Atropisomerism: Axial Chirality in Nature and Synthesis

Atropisomerism: Axial Chirality in Nature and Synthesis

R R * R MLn Me R OH O OH N OMe * Me Me Atropisomerism O * MeO OH N Axial Chirality in Nature and Synthesis H OMe Me MeO O X Y Y X OH O Y X X Y OMe MeO OH Kevin Allan O H MeO * OH Stoltz Group Literature Meeting Al Li Monday 11/14/2005 * O OEt 8 pm OMe 147 Noyes OH O O O O Nu O Nu Outline I. Introduction a. History and Background b. Conditions for Axial Chirality II. Direct Atroposelective Aryl-Aryl Coupling a. Diastereoselective Coupling b. Enantioselective Coupling III. Resolution/Desymmetrization of Prostereogenic Biaryls a. Configurationally Stable, Axially Achiral b. Configurationally Unstable, Axially Chiral Motokazu Uemura (right) and i. Atropodiastereoselective Bridge Formation Ken Kamikawa (left) ii. Atroposelective Bridge Cleavage / The "Lactone Method" Osaka Prefecture University IV. Atroposelective Construction of an Aromatic Ring Albert I. Meyers Colorado State University For a general review of biaryls in synthesis: Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. I. E. 2005, 44, 5384-5427. Biaryl cross-coupling: Stanforth, S. P. Tetrahedron. 1998, 54, 263-303. Lloyd-Williams, P.; Giralt, E. Chem. Soc. Rev. 2001, 30, 145-157. Broutin, P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113-1128. Lactone Methodology: Gerhard Bringmann Matthias Breuning Bringmann, G.; Breuning, M.; Tasler, S. Synthesis, 1999, 4, 525-558. Universitat Wurzburg Universitat Wurzburg Bringmann, G.; Tasler, S.; Pfeifer, R.-M.; Breuning, M. J. Organomet. Chem. 2002, 661, 49-65. Atropisomerism is Everywhere OH HO HO HO O OH Me O Me O O NH2 O HO OH HO Cl O O CH3(CH2)10 HO Cl OH O O O O OH H H O N N NHMe OH N N N H H H Myristinin B O H Myristica cinnamomea HN O Me HN O COX 2 inhibitor HO2C P H2N Me OH OH M Vancomycin OH OH OMe HO Amycolatopsis orientalis Antibiotic (Gram-positive) MeO OH P HO NH OH Michellamine B Ancistrocladus korupensis Protein kinase C inhibitor, anti-HIV-1,2 Atropisomerism is Everywhere N NO N Ru Me P O Cl O Ph2P Me Ph P P Ph Me catalyzes enantioselective hydrosilations catalyzes asymmetric homo-coupling Bringmann, G. Tetrahedron: Asymm. 1999, 10, 3025-3031. of 2-naphthols Katsuki, T. Synlett, 2000, 1433-1436. R H H N N HO N H O M N M Me OH M M O HO Me HO N HO Me R OH Me catalyzes enantioselective catalyzes enantioselective Me allylation of aldehydes alkylation of aldehydes Hayashi, T. J. Org. Chem. 2003, 68, 6329-6337. Bringmann, G. J. Org. Chem. 2003, 68, 6859-6863. Atropisomerism History & Background Atropisomerism: a term coined by Richard Kuhn in 1933, it refers to stereoisomerism resulting from hindered rotation around a single bond such that the isolation of individual conformers is possible. From Greek: a - not tropos - to turn • The first atropisomer was reported in 1922 by G. H. Christie and J. Kenner. A single enantiomer of 6,6'-dinitro-2,2'-diphenic acid was isolated from the racemic mixture via diastereoselective crystallization with a chiral resolving agent: O2N CO2H HO2C NO2 Kuhn, R. "Molekulare Asymmetrie" in Stereochemie. Freudenberg, K. ed. Franz-Deutike: Leipzig-Wien, 1933, p. 803. Christie, G. H.; Kenner, J. J. Chem. Soc. 1922, 121, 614-620. Atropisomerism Conditions for Axial Chirality The Rules: • A generally accepted--though arbitrary--rule states atropisomers are considered physically separable when they have a half-life at room temperature of >1000 s (16.7 min). -1 • !G200 K = 61.6 kJ mol -1 • !G300 K = 93.5 kJ mol • Steric hindrance at the ortho positions (and to a lesser extent, electron donating/withdrawing character of each of the substituents around each aryl ring) determines the ability of a biaryl system to display atropisomeric behavior. • When referring to axial (helical) chirality, S and R notation become P (plus) and M (minus), respectively. • Hierarchy of functionality is identical to the determination of central (sp3 ) chirality (highest atomic number, etc.). • Hierarchy of aryl substitution is as follows: endocyclic ortho --> ortho --> meta --> para OH OH HO OH S = P R = M HO OH 3 2 2' 3' 3' 2' 2 3 1 1' 1' 1 4 4' HO OH 4' 4 5 6 6' 5' 5' 6' 6 5 (P )-2,2'-dihydroxybiphenyl (M )-2,2'-dihydroxybiphenyl OH HO OH pro-P pro-M HO OH HO OH HO OH HO OH OH