Stereochemistry the Different Types of Isomers. Stereochemistry Focuses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isomerism in Organic Compounds
DEPARTMENT OF ORGANIC CHEMISTRY PHARMACEUTICAL FACULTY SEMMELWEIS UNIVERSITY László Szabó − Gábor Krajsovszky ISOMERISM IN ORGANIC COMPOUNDS Budapest 2017 © László Szabó © Gábor Krajsovszky ISBN 978-963-12-9206-0 Publisher: Dr. Gábor Krajsovszky 2 Acknowledgements The Author is thankful to dr. Ruth Deme assistant lecturer for drawing the structural formulas, as well as to Mrs. Zsuzsanna Petró-Karátson for the typewriting of the text part. The Author is thankful to dr. Péter Tétényi for the translation of the manuscript to English language. Dr. Gábor Krajsovszky 3 ISOMERISM IN ORGANIC COMPOUNDS Isomers are the compounds with the same qualitative and quantitative composition of elements, therefore their relative molecular weights and general formulas are identical, but their structures – including in the 3D arrangement – are different. The compounds propyl chloride and propane are not isomers, since their qualitative composition of elements are different. The compounds propane and propene are not isomers, although they are built from the same elements, but with different quanti- tative composition of elements. The compounds propene and cyclohexane are not isomers, although they are built from the same elements, with the same ratio of ele- ments, their relative molecular weights are different. However, the compounds butane and isobutane are isomers, since they have the same general formula, but their 3D arrangement is different. Only one compound or many compounds may have the same general formulas. For example, methane (a linear saturated -
Practical Aspects on How to Deracemize Atropizomers by Means of Crystallization Ryusei Oketani
Practical aspects on how to deracemize atropizomers by means of crystallization Ryusei Oketani To cite this version: Ryusei Oketani. Practical aspects on how to deracemize atropizomers by means of crystallization. Organic chemistry. Normandie Université, 2019. English. NNT : 2019NORMR109. tel-02502796 HAL Id: tel-02502796 https://tel.archives-ouvertes.fr/tel-02502796 Submitted on 9 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le diplôme de doctorat Spécialité Chimie Préparée au sein de l’Université de Rouen Normandie Practical aspects on how to deracemize atropisomers by means of crystallization (Aspects pratiques de la déracémisation d'atropisomères par cristallisation) Présentée et soutenue par Ryusei OKETANI Thèse soutenue publiquement le 06 Décembre 2019 devant le jury composé de M. Alexander BREDIKHIN Pr FRC Kazan Scientific Center of RAS Rapporteur M. Joop Ter HORST Pr University of Strathclyde Rapporteur M. Gérard COQUEREL Pr Université de Rouen Normandie Président Mme. Sylvie FERLAY-CHARITAT Pr Université de Strasbourg Examinateur M. Pascal CARDINAEL Pr Université de Rouen Normandie Directeur de thèse Thèse dirigée par Pascal CARDINAEL professeur des universités et Co-encadrée par le Dr. Clément BRANDEL au laboratoire Sciences et Méthodes Séparatives (EA3233 SMS) Contents Contents Contents ......................................................................................................................... -
H2O2 and NH 2 OH
Int. J. Mol. Sci. 2006 , 7, 289-319 International Journal of Molecular Sciences ISSN 1422-0067 © 2006 by MDPI www.mdpi.org/ijms/ A Quest for the Origin of Barrier to the Internal Rotation of Hydrogen Peroxide (H 2O2) and Fluorine Peroxide (F 2O2) Dulal C. Ghosh Department of Chemistry, University of Kalyani, Kalyani-741235, India Email: [email protected], Fax: +91-33 25828282 Received: 2 July 2006 / Accepted: 24 July 2006 / Published: 25 August 2006 Abstract: In order to understand the structure-property relationship, SPR, an energy- partitioning quest for the origin of the barrier to the internal rotation of two iso-structural molecules, hydrogen peroxide, H 2O2, and fluorine peroxide, F 2O2 is performed. The hydrogen peroxide is an important bio-oxidative compound generated in the body cells to fight infections and is an essential ingredient of our immune system. The fluorine peroxide is its analogue. We have tried to discern