Atropisomerism

Metal-mediated transformations to set biaryl

Nathaniel Kadunce Literature Meeting 12 December 2014 Atropisomerism

• Atropos- the “inflexible” or “without turn” • Arise from hindered rotation about a single bond allowing for isolation of separate conformers

HO2C NO2 HO2C NO2

HO2C NO2 HO2C NO2

Ra Sa

6,6'-dinitro-2,2'-diphenic acid, the first experimentally described atropisomeric compound Journal of the Chemical Society, Transactions 121: 614 First Evidence

• Kaufler Hypothesis: cis and trans explain opcal properes

• Supported by a series of misassignments in derivave studies

• “It has been suggested by Carothers and by Mascarrelli that an objecon to the Kaufler formula which has never been emphasized is the necessity of bending a bond to an angle of 90°. With a Kekule nucleus such a formula cannot be constructed, and each me that chemists adobt assumpons that cannot be reconciled with the Kekule nucleus they encounter difficules.” –Adams, 1933

Rogers, A. and Yuan. H. C. Chem. Rev. 1933, 12, 261. First Evidence

• Kaufler Hypothesis: cis and trans isomers explain opcal properes

• Supported by a series of misassignments in derivave studies

• “It has been suggested by Carothers and by Mascarrelli that an objecon to the Kaufler formula which has never been emphasized is the necessity of bending a bond to an angle of 90°. With a Kekule nucleus such a formula cannot be constructed, and each me that chemists adobt assumpons that cannot be reconciled with the Kekule nucleus they encounter difficules.” –Adams, 1933

Rogers, A. and Yuan. H. C. Chem. Rev. 1933, 12, 261. Restricted Rotation

1926- The theory of restricted rotaon (Turner, Le Fevre, Bell, and Kenyon)

• “Essenally, the theory states that substuents in 2, 2’, 6, 6’ posions in a diphenyl molecule can, by their interference, restrict the free rotaon of the two nuclei around the common axis, thus prevenng the rings from becoming coplanar and thereby producing in the molecule an asymmetric configuraon.” –Adams, 1933

• Proven by resoluon with alkaloids and subsequent racemizaon upon heang, studied extensively by dynamic NMR

Rogers, A. and Yuan. H. C. Chem. Rev. 1933, 12, 261. Restricted Rotation

• Extensive dynamic NMR studies by Sternhell show direct correlaon between van der Waals radii of substuents and energec barrier to rotaon.

• Increasing number of ortho- substuents and van der Waals radius of each decreases the rate of racemizaon

• Arbitrary definion of atropisomer is a half life of 1000 seconds at room temperature

Strenhell, S. J. Am. Chem. Soc., 1980, 102, 5618. In Nature

OMe Me OH O OMe

O O OH MeO OH Me OH O O OH MeO OH HN

OMe Me OH OMe Me OH O Me OH OMe (+)-orlandin (-)-phleichrome anti-plant growth photodynamic ROS generation OMe OH Me OMe OMe OH HO Me

NH2 NH HO NH2 NH Me O OH Me HO Me HN O michellamine A NH anti-HIV1 and HIV2 CO2H OMe Me OH OH ancistrocladine biphenomycin A anti-malarial antibiotic Eudysmic Ratios

i-Pr i-Pr Me OH HO Me CHO OH OH CHO HO OH OH HO OH CHO CHO OH HO Me Me OH i-Pr i-Pr (–)-gossypol (+)-gossypol

“A potent inhibitor of the anapoptoc B-cell lymphoma/leukemia-2 (Bcl-2) family of proteins such as Bcl-XL and that the (M)- is some tenfold more cytotoxic than the (P)-isomer.” Eudysmic Ratios

i-Pr i-Pr Me OH HO Me CHO OH OH CHO HO OH OH HO OH CHO CHO OH HO Me Me OH i-Pr i-Pr (–)-gossypol (+)-gossypol

