B. PHARMACY, 4 Sem, MODULE-1: STEREOISOMERISM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Practical Approach to Chiral Separations by Liquid Chromatography
A Practical Approach to Chiral Separations by Liquid Chromatography Edited by G. Subramanian Weinheim • New York VCH Basel • Cambridge • Tokyo Contents 1 An Introduction to Enantioseparation by Liquid Chromatography Charles A. White and Ganapathy Subramanian 1.1 Introduction 1 1.1.1 What is Chirality? 1 1.1.2 What Causes Chirality? 2 1.1.3 Why is Chirality Important? 4 1.2 Industries which Require Enantioseparations 4 1.2.1 Pharmaceutical Industry 4 1.2.2 Agrochemical Industry 5 1.2.3 Food and Drink Industry 6 1.2.4 Petrochemical Industry 6 1.3 Chiral Liquid Chromatography 7 1.3.1 Type I Chiral Phases 8 1.3.2 Type II Chiral Stationary Phases 10 1.3.3 Type III Chiral Stationary Phases 10 1.3.3.1 Microcrystalline Cellulose Triacetate and Tribenzoate 10 1.3.3.2 Cyclodextrins 11 1.3.3.3 Crown Ethers 11 1.3.3.4 Synthetic Polymers •. 12 1.3.4 Type IV Chiral Stationary Phases 13 1.3.5 Type V Chiral Stationary Phases 13 1.3.6 Mobile Phase Additives 14 1.3.6.1 Metal Complexes 14 1.3.6.2 Ion-pair Formation 15 1.3.6.3 Uncharged Chiral Additives 15 1.4 The Future 16 2 Modeling Enantiodifferentiation in Chiral Chromatography Kenny B. Lipkowitz 2.1 Introduction 19 2.2 Modeling 19 # VIII Contents 2.3 Computational Tools 22 2.3.1 Quantum Mechanics 22 2.3.2 Molecular Mechanics 23 2.3.3 Molecular Dynamics 24 2.3.4 Monte Carlo Simulations 24 2.3.5 Graphics 25 2.4 Modeling Enantioselective Binding in Chromatography 26 2.4.1 Type I CSPs 26* 2.4.2 Type II CSPs 41 2.4.3 Type III CSPs 44 2.5 Related Studies 49 2.6 Summary 50 3 Regulatory Implications and Chiral Separations Jeffrey R. -
Chiral Separation of Rac-Propylene Oxide on Penicillamine Coated Gold Nps
nanomaterials Article Chiral Separation of rac-Propylene Oxide on Penicillamine Coated Gold NPs Nisha Shukla 1,2, Zachary Blonder 2 and Andrew J. Gellman 2,3,* 1 Institute of Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213, USA; [email protected] 2 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; [email protected] 3 W.E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA 15213, USA * Correspondence: [email protected] Received: 16 July 2020; Accepted: 20 August 2020; Published: 30 August 2020 Abstract: The surfaces of chemically synthesized spherical gold NPs (Au-NPs) have been modified using chiral L- or D-penicillamine (Pen) in order to impart enantioselective adsorption properties. These chiral Au-NPs have been used to demonstrate enantioselective adsorption of racemic propylene oxide (PO) from aqueous solution. In the past we have studied enantioselective adsorption of racemic PO on L- or D-cysteine (Cys)-coated Au-NPs. This prior work suggested that adsorption of PO on Cys-coated Au-NPs equilibrates within an hour. In this work, we have studied the effect of time on the enantioselective adsorption of racemic PO from solution onto chiral Pen/Au-NPs. Enantioselective adsorption of PO on chiral Pen/Au-NPs is time-dependent but reaches a steady state after ~18 h at room temperature. More importantly, L- or D-Pen/Au-NPs are shown to adsorb R- or S-PO enantiospecifically and to separate the two PO enantiomers from racemic mixtures of RS-PO. Keywords: chiral; nanoparticles; enantioselective adsorption; penicillamine; cysteine 1. Introduction Chirality has attracted enormous interest in the field of chemistry due to the enantiospecific responses of living organisms to the two enantiomers of chiral compounds that they have ingested. -
Separation of the Mixtures of Chiral Compounds by Crystallization
