Herpes Virus Infection Associated with Interstitial Nephritis in a Beaked

Total Page:16

File Type:pdf, Size:1020Kb

Herpes Virus Infection Associated with Interstitial Nephritis in a Beaked Arbelo et al. BMC Veterinary Research 2012, 8:243 http://www.biomedcentral.com/1746-6148/8/243 RESEARCH ARTICLE Open Access Herpes virus infection associated with interstitial nephritis in a beaked whale (Mesoplodon densirostris) Manuel Arbelo1, Edwige N Bellière2, Eva Sierra1, Simona Sacchinni1, Fernando Esperón2, Marisa Andrada1, Miguel Rivero1, Josue Diaz-Delgado1 and Antonio Fernández1* Abstract Background: The capacity for herpesvirus to cause disease in cetaceans is unclear and may be varied depending on the different conditions of individuals and between different species. Kidney pathology and intralesional virus-associated infection have been rarely reported in cetaceans. Result: On April 2004, an old adult male Blainville’s beaked whale (Mesoplodon densirostris) 420 cm long with a poor body condition was stranded on Tenerife Island. During necropsy, no gross lesions were observed in the kidneys. However, membranous glomerulonephritis, multifocal interstitial lymphoplasmacytic nephritis and acute multifocal necrotizing tubulointerstitial nephritis with intranuclear inclusion bodies was diagnosed by histological analysis. Tissue samples were submitted for bacteriological analysis and molecular viral screening. Conclusion: A novel alpha herpesvirus associated with interstitial nephritis was identified in an old adult male Blainville's beaked whale (M. densirostris) with a poor body condition stranded in the Canary Islands. This report suggests that identification of herpesvirus infection could be used as a differential diagnosis for interstitial nephritis in cetaceans. Keywords: Beaked whale, Interstitial nephritis, Alpha herpes virus, Diagnosis Background [8]. Gamma-HV have been identified in mucosal lesions in The presence of herpesviruses (HV) in cetaceans was bottlenose dolphins, Risso’sdolphins(Grampus griseus), shown in the late 1980s by electron microscopy (EM) ana- dwarf sperm whales (Kogia sima) and Blainville’s beaked lysis demonstrating HV-like particles in skin biopsies from whales (Mesoplodon densirostris) [8-10]. beluga whales (Delphinapterus leucas) [1,2]. EM analysis The capacity of HV to cause disease in cetaceans is un- also demonstrated that HV was associated with encephal- clear and may show variations depending on the different itis in a harbor porpoise (Phocoena phocoena) [3] and with conditions between individuals or within species [7-10]. skin lesions of dusky dolphins (Lagenorhynchus obscures) Recently, systemic herpes viral lesions have been reported [4]. In addition to EM, immunoperoxidase staining [3], in a striped dolphin, likely secondary to the immunosup- serum neutralization and enzyme-labeled immunosorbent pression caused by morbillivirus co-infection [11]. assays have been used as indicators for the presence of Tubulointerstitial nephritis is characterized by inflam- HV in cetaceans [5]. Alpha-HV have been associated with matory and degenerative changes in tubular epithelium fatal systemic infections in bottlenose dolphins (Tursiops associated with interstitial lymphoplasmacytic cell infil- truncatus) [6], a Cuvier’s beaked whale (Ziphius caviros- tration [12]. Interstitial lymphoplasmacytic nephritis is a tris) [7], and with cutaneous lesions in bottlenose dolphins frequent histopathological finding in cetaceans. However, intralesional etiologies or pathogenic virus or bacteria * Correspondence: [email protected] have rarely been associated with this type of lesion. Here 1 Unit of Veterinary Histology and Pathology, Institute for Animal Health we report the presence of tubulointerstitial nephritis in a (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain Full list of author information is available at the end of the article © 2012 Arbelo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Arbelo et al. BMC Veterinary Research 2012, 8:243 Page 2 of 7 http://www.biomedcentral.com/1746-6148/8/243 beaked whale stranded in the Canary Islands caused by a To obtain additional nucleotide sequences (approxi- novel cetacean cytopathogenic alpha-HV. mately 700 bp in length), products of the external PCR from positive samples were amplified using the primers Methods DFA and KG1. Amplified DNA fragments of the predicted On April 18th, 2004, an old adult male Mesoplodon den- size were purified and cloned into the plasmid vector sirostris (420 cm long) with a poor body condition was pGEM-T (Promega Corporation) following the manufac- observed to be alive near the shore on Tenerife Island turer’s instructions and sequenced with the corresponding (Granadilla de Abona, Geographic Universal Trasverse T7 primer (forward) and SP6 primer (reverse). Mercator (UTM) coordinate system, X 348338, Y 3102515). Two clones for each sample were selected. Once the con- The whale died soon after beaching (Figure 1). Necropsy sensus nucleotide sequence was obtained and the primer was started 8 hours postmortem (code 1–2) [13]. binding sites excluded, the Clustal W option in MEGA 4.0 Routine sampling for histological, EM, immunohistologi- was used to deduce the corresponding amino acid se- cal, bacteriological and virological studies were performed quence and to construct an unrooted neighbor-joining tree. [7]. Samples fixed in 10% neutral buffered formalin were All the available cetacean HV DNA-polymerase gene routinely processed and embedded in paraffin blocks. sequences reported to date [6-11,17-20] were compared by Histological sections were stained using hematoxylin and their aminoacid (aa) sequences in the GenBank database, eosin (H&E) as well as periodic acid Schiff (PAS). Add- which is the recommended method for molecular HV clas- itionally, immunohistochemistry (IHC) for the detection of sification [21]. morbillivirus and HV antigens was performed as previously Sequences that were 100% identical were excluded (in described [14,15] Tissue samples from lung, liver and kid- those cases, only the sequence published first was conserved ney were submitted for bacteriological analysis [7,13]. in the phylogenetic tree) and other sequences from HV- For molecular viral screening, 0.5 g of frozen tissues sam- assigned species available at the International Committee ples from skin, liver, muscle, lung and kidney were macer- on Taxonomy of Viruses [22] were also included in the ated in 4.5 ml of phosphate buffered saline (PBS), using an comparison. W automatic homogenizer (Precellys 24 Dual homogenizer, Bertin Technologies, Montigny le Bretonneux, France), and Result total nucleic acid was extracted by pressure filtration Pathological findings (QuickGene DNA tissue kit S, FujiFilm Life Science, Tokyo, Gross examination revealed several Xenobalanus sp bar- Japan), following the manufacturer’s instructions. nacles attached to the fluke, multiple cutaneous scars HV DNA detection was conducted by pan nested HV and atrophy of the epaxial musculature. Intravascular PCR [16] involving DFA, KG1 and ILK primers in the ex- gas was noted within the epicardial, mesenteric and por- ternal PCR, and TGV-IYG primers in the internal PCR. tal veins as well as beneath the liver capsule. Nematodes The primer sequences have been described previously were observed within the bronchi. Fish bones, otoliths [16]. To determine positive samples, direct sequencing of and plastic foreign debris were found within the squa- the nested PCR product, approximately 220 base pairs mous stomach. Many parasitic cysts (Phyllobothrium sp.) (bp) was performed using the primers TGVseq – IYGseq. were observed in the retroperitoneal area as well as in Figure 1 Stranded specimen involved. An adult old male Blainville’s beaked whale (Mesoplodon densirostris). Mandibule and tooth features match with an old male beaked whale. Arbelo et al. BMC Veterinary Research 2012, 8:243 Page 3 of 7 http://www.biomedcentral.com/1746-6148/8/243 reniculi, which also presented with membranous glomer- ulonephritis and lymphoplasmacytic interstitial nephritis. Additional findings included intravascular non-staining vacuoles (gas-like bubbles) in the hepatic sinusoids, peri- cardial vessels, within small vessels of intestinal serosa and inter-renicular venous vessels. Mild multifocal para- sitic bronchopneumonia with intraluminal nematodes was noted. Moderate diffuse intracytoplasmic eosino- philic globules were present in the hepatocytes, as fre- quently seen in active (alive) stranded dolphins (personal observation). Cortico-adrenal steatosis and multifocal lymphoplasmacytic adrenalitis were observed in both ad- renal glands but no cell necrosis and/or viral inclusion bodies was found. Signs of testicular atrophy, likely asso- ciated with senescence, were observed with increased interstitial connective tissue and thickened basement membrane surrounding the atrophied tubules with no luminal spermatozoa. Figure 2 Histological, histochemical and ultrastructural findings. Kidney. Cortico- medular area of one reniculum. Multifocal lymphoplamacytic interstitial nephritis. H&E (100X, bar=200 μm). Up right side inset: Higher magnification of renal cortical area showing Immunohistological and ultrastructural study aggregate of lymphoplasmocytic cells and two glomeruli with (PAS HV antigen was only detected in the kidney and immuno- positive). PAS technique (400x, barr= 100 μm). Up right side
Recommended publications
  • Trunkloads of Viruses
    COMMENTARY Trunkloads of Viruses Philip E. Pellett Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA Elephant populations are under intense pressure internationally from habitat destruction and poaching for ivory and meat. They also face pressure from infectious agents, including elephant endotheliotropic herpesvirus 1 (EEHV1), which kills ϳ20% of Asian elephants (Elephas maximus) born in zoos and causes disease in the wild. EEHV1 is one of at least six distinct EEHV in a phylogenetic lineage that appears to represent an ancient but newly recognized subfamily (the Deltaherpesvirinae) in the family Herpesviridae. lephant endotheliotropic herpesvirus 1 (EEHV1) causes a rap- the Herpesviridae (the current complete list of approved virus tax- Downloaded from Eidly progressing and usually fatal hemorrhagic disease that ons is available at http://ictvonline.org/). In addition, approxi- occurs in the wild in Asia and affects ϳ20% of Asian elephant mately 200 additional viruses detected using methods such as (Elephas maximus) calves born in zoos in the United States and those described above await formal consideration (V. Lacoste, Europe (1). About 60% of juvenile deaths of captive elephants are personal communication). With very few exceptions, the amino attributed to such infections. Development of control measures acid sequence of a small conserved segment of the viral DNA poly- has been hampered by the lack of systems for culture of the virus in merase (ϳ150 amino acids) is sufficient to not only reliably iden- laboratories. Its genetic study has been restricted to analysis of tify a virus as belonging to the evolutionary lineage represented by blood, trunk wash fluid, and tissue samples collected during nec- the Herpesviridae, but also their subfamily, and in most cases a http://jvi.asm.org/ ropsies.
    [Show full text]
  • HS and Product Codes