-Derivazaon led to increase in acvity and in eudysmic rao from 10 to 24. Ph Ph

Me Me O NH HN O

Me OH HO Me OH OH HO OH OH HO OH OH HO Me Me OH

HN O O NH Me BI-97C1 (Sabutoclax) Me (R,M,R)- 0.1 µM Kd (R,P,R)- 2.4 µM Kd Ph versus Bcl-XL versus Bcl-XL Ph

Pellecchia et al. J. Med. Chem. 2010, 53, 4166 and within. Atropchiral Ligands and Catalysts

tBu O OMe Ph Ph Me O O Me O P tBu OH 2 N P P N P tBu OH O Me O O Me Ph Ph O OMe t Bu 2 (R)-BINOL Zhang's D2-symmetric (R)-DTBM-SEGPHOS phosphoramidite

i-Pr i-Pr

i-Pr PPh2 N O O O O P P OH PPh2 O O i-Pr

i-Pr i-Pr (R)-QUINAP (R)-TRIP (R,S)-BINAPHOS Methods and Approaches

Intramolecular Axial Coupling R Desymmetrization O X * X R O

"The lactone concept" Chiral tether strategy Intermolecular Coupling

OAux* O R R R' X N X M

i-Pr Asymmetric cross-coupling Chiral auxilliary strategy Chiral leaving groups

t-Bu O X S R R H Cr(CO)3 Asymmetric oxidative cross-coupling Methods and Approaches

Intramolecular Axial Coupling Desymmetrization O X R * X R O

"The lactone concept" Chiral tether strategy Intermolecular Coupling

OAux* O R R R' X N X M

i-Pr Asymmetric cross-coupling Chiral auxilliary strategy Chiral leaving groups

t-Bu O X S R R H Cr(CO)3 Asymmetric oxidative cross-coupling Methods and Approaches

Intramolecular Axial Coupling Desymmetrization O X R * X R O

"The lactone concept" Chiral tether strategy Intermolecular Coupling

OAux* O R R R' X N X M

i-Pr Asymmetric cross-coupling Chiral auxilliary strategy Chiral leaving groups

t-Bu O X S R R H Cr(CO)3 Asymmetric oxidative cross-coupling Methods and Approaches

Intramolecular Axial Coupling Desymmetrization O X R * X R O

"The lactone concept" Chiral tether strategy Intermolecular Coupling

OAux* O R R R' X N X M

i-Pr Asymmetric cross-coupling Chiral auxilliary strategy Chiral leaving groups

t-Bu O X S R R H Cr(CO)3 Asymmetric oxidative cross-coupling Redox-Neutral Couplings

1. Enantioposition-selective cross-coupling of a difunctionalized achiral biaryl substrate

2. Dynamic kinetic asymmetric transformations via cross-coupling of a racemic substrate

3. sp2-sp2 Cross-coupling producing in the bond-forming event

Enantioposition-selective

a) Kumada-Corriu cross-coupling of aryl Grignard reagent

Me Me Me N

PdCl2 P Ph (5 mol %) TfO OTf Ph Ph OTf PhMgBr (2 equiv) LiBr (1 equiv) Et2O/PhMe, −20 °C, 48 h (84% yield, 90% ee) b) Kumada-Corriu cross-coupling of alkynyl Grignard reagent Me Me Me N

PdCl2 P Ph Ph TfO OTf (5 mol %) OTf

Ph3Si MgBr Ph3Si (2.1 equiv) LiBr (1 equiv) Et2O/PhMe, 20 °C, 6 h (88% yield, 92% ee) c) Sonogashira cross-coupling of alkynes

[PdCl(π-allyl)]2 (10 mol %) LX (12 mol %) Br Br CuI (10 mol %) Br Ph H Ph (1.5 equiv)