1 Separation of the Mixtures of Chiral Compounds by Crystallization Emese Pálovics2, Ferenc Faigl1,2 and Elemér Fogassy1* 1Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 2Research Group for Organic Chemical Technology, Hungarian Academy of Sciences, Budapest, Hungary 1. Introduction Reaction of a racemic acid or base with an optically active base or acid gives a pair of diastereomeric salts. Members of this pair exhibit different physicochemical properties (e.g., solubility, melting point, boiling point, adsorbtion, phase distribution) and can be separated owing to these differences. The most important method for the separation of enantiomers is the crystallization. This is the subject of this chapter. Preparation of enantiopure (ee~100%) compounds is one of the most important aims both for industrial practice and research. Actually, the resolution of racemic compounds (1:1 mixture of molecules having mirror-imagine relationship) still remains the most common method for producing pure enantiomers on a large scale. In these cases the enantiomeric mixtures or a sort of their derivatives are separated directly. This separation is based on the fact that the enantiomeric ratio in the crystallized phase differs from the initial composition. In this way, obtaining pure enantiomers requires one or more recrystallizations. (Figure 1). The results of these crystallizations (recrystallizations) of mixtures of chiral compounds differ from those observed at the achiral compounds. Expectedly, not only the stereoisomer in excess can be crystallized, because the mixture of enantiomers (with mirror image relationship) follows the regularities established from binary melting point phase diagrams, and ternary composition solubility diagrams, respectively, as a function of the starting enantiomer proportion. -
A Reminder… Chirality: a Type of Stereoisomerism
A Reminder… Same molecular formula, isomers but not identical. constitutional isomers stereoisomers Different in the way their Same connectivity, but different atoms are connected. spatial arrangement. and trans-2-butene cis-2-butene are stereoisomers. Chirality: A Type of Stereoisomerism Any object that cannot be superimposed on its mirror image is chiral. Any object that can be superimposed on its mirror image is achiral. Chirality: A Type of Stereoisomerism Molecules can also be chiral or achiral. How do we know which? Example #1: Is this molecule chiral? 1. If a molecule can be superimposed on its mirror image, it is achiral. achiral. Mirror Plane of Symmetry = Achiral Example #1: Is this molecule chiral? 2. If you can find a mirror plane of symmetry in the molecule, in any achiral. conformation, it is achiral. Can subject unstable conformations to this test. ≡ achiral. Finding Chirality in Molecules Example #2: Is this molecule chiral? 1. If a molecule cannot be superimposed on its mirror image, it is chiral. chiral. The mirror image of a chiral molecule is called its enantiomer. Finding Chirality in Molecules Example #2: Is this molecule chiral? 2. If you cannot find a mirror plane of symmetry in the molecule, in any conformation, it is chiral. chiral. (Or maybe you haven’t looked hard enough.) Pharmacology of Enantiomers (+)-esomeprazole (-)-esomeprazole proton pump inhibitor inactive Prilosec: Mixture of both enantiomers. Patent to AstraZeneca expired 2002. Nexium: (+) enantiomer only. Process patent coverage to 2007. More examples at http://z.umn.edu/2301drugs. (+)-ibuprofen (-)-ibuprofen (+)-carvone (-)-carvone analgesic inactive (but is converted to spearmint oil caraway oil + enantiomer by an enzyme) Each enantiomer is recognized Advil (Wyeth) is a mixture of both enantiomers. -
II. Stereochemistry 5