the interactions and energetic effects that entail the nonplanar skew conformation as the equilibrium shape of the molecules. The physical process of the dynamics of internal rotation initiates the isomerization reaction and generates infinite number of conformations. The decomposed energy components faithfully display the physical process of skewing and eclipsing as a function of torsional angles and hence are good descriptors of the process of isomerization reaction of hydrogen peroxide (H 2O2) and dioxygen difluoride (F 2O2) associated with the dynamics of internal rotation. It is observed that the one-center, two-center bonded and nonbonded interaction terms are sharply divided in two groups. One group of interactions hinders the skewing and favours planar cis/trans forms while the other group favours skewing and prefers the gauche conformation of the molecule. -
Characterization of Stereoselective Metabolism, Inhibitory Effect
DMD Fast Forward. Published on November 15, 2018 as DOI: 10.1124/dmd.118.080549 This article has not been copyedited and formatted. The final version may differ from this version. Journal Drug Metabolism and Disposition CHARACTERIZATION OF STEREOSELECTIVE METABOLISM, INHIBITORY EFFECT ON URIC ACID UPTAKE TRANSPORTERS, AND PHARMACOKINETICS OF LESINURAD ATROPISOMERS Downloaded from Chun Yang, Dongmei Zhou, Zancong Shen, David M. Wilson, Matthew Renner, Jeffrey N. Miner, Jean-Luc Girardet and Caroline A. Lee dmd.aspetjournals.org Preclinical & Clinical DMPK (CY, ZS, CAL), Bioanalytical (DZ, DMW), Biology (JM) and Chemistry (J-LG, MR) Ardea Biosciences, Inc., San Diego, CA at ASPET Journals on October 1, 2021 1 DMD Fast Forward. Published on November 15, 2018 as DOI: 10.1124/dmd.118.080549 This article has not been copyedited and formatted. The final version may differ from this version. Running Title: Lesinurad Atropisomer Characterization Corresponding Author: Caroline A. Lee, PhD Downloaded from Translational Sciences, Ardea Biosciences 9390 Towne Centre Drive dmd.aspetjournals.org San Diego, CA 92121 Email: [email protected] at ASPET Journals on October 1, 2021 Tel: 858-449-1797 Manuscript Format Abstract: 223 words Introduction: 599 words Discussion: 1408 words Number of Text Pages: 29 2 DMD Fast Forward. Published on November 15, 2018 as DOI: 10.1124/dmd.118.080549 This article has not been copyedited and formatted. The final version may differ from this version. References: 21 Number of Tables: 2 Number of Figures: 8 Supplemental Table: 0 Supplemental Figures: 0 Downloaded from dmd.aspetjournals.org at ASPET Journals on October 1, 2021 3 DMD Fast Forward. -
Functional Behavior of Molecular Baskets and Structure-Activity Studies on Trapping Organophosphorus Nerve Agents in Water
Functional Behavior of Molecular Baskets and Structure-Activity Studies on Trapping Organophosphorus Nerve Agents in Water DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yian Ruan Graduate Program in Chemistry The Ohio State University 2014 Dissertation Committee: Jovica D. Badjic, Advisor Christopher M. Hadad Jon R. Parquette Copyright by Yian Ruan 2014 Abstract Molecular recognition is exploited by nature to carry out delicately regulated reactions and form precisely organized structures in living organisms. Enzymes promote reactions by preorganizing substrates and stabilizing transition states in an active site via covalent and non-covalent interactions. Receptor proteins and antibodies can respond selectively to stimuli and trigger subsequent activities. These protein-substrate interactions have been great inspirations for chemists in the design of synthetic receptors as hosts and the study of their molecular recognition properties. Investigation of recognition behaviors can help decipher sub-cellular processes. Moreover, some artificial host-guest complexes have found applications in catalysis, sensing, imaging and drug delivery systems. The Badjic group has developed a family of host molecules called molecular baskets to study the effect of gating on molecular recognition. These baskets possess a cavity formed by a benzene base and phthalimide side walls. Pyridine-based gates close the basket via hydrogen bonds or metal chelation. Tuning the electronic and steric characteristics of gates affects the rate of guests entering and departing the basket. ii With all the knowledge about molecular gating, questions arise as to whether these gates can be applied to other platforms and how the mechanism of gating will be affected. -