Et3N (2.5 equiv) MeCN, 80 °C, 24 h O H (52% yield, 63% ee) N N Uozumi, Y., et al. J. Am. Chem. Soc. 1995, 117, 9101 Kamikawa, T.; Hayashi, T. Tetrahedron 1999, 55, 3455. PCy2 Kamikawa, T.; Uozumi, Y.; Hayashi, T. Tetrahedron Leers 1996, 37, 3161. Enantioposition-selective a) Kumada-Corriu cross-coupling of aryl Grignard reagent

Me Me Me N

PdCl2 P Ph (5 mol %) TfO OTf Ph Ph OTf PhMgBr (2 equiv) LiBr (1 equiv) Et2O/PhMe, −20 °C, 48 h TfO Ph (84% yield, 90% ee) k(R)/k(S) = 5 b) Kumada-Corriu cross-coupling of alkynyl Grignard reagent Me pro-R Me fast Me N slow PdCl (R)-XX 2 k(pro-S) k(R) P Ph Ph TfO OTf Ph Ph TfO OTf (5 mol %) OTf kinetic resolution Ph3Si MgBr Ph3Si (2.1 equiv) LiBr (1 equiv) k k Et O/PhMe, 20 °C, 6 h (pro-R) (S) 2 XX XX fast (88% yield, 92% ee) slow c) Sonogashira cross-coupling of alkynes Ph OTf k /k = 12 (85% ee) [PdCl(π-allyl)]2 (10 mol %) (pro-R) (pro-S) LX (12 mol %) Br Br CuI (10 mol %) Br Ph H Ph (S)-XX (1.5 equiv) major product

Et3N (2.5 equiv) MeCN, 80 °C, 24 h O H (52% yield, 63% ee) N N Uozumi, Y., et al. J. Am. Chem. Soc. 1995, 117, 9101 Kamikawa, T.; Hayashi, T. Tetrahedron 1999, 55, 3455. PCy2 Kamikawa, T.; Uozumi, Y.; Hayashi, T. Tetrahedron Leers 1996, 37, 3161. DYKAT

Hayashi, 2002 and 2004:

Ni(cod)2 (3 mol %) i-PrPHOX (5 mol %) Ph O S SH PPh N PhMgX (10 equiv) 2 THF, 20 °C, 24 h iPr (92% yield, 95% ee) i-PrPHOX

Ni(cod)2 (3 mol %) L (9 mol %) Me S SH MeMgX (10 equiv) PPh2 THF, 10 °C, 24 h L (97% yield, 68% ee)

Shimada, T.; Cho, Y. H.; Hayashi, T. J. Am. Chem. Soc. 2002, 124, 13396. Cho, Y. H.; Kina, A.; Shimada, T.; Hayashi, T. J. Org. Chem. 2004, 69, 3811. DYKAT

Hayashi, 2002 and 2004:

Ni(cod)2 (3 mol %) i-PrPHOX (5 mol %) Ph O S SH PPh N PhMgX (10 equiv) 2 THF, 20 °C, 24 h iPr (92% yield, 95% ee) i-PrPHOX

oxidative DYKAT addition

fast NiLn NiLn S S

Shimada, T.; Cho, Y. H.; Hayashi, T. J. Am. Chem. Soc. 2002, 124, 13396. Cho, Y. H.; Kina, A.; Shimada, T.; Hayashi, T. J. Org. Chem. 2004, 69, 3811. DYKAT

Lassaletta, 2013:

Pd2(dba)3 (5 mol %) Ph Ph TADDOL PNMe (5 mol %) − 2 O Me N CsCO (2 equiv) N Me O ϕ 3 P N OTf Ar Me O (ArBO)3 (1.5 equiv) O Me dioxane, 40 °C, 48 h Ph Ph (87% yield, 90% ee) Ar = p-MeOPh TADDOL-PNMe2 DYKAT slow

N fast N ϕ [M]* [M]*

Lassaletta, J. M., et al. J. Am. Chem. Soc. 2013, 135, 15730.

