryl-2,2-dichlorocyclopropylmethanols

Cl Cl Cl

Cl Cl Me TiCl4 Me TBSOTf Me R1 OH R2 R1 R2 R1 OH R2 CH2Cl2, -78 °C CH2Cl2, 0 °C

Cl Cl

Cl Cl Me TiCl4 Me O OH 2 R2 R1 H R R1 SiR3 OTf

R1 rotates away from R1 rotates away from Cl Cl chelated TiCl4 chelated TBSOTf rotation around Me pre-axis bond (unknown mechanism) 2 R1 R

Nishii, Y.; Yoshida, T.; Tanabe, Y. Tetrahedron Lett. 1997, 38(41), 7195-7198. Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126, 5358-5359.

Atroposelective Construction of an Aromatic Ring Central-to-Axial Transfer of Chirality - Diaryl-2,2-dichlorocyclopropylmethanols

Cl Cl Cl

Cl Cl Me TiCl4 Me TBSOTf Me R1 OH R2 R1 R2 R1 OH R2 CH2Cl2, -78 °C CH2Cl2, 0 °C

Cl Cl Cl - H , - HCl Cl

Cl Cl Me TiCl4 Me Me 2 O 1 R OH 2 R R2 R1 H R R1 SiR3 OTf

R1 rotates away from R1 rotates away from Cl Cl chelated TiCl4 chelated TBSOTf rotation around Me pre-axis bond (unknown mechanism) 2 R1 R

Nishii, Y.; Yoshida, T.; Tanabe, Y. Tetrahedron Lett. 1997, 38(41), 7195-7198. Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126, 5358-5359. Atroposelective Construction of an Aromatic Ring [2+2+2] Cycloadditions

R2 2 2 2 R 2 R R R CN N OR1 N R2 R2 R2 R2 R2 1 1 OR catalyst catalyst OR h! (" = 420 nm) h! (" = 420 nm) THF, 3 °C THF, 3 °C

Gutnov, A. Angew. Chem. I. E. Engl. 2004, 43, 3795-3797.

Atroposelective Construction of an Aromatic Ring [2+2+2] Cycloadditions

R2 2 2 2 R 2 R R R CN N OR1 N R2 R2 R2 R2 R2 1 1 OR catalyst catalyst OR h! (" = 420 nm) h! (" = 420 nm) THF, 3 °C THF, 3 °C

Catalyst Screen

Co Co Co Co

O O O

O O O

Co Co

Gutnov, A. Angew. Chem. I. E. Engl. 2004, 43, 3795-3797. Atroposelective Construction of an Aromatic Ring [2+2+2] Cycloadditions

R2 2 2 2 R 2 R R R CN N OR1 N R2 R2 R2 R2 R2 1 1 OR catalyst catalyst OR h! (" = 420 nm) h! (" = 420 nm) THF, 3 °C THF, 3 °C

Catalyst Screen

Co Co Co Co

O O O

O O O

Co Co

Gutnov, A. Angew. Chem. I. E. Engl. 2004, 43, 3795-3797.

Atroposelective Construction of an Aromatic Ring [2+2+2] Cycloadditions

R2 2 2 2 R 2 R R R CN N OR1 N R2 R2 R2 R2 R2 1 1 OR catalyst catalyst OR h! (" = 420 nm) h! (" = 420 nm) THF, 3 °C THF, 3 °C

Entry R1 R2 % Yield % ee Entry R1 R2 % Yield % ee

1 Me n-pentyl 33 38 1 Me Et 10 64 Co 2 Me n-Pr 8 32 2 Bn Et 3 59

3 Bn n-pentyl 7 39 3 Me n-pentyl 2 63

Catalyst

Gutnov, A. Angew. Chem. I. E. Engl. 2004, 43, 3795-3797. Atroposelective Construction of an Aromatic Ring [2+2+2] Cycloadditions

R2 R2 R2 R2

1 N 2 OR N R CN R2 R2 R2 1 1 OR catalyst catalyst OR h! (" = 420 nm) h! (" = 420 nm) THF, 3 °C THF, 3 °C

Entry R1 R2 % Yield % ee Entry R1 R2 % Yield % ee

1 Me Me 88 88 1 Me Et 10 64 Co 2 Me Ph 86 89 2 Bn Et 3 59

3 Me t-Bu 74 88 3 Me n-pentyl 2 63

Catalyst

Gutnov, A. Angew. Chem. I. E. Engl. 2004, 43, 3795-3797.

Atroposelective Construction of an Aromatic Ring [2+2+2] Cycloadditions - Helicenes

• First reported asymmetric synthesis of a helicene derivative.

R CO2Me Red-Al

toluene, 0 °C PPh2 CO2Me R

(S)-(-)-MOP PBr3, THF, 0 °C R = OH R = Br

TIPS Li R Ni(cod)2 THF, -78 °C R (S)-(-)-MOP THF, -20 °C

n-Bu4NF, THF, rt R = TIPS tetrahydro[6]helicene R = H

Stara, I. G. Tetrahedron Lett. 1999, 40, 1993-1996. Atroposelective Construction of an Aromatic Ring [2+2+2] Cycloadditions - Helicenes

• First reported asymmetric synthesis of a helicene derivative.

R CO2Me Red-Al

toluene, 0 °C PPh2 CO2Me R

(S)-(-)-MOP PBr3, THF, 0 °C R = OH R = Br

TIPS Li R Ni(cod)2 THF, -78 °C R (S)-(-)-MOP P THF, -20 °C

n-Bu4NF, THF, rt R = TIPS tetrahydro[6]helicene R = H

Stara, I. G. Tetrahedron Lett. 1999, 40, 1993-1996.