Atropisomerism
Atropisomerism Metal-mediated transformations to set biaryl chirality Nathaniel Kadunce Literature Meeting 12 December 2014 Atropisomerism • Atropos- the “inflexible” or “without turn” • Arise from hindered rotation about a single bond allowing for isolation of separate conformers HO2C NO2 HO2C NO2 HO2C NO2 HO2C NO2 Ra Sa 6,6'-dinitro-2,2'-diphenic acid, the first experimentally described atropisomeric compound Journal of the Chemical Society, Transactions 121: 614 First Evidence • Kaufler Hypothesis: cis and trans isomers explain op9cal proper9es • Supported by a series of misassignments in derivave studies • “It has been suggested by Carothers and by Mascarrelli that an objec9on to the Kaufler formula which has never been emphasized is the necessity of bending a bond to an angle of 90°. With a Kekule nucleus such a formula cannot be constructed, and each 9me that chemists adobt assump9ons that cannot be reconciled with the Kekule nucleus they encounter difficul9es.” –Adams, 1933 Rogers, A. and Yuan. H. C. Chem. Rev. 1933, 12, 261. First Evidence • Kaufler Hypothesis: cis and trans isomers explain op9cal proper9es • Supported by a series of misassignments in derivave studies • “It has been suggested by Carothers and by Mascarrelli that an objec9on to the Kaufler formula which has never been emphasized is the necessity of bending a bond to an angle of 90°. With a Kekule nucleus such a formula cannot be constructed, and each 9me that chemists adobt assump9ons that cannot be reconciled with the Kekule nucleus they encounter difficul9es.” –Adams, 1933 -
Unit-2 Conformational Isomerism
UNIT-2 CONFORMATIONAL ISOMERISM In chemistry, conformational isomerism is a form of stereoisomerism in which the isomers can be interconverted exclusively by rotations about formally single bonds. Such isomers are generally referred to as conformational isomers or conformers and specifically as rotamers when the rotation leading to different conformations is restricted (hindered) rotation, in the sense that there exists a rotational energy barrier that needs to be overcome to convert one conformer to another. Conformational isomers are thus distinct from the other classes of stereoisomers for which interconversion necessarily involves breaking and reforming of chemical bonds. The rotational barrier, or barrier to rotation, is the activation energy required to interconvert rotamers. Conformers of butane, shown in Newman projection. The two gauche as well as the anti form are staggered conformations Types of conformational isomerism Butane has three rotamers: two gauche conformers, which are enantiomeric and an anti conformer, where the four carbon centres are coplanar. The three eclipsed conformations with dihedral angles of 0°,120° and 240° are not considered to be rotamers, but are instead transition states. Some important examples of conformational isomerism include: 1. Linear alkane conformations with staggered, eclipsed and gauche conformers, and 2. Ring conformation o Cyclohexane conformations with chair and boat conformers. o Carbohydrate conformation 3. Atropisomerism- due to restricted rotation about a bond, a molecule can become chiral 4. Folding of molecules, where some shapes are stable and functional, but others are not. Conformations of Ethane While there are an infinite number of conformations about any sigma bond, in ethane two particular conformers are noteworthy and have special names. -
Atropisomerism: Axial Chirality in Nature and Synthesis