Cross-Coupling

-The 1980’s: Asymmetric Kumada-Corriu coupling

MgBr Br [Ni]/LX Me Me Me + Me

XX XX XX

PPh2 PPh2 PPh NMe Me PPh 2 2 2 Ph P Fe 2 O OMe H Me PPh Me 2 O Fe PPh2 H PPh Me Me 2 Me

BPPFA (LX) NAPHOS (LX) BIPHEMP (LX) w/ Pd LX LX 5% ee 13% ee 45% ee 40% yield, 50% ee 69% yield, 95% ee

Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374 Frejd, T.; Klingstedt, T. Acta Chemica Scandinavica 1989, 43, 670. Corriu, J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144. Terfort, A.; Brunner, H. J. Chem. Soc., Perkin Trans. 1 1996, 1467. Kumada, M., et al. Chemistry Leers 1975, 133. Kumada, M. et al. Tetrahedron Leers 1977, 18, 1389. Kumada, M. et al. Tetrahedron Leers 1977, 18, 1389. Ito, Y. et. al. J. Am. Chem. Soc. 1988, 110, 8153 Hayashi, T.; Hayashizaki, K.; Ito, Y. Tetrahedron Leers 1989, 30, 215. Cross-Coupling

-Skipping ahead to 1999. Vancomycin

-Skipping ahead to 1999. • Isolated in 1953 by Eli Lilly from soil bacterium Amycolatopsis orientalis.

• Antibiotic used for infections by Gram-(+) bacteria, especially those resistant to more common drugs (e.g. MRSA).

• Inhibits biosynthesis of Gram-(+) bacterial cell wall.

Vancomycin

• No intrinsic substrate control in Suzuki reaction.

• Chiral ligand and condition screening identified BINAP as providing almost complete catalyst control.

• First catalyst-controlled enantioselective Suzuki coupling!

Nicolaou, K. C., et. al. Chem. Eur. J. 1999, 5, 2584. Suzuki Coupling

-The 2000’s, the reign of Boron Cammidge, 2000: PPh O O I PdCl2 (3 mol %) 2 B Me PPFA (6 mol %) Me NMe2 CsF (2 equiv) Fe Me R H + Me DME, reflux (1.1 equiv) PPFA 60% yield 85% ee Buchwald, 2000:

Pd2(dba)3/ KenPhos (0.2-10.0 mol %) Br O B(OH)2 K3PO4 (2 equiv) Me P(OEt)2 Me NMe2 P(O)(OEt)2 PCy + PhMe, 40-80 ºC 2

KenPhos 98% yield 87% ee Cammidge, A. N.; Crépy, K. V. L. Chemical Communicaons 2000, 1723. Yin, J. J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051 Suzuki Coupling

B(OH)2 X 1 2 Pd/LX R1 R + R R2

R1, R2 = Me, H XX XX X = I, Br, Cl XX

Ph2P 1-naph NMe - N O O tBu I tBu PCy N N Fe 2 Fe - BF4 N N 1-naph 1-naph sBu sBu 65% yield 88% yield 61% yield 85% yield 54% ee 42% ee 49% ee 80% ee (Johannsen, 2003) (Labande, 2010) (Iwasa, 2007) (Kündig, 2014)

PS PhMeid-5,3 Bn Ph OMe H Ph N O O O H P O PEG MeO PPh O Me N 2 H O N 3 N O Me 3,5-diMePh Ph Ph i Pr PCy2 54% yield 95% yield 73% yield 78% yield 46% ee 94% ee 62% ee 90% ee (Guiry, 2007) (Uozumi, 2009) (Putala, 2013) (Lin, 2010)

Jensen, J. F.; Johannsen, Org. Le. 2003, 5, 3025. Benhamou, L.; Besnard, C.; Kundig, E. P. Organometallics 2014, 33, 260. Labande, A. et al. New Journal of Chemistry 2014, 38, 338. Iwasa, S. et al. Tetrahedron Leers 2007, 48, 3397. Uozumi, Y., et al. Angew. Chem. Int. Ed. 2009, 48, 2708. Bronger, R. P. J.; Guiry, P. J. Tetrahedron-Asymmetry 2007, 18, 1094. Lin, G. Q. et al. Organic Leers 2010, 12, 5546. Meskova, M.; Putala, M. Tetrahedron: Asymmetry 2013, 24, 894. Suzuki Coupling