B.Sc.(H) Chemistry Semester - II Core Course - III (CC-III) Organic Chemistry - I II. Stereochemistry 5. Physical and Chemical Properties of Stereoisomers Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi 1 Syllabus & Coverage Syllabus II Stereochemistry: Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions. Geometrical isomerism: cis–trans and syn-anti isomerism, E/Z notations with Cahn Ingold and Prelog (CIP) rules for determining absolute configuration. Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, Meso structures, Racemic mixture. Resolution of Racemic mixtures. Relative and absolute configuration: D/L and R/S designations. Coverage: 1. Types of Isomers : Comparing Structures 2. Optical Activity 3. Racemic Mixtures : Separation of Racemic Mixtures 4. Enantiomeric Excess and Optical Purity 5. Relative and Absolute Configuration 6. Physical and Chemical Properties of Stereoisomers 2 Stereochemistry Types of Isomers Dr. Rajeev Ranjan 3 Stereochemistry Determining the Relationship Between Two Non-Identical Molecules Dr. Rajeev Ranjan 4 Stereochemistry Comparing Structures: Are the structures connected the same? yes no Are they mirror images? Constitutional Isomers yes no Enantiomers Enantiomers Is there a plane of symmetry? All chiral centers will be opposite between them. yes no Meso Diastereomers superimposable Dr. Rajeev Ranjan 5 Stereochemistry Optical Activity: • The chemical and physical properties of two enantiomers are identical except in their interaction with chiral substances. • The physical property that differs is the behavior when subjected to plane-polarized light ( this physical property is often called an optical property). • Plane-polarized (polarized) light is light that has an electric vector that oscillates in a single plane. -
Pyrethroid Stereoisomerism: Diastereomeric and Enantiomeric Selectivity in Environmental Matrices – a Review
Orbital: The Electronic Journal of Chemistry journal homepage: www.orbital.ufms.br e-ISSN 1984-6428 | Vol 10 | | No. 4 | | Special Issue June 2018 | REVIEW Pyrethroid Stereoisomerism: Diastereomeric and Enantiomeric Selectivity in Environmental Matrices – A Review Cláudio Ernesto Taveira Parente*, Claudio Eduardo Azevedo-Silva, Rodrigo Ornellas Meire, and Olaf Malm Laboratório de Radioisótopos, Instituto de Biofísica, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho s/n, bloco G, sala 60, subsolo - 21941-902. Cidade Universitária, Rio de Janeiro, RJ. Brasil. Article history: Received: 30 July 2017; revised: 10 October 2017; accepted: 08 March 2018. Available online: 11 March 2018. DOI: http://dx.doi.org/10.17807/orbital.v10i4.1057 Abstract: Pyrethroids are chiral insecticides characterized by stereoisomerism, which occurs due to the presence of one to three asymmetric (chiral) carbons, generating one or two pairs of cis/trans diastereomers, and two or four pairs of enantiomers. Diastereomers have equal chemical properties and different physical properties, while enantiomer pairs, have the same physicochemical properties, with exception by the ability to deviate the plane of polarized light to the right or to the left. However, stereoisomers exhibit different toxicities at the metabolic level, presenting enzyme and receptor selectivity in biological systems. Studies in aquatic organisms have shown that toxic effects are caused by specific enantiomers (1R-cis and 1R-trans) and that those cause potential estrogenic effects (1S-cis and 1S- trans). In this context, the same compound can have wide-ranging effects in organisms. Therefore, several studies have highlighted pyrethroid stereochemical selectivity in different environmental matrices. The analytical ability to distinguish the diastereomeric and enantiomeric patterns of these compounds is fundamental for understanding the processes of biotransformation, degradation environmental behavior and ecotoxicological impacts. -
Chapter 5: Stereoisomerism [Sections: 5.1-5.9]
Chapter 5: Stereoisomerism [Sections: 5.1-5.9] 1. Identifying Types of Isomers Same MolecularFormula? NO YES A B C compounds are not isomers Same Connectivity? NO YES D E Different Orientation constitutional of Substituents isomers in Space? verify by: A vs B? • have different names (parent name is different or numbering [locants] of substituents) A vs C? • nonsuperimposable C vs D? YES NO D vs E? C vs E? B vs E? stereoisomers same molecule verify by: • both must have the same name • two must be superimposable P: 5.57 2. Defining Chirality • a chiral object is any object with a non-superimposable mirror