R R * R MLn Me R OH O OH N OMe * Me Me Atropisomerism O * MeO OH N Axial Chirality in Nature and Synthesis H OMe Me MeO O X Y Y X OH O Y X X Y OMe MeO OH Kevin Allan O H MeO * OH Stoltz Group Literature Meeting Al Li Monday 11/14/2005 * O OEt 8 pm OMe 147 Noyes OH O O O O Nu O Nu Outline I. Introduction a. History and Background b. Conditions for Axial Chirality II. Direct Atroposelective Aryl-Aryl Coupling a. Diastereoselective Coupling b. Enantioselective Coupling III. Resolution/Desymmetrization of Prostereogenic Biaryls a. Configurationally Stable, Axially Achiral b. Configurationally Unstable, Axially Chiral Motokazu Uemura (right) and i. Atropodiastereoselective Bridge Formation Ken Kamikawa (left) ii. Atroposelective Bridge Cleavage / The "Lactone Method" Osaka Prefecture University IV. Atroposelective Construction of an Aromatic Ring Albert I. Meyers Colorado State University For a general review of biaryls in synthesis: Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. I. E. 2005, 44, 5384-5427. Biaryl cross-coupling: Stanforth, S. P. Tetrahedron. 1998, 54, 263-303. Lloyd-Williams, P.; Giralt, E. Chem. Soc. Rev. 2001, 30, 145-157. Broutin, P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113-1128. Lactone Methodology: Gerhard Bringmann Matthias Breuning Bringmann, G.; Breuning, M.; Tasler, S. Synthesis, 1999, 4, 525-558. Universitat Wurzburg Universitat Wurzburg Bringmann, G.; Tasler, S.; Pfeifer, R.-M.; Breuning, M. J. Organomet. Chem. 2002, 661, 49-65. Atropisomerism is Everywhere -
Characterization of Stereoselective Metabolism, Inhibitory Effect on Uric Acid Uptake Transporters, and Pharmacokinetics of Lesinurad Atropisomers
1521-009X/47/2/104–113$35.00 https://doi.org/10.1124/dmd.118.080549 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 47:104–113, February 2019 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics Characterization of Stereoselective Metabolism, Inhibitory Effect on Uric Acid Uptake Transporters, and Pharmacokinetics of Lesinurad Atropisomers Chun Yang, Dongmei Zhou, Zancong Shen, David M. Wilson, Matthew Renner, Jeffrey N. Miner, Jean-Luc Girardet, and Caroline A. Lee Preclinical and Clinical DMPK (C.Y., Z.S., C.A.L.), Bioanalytical (D.Z., D.M.W.), Biology (J.N.M.), and Chemistry (M.R., J.-L.G.) Departments, Ardea Biosciences, Inc., San Diego, California Received January 16, 2018; accepted November 2, 2018 ABSTRACT Downloaded from Lesinurad [Zurampic; 2-(5-bromo-4-(4-cyclopropylnaphthalen-1-yl)- There were no significant differences in the plasma protein 4H-1,2,4-triazol-3-ylthio)], a selective inhibitor of uric acid reabsorp- binding among lesinurad and the atropisomers. Following oral tion transporters approved for the treatment of gout, is a racemate administration of 400 mg lesinurad once daily for 14 days to of two atropisomers. The objective of this investigation was to healthy human volunteers, the systemic exposure (Cmax at evaluate the stereoselectivity of metabolism, the inhibitory potency steady state and area under the concentration-time curve from on kidney uric acid reabsorption transporters (URAT1 and OAT4), time zero to the time of dosing interval) of atropisomer 1 was dmd.aspetjournals.org and the clinical pharmacokinetics of the lesinurad atropisomers. approximately 30% lower than that of atropisomer 2, whereas Incubations with human liver microsomes (HLM), recombinant renal clearance was similar. -
Absolute Configuration of 2,2′,3,3′,6- Pentachlorinatedbiphenyl (Pcb 84) Atropisomers
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Environ Manuscript Author Sci Pollut Res Int Manuscript Author . Author manuscript; available in PMC 2019 June 01. Published in final edited form as: Environ Sci Pollut Res Int. 2018 June ; 25(17): 16402–16410. doi:10.1007/s11356-017-9259-z. ABSOLUTE CONFIGURATION OF 2,2′,3,3′,6- PENTACHLORINATEDBIPHENYL (PCB 84) ATROPISOMERS Xueshu Lia, Sean R. Parkinb, and Hans-Joachim Lehmlera,* aDepartment of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA 52242, USA bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA Abstract Nineteen polychlorinated biphenyl (PCB) congeners, such as 2,2′,3,3′,6-pentachlorobiphenyl (PCB 84), display axial chirality because they form stable rotational isomers, or atropisomers, that are non-superimposable mirror images of each other. Although chiral PCBs undergo atropselective biotransformation and atropselectively alter biological processes, the absolute structure of only a few PCB atropisomers has been determined experimentally. To help close this knowledge gap, pure 2,2′,3,3′,6-pentachlorobiphenyl (PCB 84) atropisomers