B(OH)2 X 1 2 Pd/LX R1 R + R R2

R1, R2 = alkoxy, H

X = I, Br, Cl

Ph Ph Ph Me O PCy PPh O Me 2 2 N N N N N P Me PCy2 PPh2 N Me HN Ph PPh2 Ph Ph Fe PPh2 Me iPr CyBINAP BINAP 92% yield 96% yield 61% yield 75% yield 70% ee 69% ee 90% ee 26% ee 40% ee 35% ee (Mikami, 2004) (Sawai, 2008) (Lassaletta, 2008) (Xiao, 2009) (Prim, 2011) (Claver, 2013)

Ph Ph Br- Me 4-Hep O H N N i Pr O P O Me CO2Me N N N PPh2 N O N N N N - - BF4 Hep-4 Br H t Bu tBu Ph Me H iPr H OBnBnO

91% yield 60% yield tBu tBu 73% yield 90% yield 71% yield 60% ee H 55% ee 61% ee 80% ee 50% ee (Dorta, 2013) AcO (Iuliano, 2011) (Zhang, 2012) (Lassaletta, 2012) (Gong/Song, 2014)

Prim, D., et al. Organometallics 2011, 30, 4074. Mikami, K.; Miyamoto, T.; Hatano, M. Chem. Commun. 2004, 2082. Dorta, R. et al. Synle 2013, 24, 1215. Sawai, K. et al. Angew. Chem. Int. Ed. 2008, 47, 6917. Zhang, D. et al. Organometallics 2014, 33, 876. Lassalea, J. M., et al. J. Am. Chem. Soc. 2008, 130, 15798 Jumde, V. R.; Iuliano, A. Tetrahedron-Asymmetry 2011, 22, 2151. Lassalea, J. M. et al. J. Org. Chem. 2012, 77, 4740. Claver, C. J. et al. Organomet. Chem. 2013, 743, 31. Xiao, J. L., et al. Can. J. Chem. 2009, 87, 171. Gong, J. F.; Song, M. P., et al. Organometallics 2014, 33, 194.

Michellamine B

• Isolated in 1991 by Boyd and coworkers

• Anti- HIV-1 (EC50 10 µM) and HIV-2 (EC50 2 µM) activity including resistant strains as well.

• Configurationally labile at binaphthyl junction.

• Significant activity dependence on of naphthylisoquinoline axes.

• Previous approaches: diastereoselective biary coupling; chiral Cr-complexes, and asymmetric lactone cleavage.

Boyd. M. R., et al. J. Med. Chem., 1991. 34, 3402 Michellamine B

Tang, 2014: OBn OMe Pd(OAc)2 (1 mol %) O Br OBn OMe Ligand (1.2 mol %) i-Pr K PO (3.0 equiv) BOPO CHO 3 4 P t-Bu Me + MeO OMe Me PhMe/H2O, 35 ºC, 12 h BOPO CHO OTBS B(OH) 2 (96% yield, 93% ee) (1.4 equiv) Ligand OTBS

Tang, W., et al. J. Am. Chem. Soc. 2014, 136, 570. Michellamine B

Tang, 2014: OBn OMe Pd(OAc)2 (1 mol %) O Br OBn OMe Ligand (1.2 mol %) i-Pr K PO (3.0 equiv) BOPO CHO 3 4 P t-Bu Me + MeO OMe Me PhMe/H2O, 35 ºC, 12 h BOPO CHO OTBS B(OH) 2 (96% yield, 93% ee) (1.4 equiv) Ligand OTBS

• Building from Buchwald’s work, O N P N O O screened a variety of ligands O against various ortho-direcng O R O

groups, arrived at BOP: BOP-OR

• First catalyc asymmetric preparaon of Michellamine B in 20+ years of efforts.