image • the mirror image of a chiral object is not identical (i.e., not superimposable) • an achiral object is any object with a superimposable mirror image • the mirror image of an achiral object is identical (i.e., superimposable) # different types of groups and/or atoms the central atom is attached to: mirror image superimposable? chiral? • molecules can also be chiral • the mirror image of a chiral molecule is non-superimposable and is therefore an isomer • since the two mirror image compounds have the same connectivity, they are NOT constitutional isomers • the two mirror image compounds are nonsuperimposable due to different orientations of substituents in space: stereoisomers • non-superimposable stereoisomers that bear a mirror-image relationship are enantiomers • stereoisomers that do NOT bear a mirror-image relationship are diastereomers stereoisomers Mirror Image Relationship? NO YES diastereomers enantiomers verify by: verify by: • names differ by cis/trans, E/Z or • names differ by by having different R and S having exactly configurations at one or more opposite R and S chirality centers (but not exactly configurations at opposite configurations from each every chirality center other) 3. -
Cross-Linked Protein Crystal Technology in Bioseparation and Biocatalytic Applications
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Helsinki University of Technology, Department of Chemical Technology Technical Biochemistry Report 1/2004 Espoo 2004 TKK-BE-8 CROSS-LINKED PROTEIN CRYSTAL TECHNOLOGY IN BIOSEPARATION AND BIOCATALYTIC APPLICATIONS Antti Vuolanto Dissertation for the degree of Doctor in Science in Technology to be presented with due permission of the Department of Chemical Technology for public examination and debate in Auditorium KE 2 (Komppa Auditorium) at Helsinki University of Technology (Espoo, Finland) on the 20th of August, 2004, at 12 noon. Helsinki University of Technology Department of Chemical Technology Laboratory of Bioprocess Engineering Teknillinen korkeakoulu Kemian osasto Bioprosessitekniikan laboratorio Distribution: Helsinki University of Technology Laboratory of Bioprocess Engineering P.O. Box 6100 FIN-02015 HUT Tel. +358-9-4512541 Fax. +358-9-462373 E-mail: [email protected] ©Antti Vuolanto ISBN 951-22-7176-1 (printed) ISBN 951-22-7177-X (pdf) ISSN 0359-6621 Espoo 2004 Vuolanto, Antti. Cross-linked protein crystal technology in bioseparation and biocatalytic applications. Espoo 2004, Helsinki University of Technology. Abstract Chemical cross-linking of protein crystals form an insoluble and active protein matrix. Cross-linked protein crystals (CLPCs) have many excellent properties including high volumetric activity and stability. In this thesis CLPC technology was studied in bioseparation and biocatalytic applications. A novel immunoaffinity separation material, cross-linked antibody crystals (CLAC), was developed in this thesis for enantiospecific separation of a chiral drug, finrozole. Previously, the preparation of an antibody Fab fragment ENA5His capable of enantiospecific affinity separation of the chiral drug has been described. -
Isomerism in Organic Compounds
DEPARTMENT OF ORGANIC CHEMISTRY PHARMACEUTICAL FACULTY SEMMELWEIS UNIVERSITY László Szabó − Gábor Krajsovszky ISOMERISM IN ORGANIC COMPOUNDS Budapest 2017 © László Szabó © Gábor Krajsovszky ISBN 978-963-12-9206-0 Publisher: Dr. Gábor Krajsovszky 2 Acknowledgements The Author is thankful to dr. Ruth Deme assistant lecturer for drawing the structural formulas, as well as to Mrs. Zsuzsanna Petró-Karátson for the typewriting of the text part. The Author is thankful to dr. Péter Tétényi for the translation of the manuscript to English language. Dr. Gábor Krajsovszky 3 ISOMERISM IN ORGANIC COMPOUNDS Isomers are the compounds with the same qualitative and quantitative composition of elements, therefore their relative molecular weights and general formulas are identical, but their structures – including in the 3D arrangement – are different. The compounds propyl chloride and propane are not isomers, since their qualitative composition of elements are different. The compounds propane and propene are not isomers, although they are built from the same elements, but with different quanti- tative composition of elements. The compounds propene and cyclohexane are not isomers, although they are built from the same elements, with the same ratio of ele- ments, their relative molecular weights are different. However, the compounds butane and isobutane are isomers, since they have the same general formula, but their 3D arrangement is different. Only one compound or many compounds may have the same general formulas. For example, methane (a linear saturated -
The Racemate-To-Homochiral Approach to Crystal Engineering Via Chiral Symmetry-Breaking
CrystEngComm The Racemate -to -Homochiral Approach to Crystal Engineering via Chiral Symmetry-Breaking Journal: CrystEngComm Manuscript ID: CE-HIG-02-2015-000402.R1 Article Type: Highlight Date Submitted by the Author: 04-Apr-2015 Complete List of Authors: An, Guanghui; Heilongjiang University, School of Chemistry and Materials Science Yan, Pengfei; Heilongjiang University, School of Chemistry and Materials Science Sun, Jingwen; Heilongjiang University, School of Chemistry and Materials Science Li, Yuxin; School of Chemsitry and Materials Science of Heilongjiang University, Yao, Xu; Heilongjiang University, School of Chemistry and Materials Science Li, Guangming; School of Chemsitry and Materials Science of Heilongjiang University, Page 1 of 12Journal Name CrystEngComm Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE The Racemate-to-Homochiral Approach to Crystal Engineering via Chiral Symmetry-Breaking Guanghui An, a Pengfei Yan, a Jingwen Sun, a Yuxin Li, a Xu Yao, a Guangming Li,* a Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x The racemate-to-homochiral approach is to transform or separate the racemic mixture into homo chiral compounds. This protocol, if without an external chiral source, is categorized into chiral symmetry- breaking. The resolution processes without chiral induction are highly important for the investigation on the origin of homochirality in life, pharmaceutical synthesis, chemical industrial and material science. 10 Besides the study on the models and mechanisms to explain the racemate-to-homochiral approach which may give the probable origin of homochirality in life, the recent developments in this field have been plotted towards the separation of enantiomers for the synthesis of pharmaceuticals, chiral chemicals. -
University of Warwick Institutional Repository
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/3994 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. STUDIES OF HEXAHELICENE BONDED PHASES FOR THE HPLC RESOLUTION OF ENANTIOMERS by AURORA DEL ALAMO A thesis submitted in partial fulfilment of the requirements for the degreeof Doctor of Philosophy at the University of Warwick Department of Chemistry University of Warwick June, 1995 CONTENTS ChaDter One Pg LITERATURE REVIEW: CHIRAL LIQUID CHROMATOGRAPHY 1.1 Introduction 1 1.2 Resolution of Enantiomers 3 1.3 Preparation of FIPLC Chiral Stationary Phases 4 1.4 Development of Commercially Available 5 Direct Chiral Resolution Phases 1.4.1 Chiral Ligand Exchange Chromatography (LEC) 6 1.4.2 Synthetic Multiple Interaction CSPs 8 1.4.3 Protein Chiral Stationary Phases 13 1.4.4 Cyclodextrin CSPs 18 1.4.5 Polysaccharide Phases 31 1.4.6 Synthetic Polymer CSPs 36 1.4.7 Chiral Crown Ethers 40 Chapter Two LITERATURE REVIEW: SOME ASPECTS OF THE CHEMISTRY AND PROPERTIES OF HELICENES % 2.1 Helicenes 45 2.2 Synthesesof Hexahelicenes: Methods and their Problems 46 2.2.1 Non-Photochemical Syntheses 46 2.2.2 Photochemical Syntheses 48 2.2.3 Asymmetric Synthesesof Helicenes: 56 2.2.3.1 Asymmetric Synthesis -
Chapter 4: Stereochemistry Introduction to Stereochemistry
Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.