Bringmann, G. Angew. Chem. I. E. 2005, 44, 5384-5427. Direct Atroposelective Aryl-Aryl Coupling Diastereoselective Coupling Chiral Tether Influences Configuration Ortho Chiral Auxiliary Influences Planar Chiral Element Influences During Intramolecular Coupling Configuration During Intermolecular Configuration During Intermolecular Coupling Coupling X X Y* LnM' X X + + * X X MLn MLn MLn LnM' * * * Y* * Central-to-axial transfer of chirality Central-to-axial transfer of chirality Planar-to-axial transfer of chirality Diastereoselective Aryl-Aryl Coupling Intramolecular Coupling with Chiral Tethers - Toward Desertorin A-C Me OMe Br TBSO R O S OBn 3 steps OBn OBn OBn TBSO R O S Br MeO Me Lipshutz, B. H.; Kayser, F.; Lui, Z.-P. Angew. Chem., I. E. Engl. 1994, 33, 1842-1844. Kyasnoor, R. V.; Sargent, M. V. Chem. Commun. 1998, 2713-2714. Diastereoselective Aryl-Aryl Coupling Intramolecular Coupling with Chiral Tethers - Toward Desertorin A-C Me OMe OMe Br TBSO R O S O OBn 3 steps OBn 1. BuLi, -78 °C Me OBn P OBn OBn MeO OBn TBSO R O S 2. CuCN, TMEDA O -78 to -40 °C Br 3. O2, -78 °C 40% over 3 steps Me MeO Me single diastereomer O O Desertorin A-C MeO Me OR RO O O Me OMe Lipshutz, B. H.; Kayser, F.; Lui, Z.-P. Angew. Chem., I. E. Engl. 1994, 33, 1842-1844. Kyasnoor, R. V.; Sargent, M. V. Chem. Commun. 1998, 2713-2714. Diastereoselective Aryl-Aryl Coupling Intramolecular Coupling with Chiral Tethers - Toward Desertorin A-C Me OMe OMe Br TBSO R O S O OBn 3 steps OBn 1. BuLi, -78 °C Me OBn P OBn OBn MeO OBn TBSO R O S 2. CuCN, TMEDA O -78 to -40 °C Br 3. O2, -78 °C 40% over 3 steps Me MeO Me single diastereomer O Me H O CH2OBn O Desertorin A-C MeO O CH2OBn MeO H Me OR RO O O OBn substituents prefer gauche conformation as opposed to axial anti-coplanar Me OMe Lipshutz, B. H.; Kayser, F.; Lui, Z.-P. Angew. Chem., I. E. Engl. 1994, 33, 1842-1844. Kyasnoor, R. V.; Sargent, M. V. Chem. Commun. 1998, 2713-2714. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Asymmetric Suzuki Coupling Me pTol S O DIBAL OMe R1 R1 S pTol R1 S pTol LDA, THF ZnCl2, THF I O 80% I O O 74% I OH O Broutin, P.-E.; Colobert, F. Org. Lett. 2003, 5(18), 3281-3284. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Asymmetric Suzuki Coupling Me pTol S O DIBAL OMe R1 R1 S pTol R1 S pTol LDA, THF ZnCl2, THF I O 80% I O O 74% I OH O R1 S pTol I OH O Entry R1 R2 Yield (%) dr* 1 pTol R S 1 Me Me 60 70:30 + Pd(OAc)2, dppf OH O CsF, dioxane * 2 2 Me OMe 27 90:10 B(OH)2 70 °C R R2 3 OMe OMe 61 93:7 *determined by 1H NMR (absolute configuration unknown) Broutin, P.-E.; Colobert, F. Org. Lett. 2003, 5(18), 3281-3284. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Asymmetric Suzuki Coupling Me pTol S O DIBAL OMe R1 R1 S pTol R1 S pTol LDA, THF ZnCl2, THF I O 80% I O O 74% I OH O NaH, MeI DMF, -20 °C 99% R1 S pTol I OMe O Broutin, P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113-1128. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Asymmetric Suzuki Coupling Me pTol S O DIBAL OMe R1 R1 S pTol R1 S pTol LDA, THF ZnCl2, THF I O 80% I O O 74% I OH O NaH, MeI 5 DMF, -20 °C Entry R1 R2 R3 R4 R Yield (%) dr* 99% 1 Me Me CH2 H H 78 75:25 3 B(OR )2 4 2 2 Me OMe CH2 H H 89 80:20 R R + 3 OMe Me CH2 H H 86 90:10 R1 S pTol R5 4 OMe OMe H H H 80 85:15 I OMe O 5 H Me H 99 >99:1 6 H OMe H 99 >99:1 Pd(OAc)2 dppf or PPh 7 Me H CH 88 90:10 3 2 CsF, dioxane 70 °C R1 S pTol 8 OMe H CH2 86 95:5 OMe O *determined by 1H NMR (absolute configuration unknown) R4 * R2 R5 Broutin, P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113-1128. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Aryl Grignard Coupling R Yield (%) dr (P :M ) MeO R O Br 90 20:80 R OMe i-Pr O Mg + P N CH2OMe 75 40:60 i-Pr THF, ! MeO O CH OBn 80 42:58 OMe N 2 MeO Me 79 90:10 O CH2OTBS 73 93:7 Grignard additions require EWG at ortho or para position to stabilize developing negative charge. Meyers, A. I.; Nelson, T. D.; Moorlag, H.; Rawson, D. J.; Meier, A. Tetrahedron, 2004, 60, 4459-4473. Diastereoselective Aryl-Aryl Coupling Ortho Chiral Auxiliaries - Aryl Grignard Coupling MeO R Br R OMe i-Pr R OMe Mg O + P N i-Pr N THF, ! MeO O MeO i-Pr OMe N MeO Mg MeO O Br Grignard additions require EWG at ortho or para 180° rotation position to stabilize developing negative charge.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us