• Very mild condions employed for hindered Suzuki coupling.

Tang, W., et al. J. Am. Chem. Soc. 2014, 136, 570. Cross-Coupling: Other Nucleophiles

Zinc: Espinet, 2006

Zn Br Pd2(dba)3•CHCl3 2 (5 mol %) Me Me PPFA (20 mol %) + Me THF, 60 °C, 24 h Me (95% yield, 85% ee) (1.5 equiv)

PPh2

NMe2 Fe H Me

Indium: Sarandeses, 2013 PPFA

In Br Pd2(dba)3 (2 mol %) 3 Me PPFA (8 mol %) + Me THF, 80 °C, 12−15 h

(71% yield, 86% ee)

Espinet, P. et al. Tetrahedron-Asymmetry 2006, 17, 2593. Sarandeses, L. A., et al. Eur. J. Org. Chem. 2013, 2555.

Cross-Coupling: Other Nucleophiles

Silicon: Denmark, 2014

Me Ph Ph

Si [allylPdCl]2 (2.5 mol %) Me OK Ligand (5 mol %) Me N N N N Me + Br PhMe, 70 ºC Ph Ph (91% yield, 95% ee) Ligand

-Coordinating substituents at 2-position decrease ee by competitive coordination with Pd.

-Nucleophile/Electrophile swap gives identical ee. Combined with computational work indicates stereodetermining reductive elimination.

Denmark, S. E.; Chang, W-T. T.; Houk, K. N.; Liu, P.. J. Org. Chem. ASAP DOI: 10.1021/jo502388r Oxidave Coupling- Intro

1. Catalytic asymmetric dimerization of activated phenols and naphthols

2. Oxidative cross-coupling of electronically differentiated arenes

Metal catalyst Oxidant OH OH OH Vanadium Copper Ruthenium Palladium Oxidave Coupling- Nakajima

Nakajima, 1995 R CuCl (10 mol %) R Ligand (11 mol % OH N H N OH Et Ph OH O2, DCM, rt, 24 h Ligand R

Nakajima, M., et al. Tetrahedron. 1995, 36, 9519. Oxidave Coupling- Kozlowski

Kozlowski, 2001 R H L*Cu(OH)I N R (2-20 mol %) OH OH HO Cu N OH O , DCM, rt-40 ºC 2 I H R L*Cu(OH)I

Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137. The Perylenequinones

• Commonly isolated fungal natural products. Sources include Cercospora kikuchii, cause of soy bean “purple speck disease.”

• Possess helical chirality about the core pentacycle. Atrop-stability varies among members of the family.

• Light-induced biological activity (singlet oxygen generation, ROS) makes them potential photodynamic therapeutics. Perylenequinone Syntheses

Kozlowski, 2009

Prepared from common intermediate:

Kozlowski, M. C., et al. J. Am. Chem. Soc., 2009, 131, 9413. Perylenequinone Syntheses

Kozlowski, 2009

Interesting bisquinone closure with MnO2:

Kozlowski, M. C., et al. J. Am. Chem. Soc., 2009, 131, 9413. Oxidave Couplings

Ha, 2004 Pal, 2008g

g

Pilati, 2003 Martell,g 2003

g

Troin, 2011 Habaue, 2004 g g

Ha, D.-C., et al. Tetrahedron 2004, 60, 9037. Pal, S., et al. J. Indian Chem. Soc. 2008, 85, 1116. Pila, T., et al. Tetrahedron: Asymmetry 2003, 14, 1451. Martell, A. E., et al. Angew. Chem., Int. Ed. 2003, 42, 6008. Troin, Y. et al. Organometallics 2011, 30, 4047. Habaue, S., et al. Polym. Sci., Part A: Polym. Chem. 2004, 42, 4528. Oxidave Coupling- Vanadium