were obtained by semi-preparative liquid chromatography with two serially connected Nucleodex β-PM columns. The absolute configuration of both atropisomers was determined by X-ray single-crystal diffraction. The PCB 84 atropisomer eluting first and second on the Nucleodex β-PM column correspond to (aR)-(−)- PCB 84 and (aS)-(+)-PCB 84, respectively. Enantioselective gas chromatographic analysis with the β-cyclodextrin-based Chiralsil-Dex CP gas chromatography column showed the same elution order as the Nucleodex β-PM column. Based on earlier reports, the atropisomers eluting first and second on the BGB-172 gas chromatography column are (aR)-(−)-PCB 84 and (aS)-(+)-PCB 84, respectively. -
Chap. 2 Stereochemistry § Structural Representations That Convey 3-D Information
Chap. 2 Stereochemistry § Structural representations that convey 3-D information CH3 CH3 CH3 CH3 Cl H ≡ Cl H Cl Cl H CH CH CH2CH3 CH2CH3 H 2 3 CH2CH3 Fischer projection. Ball & Stick CH3 H CH3 CH H H H H 3 H Cl H H C H Cl H 3 CH3 Cl H3C Sawhorse Newman projection representation. O AcO O H OH Ph N O H Ph O H O HO H AcO OCPh Taxol O § Isomerism Isomers : Different compounds that have the same molecular formula. Conformational Isomer:Stereoisomers that are superimposable by rotation around a single bond. Enantiomer : Isomers that are non-superimposable mirror images to each other.→chiral Diastereomer:Isomers that are non-superimposable, not mirror images. -Cis-trans isomer ( geometric isomer ) configurational isomers differ around a double bond or cyclic structure. § Symmetric, Asymmetric, Dissymmetric and Nondissymmetric molecules. -Symmetry operation reflection in a plane(對稱面):σ inversion through a center(對稱中心):i rotation about a proper axis(對稱軸):Cn , for 360° /n rotation about an improper axis(更迭對稱軸):Sn ( = rotation about an axis, followed by reflection though a plane perpendicular to the axis ) H3C CH3 H CH3 C2, σv, σv’ C2, σh H H CH3 H H Cl2 H 2 Cl1 D1 i D2 F F F 1 F2 2 1 D2 D1 C2+σh=i =S Cl1 H H1 2 Cl2 C2 σh D2 F1 H2 Cl 2 Cl1 H1 F2 D1 XY XX X Ci Cs C2 YX X X X X X XXD X C2v C2h X 2h X D2d X X X Chirality:Molecules that are not superimposable with their mirror image chiral. -
Influence of the Chemical Environment on Metolachlor Conformations
J. Agric. Food Chem. 1999, 47, 4435−4442 4435 Influence of the Chemical Environment on Metolachlor Conformations Shalini Jayasundera,† Walter F. Schmidt,‡ Cathleen J. Hapeman,‡ and Alba Torrents*,† Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland 20742, and Environmental Chemistry Laboratory NRI, ARS/USDA, Beltsville, Maryland 20705 Metolachlor exists in multiple, different stable conformations in solution. Assignment of the NMR frequencies to chemical structure is a prerequisite to understanding the behavior of individual conformations. 1H NMR experiments of metolachlor in different chemical environments identified the labile sites of metolachlor and environments that influence conformational/configurational changes. Within very specific chemical environments, metolachlor atropisomers aS,12S (aR,12R) and aR,12S (aS,12R) freely interchange, and consequently, the multiple conformations also interchange. The changes in chemical environments, which most alter the conformations and molecular dynamics of metolachlor, identify the most critical components affecting its environmental fate. These results enable a structural interpretation of conformational changes that can influence the environmental fate of metolachlor. Keywords: Metolachlor; NMR; molecular mechanics; chemical environment; atropisomers INTRODUCTION gence herbicide used to control most annual grasses and The environmental fate of pesticides and other or- broad leaf weeds in beans, corn, cotton, potatoes, etc. ganic molecules depend on their interactions with the (Montgomery, 1993). It is one of the most widely used local chemical environment at the molecular level. Most pesticides in the U.S. agricultural crop production organic molecules are conformationally flexible, with the (Aspelin, 1994). In general, the chloroacetamides inhibit active conformations being only a few of the accessible the biosynthesis of fatty acids, lipids, proteins, iso- conformations in solution.