Vanadium Catalyst TMSCl or TMSOTf OH OH

OH Air or O2 DCM or CCl4

Bn t-Bu Bn Me Me O O N N O O N V O V O O V O O O O t-Bu O O O N OH V O O O V N O O O t-Bu Chen, 2001 Uang, 2002 Jiang, 2002 Chen, 2002 (72% yield, 65% ee) (90% yield, 54% ee) (62% yield, 90% ee) (99% yield, 84% ee)

t-Bu t-Bu

N N O O O O V V O O O O C.-T. Chen, et al. Org. Le., 2001, 3, 869. O O V V C.-Y. Chu and B.-J. Uang, Tetrahedron: Asymmetry, 2003, 14, 53. O O O O N N Y. Jiang, et al. Chem. Commun., 2002, 914. N. B. Barhate and C.-T. Chen, Org. Le., 2002, 4, 2529. Gong, L-Z., et al. J. Am. Chem. Soc., 2007, 129, 13927. Gong, 2002 t-Bu Sasai, 2008 t-Bu Sasai, H., et al. Chem. Commun., 2008, 1810. (95% yield, 83% ee) (76% yield, 91% ee) Oxidave Coupling- Ruthenium

Katsuki, 2000

N NO N Ru(II)salen catalyst Ru air, hν OH O Cl O OH Ph Ph OH PhMe, 25 ºC (72% yield, 65% ee)

Ru(II)salen(NO)Cl

Irie, R.; Masutani, K.; Katsuki, T. Synlett. 2000, 1433.

Oxidave Heterocoupling

Habaue, 2007 CuCl (5 mol %) PhBOX (6 mol %)

OBn OBn Me Me THF, O2, -20 ºC O O (67% yield, 73% ee) OH OH N N + OH CuCl (20 mol %) Ph Ph OH PhBOX (6 mol %) PhBOX Yb(OTf)3 (10 mol %) CO2Ph

CO2Ph THF, O2, -20 ºC

(93% yield, 86% ee)

OBn • Selecve oxidaon of more electron-rich N naphthol O CuI • * Cl N • Cross-selecvity achieved by acvang O Yb(OTf)3 chelang substrate with Lewis acid O

OPh • No mechanisc details reported

Habaue, S.; Temma, T.; Sugiyama, Y.; Yan, P. Tetrahedron Lett. 2007, 48, 8595.

Oxidave Heterocoupling

Itami, 2012

Pd(OAc)2 (10 mol %) i-PrBIOX (10 mol %) O O Me TEMPO (4 equiv) iPr N N iPr nPrOH, 70 °C, 12 h Me S (27% yield, 72% ee) i-PrBIOX iPr + Me or

i Me Pr S O -O B(OH)2 + Pd(OAc)2(sox) (10 mol %) S N (4 equiv) FePc (5 mol %) iPr DMA, 70 °C, 24 h sox ligand Me (61% yield, 61% ee)

Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165. Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753. Conclusion

• Metal-catalyzed asymmetric biaryl cross-coupling has developed into a rich and synthetically useful field.

• Both redox-neutral and oxidative methods have been optimized and employed in complex settings.

• Oxidative cross-coupling and non-Mg, non-B redox neutral cross-coupling are underdeveloped emerging fields with significant potential. Resources

• Kevin Allen’s group meeting, 2005: – Excellent coverage of diastereoselective methods and chiral leaving groups http://stoltz.caltech.edu/seminars/2005_Allan.pdf • B. Collins (Denmark) group meeting, 2004: – Detailed descriptions of Vanadium oxidative reactions and aryl-Pb couplings http://www.scs.illinois.edu/denmark/presentations/2004/gm-2004-03_02.pdf • M. Bruening review, 2011 – Atropselective Total Synthesis of Axially Chiral Biaryl Natural Products Chem. Rev., 2011, 111 (2), pp 563–639 • M. C. Kozlowski review, 2013 – Aerobic Copper-Catalyzed Organic Reactions Chem. Rev., 2013, 113 (8), pp 6234-6458