    NATIONAL PARKS BOARD / ANIMAL AND VETERINARY SERVICE (NPARKS/AVS) INDUSTRY AND BIOSECURITY MANAGEMENT GROUP LICENSING AND COMPLIANCE DEPARTMENT LICENSING AND PERMITS SECTION 52 JURONG GATEWAY ROAD, JEM OFFICE TOWER, #09-01 SINGAPORE 608550 HS CODE PRODUCT CODE PRODUCT DESCRIPTION QTY UNIT A) LIVE ANIMALS & BIRDS AND VETERINARY BIOLOGICS AMPHIBIANS (LIVE FROGS) 01069000 VAP0FF LIVE FROGS FOR FISH FEEDING NMB 01069000 VAP0ZZ LIVE FROGS (NON-CITES) NMB 01069000 VAP1ZZ LIVE FROGS (CITES LISTED) NMB BIRDS (CAPTIVE BIRDS) 01063100 VBD1BP BIRDS OF PREY 01063200 VBD1ZZ LIVE BIRDS (CITES LISTED) NMB 01063900 VBD0ZZ LIVE BIRDS (NON-CITES) NMB BREEDING ANIMALS (FOR BREEDING PURPOSE ONLY) 01011000 VBA0HO LIVE HORSES FOR BREEDING NMB LABORATORY ANIMALS (MICE/RATS/GUINEA PIGS/HAMSTERS/RABBITS) 01061900 VLA0GP LIVE GUINEA PIGS NMB 01061900 VLA0HA LIVE HAMSTERS NMB 01061900 VLA0MC LIVE MICE NMB 01061900 VLA0RA LIVE RABBITS NMB 01061900 VLA0RT LIVE RATS NMB 01061900 VLA0ZZ OTHER LABORATORY ANIMALS NMB PET ANIMALS (DOGS/CATS/HORSES/RABBITS/GUINEA PIGS) 01019030 VPA0HO LIVE HORSE FOR RACING NMB 01019030 VPA0PO LIVE PONIES NMB 01061900 VPA0CA LIVE CATS (COMMERCIAL) NMB 01061900 VPA0CP LIVE CATS (PERSONAL) NMB 01061900 VPA0CL LIVE CHINCHILLAS NMB 01061900 VPA0DG LIVE DOGS (COMMERCIAL) NMB 01061900 VPA0DP LIVE DOGS (PERSONAL) NMB 01061900 VPA0GP LIVE GUINEA PIGS NMB 01061900 VPA0HA LIVE HAMSTERS NMB 01061900 VPA0RA LIVE RABBITS NMB 01061900 VPA0ZZ OTHER PET ANIMALS NMB WILD ANIMALS (ZOO ANIMALS) 01061900 VWA0ZZ ZOO ANIMALS (NON-CITES) NMB 01061900 VWA1ZZ ZOO ANIMALS (CITES LISTED) NMB 01061100 VWA1PM PRIMATES NMB 01061200 VWA1DG MANATEES/DUGONGS NMB 01061200 VWA1WD WHALES/DOLPHINS NMB VETERINARY VACCINES 30023000 VVC0ZZ VETERINARY VACCINE - VETERINARY BIOLOGICS 30029000 VVP0B0COWRUMB COWDRIA RUMINANTIUM - 30029000 VVP0B2AERHYDB AEROMONAS HYDROPHILA - 30029000 VVP0B2ANAMARB ANAPLASMA MARGINALE - 30029000 VVP0B2BORBURB BORRELIA BURGDORFERI - 30029000 VVP0B2CAMFETV CAMPYLOBACTER FETUS SUBSP.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0009150 A1 WEBER Et Al
    US 2012O009 150A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0009150 A1 WEBER et al. (43) Pub. Date: Jan. 12, 2012 (54) DIARYLUREAS FORTREATINGVIRUS Publication Classification INFECTIONS (51) Int. Cl. (76) Inventors: Olaf WEBER, Wulfrath (DE); st 2. CR Bernd Riedl, Wuppertal (DE) ( .01) A63/675 (2006.01) (21) Appl. No.: 13/236,865 A6II 3/522 (2006.01) A6IP 29/00 (2006.01) (22) Filed: Sep. 20, 2011 A6II 3/662 (2006.01) A638/14 (2006.01) Related U.S. Application Data A63L/7056 (2006.01) A6IP3L/2 (2006.01) (63) Continuation of application No. 12/097.350. filed on A6II 3/44 (2006.01) Nov. 3, 2008, filed as application No. PCTAEPO6/ A6II 3/52 (2006.01) 11693 on Dec. 6, 2006. O O (52) U.S. Cl. .......... 424/85.6; 514/350; 514/171; 514/81; (30) Foreign Application Priority Data 514/263.38: 514/263.4: 514/120: 514/4.3: Dec. 15, 2005 (EP) .................................. 05O274513 424/85.7; 514/43 Dec. 15, 2005 (EP). ... O5O27452.1 Dec. 15, 2005 (EP). ... O5O27456.2 Dec. 15, 2005 (EP). ... O5O27458.8 The present invention relates to pharmaceutical compositions Dec. 15, 2005 (EP) O5O27.460.4 for treating virus infections and/or diseases caused by virus Dec. 15, 2005 (EP) O5O27462.O infections comprising at least a diary1 urea compound option Dec. 15, 2005 (EP). ... O5O27465.3 ally combined with at least one additional therapeutic agent. Dec. 15, 2005 (EP). ... O5O274.67.9 Useful combinations include e.g. BAY 43-9006 as a diaryl Dec.
    [Show full text]
  • Emerging Viral Diseases of Fish and Shrimp Peter J
    Emerging viral diseases of fish and shrimp Peter J. Walker, James R. Winton To cite this version: Peter J. Walker, James R. Winton. Emerging viral diseases of fish and shrimp. Veterinary Research, BioMed Central, 2010, 41 (6), 10.1051/vetres/2010022. hal-00903183 HAL Id: hal-00903183 https://hal.archives-ouvertes.fr/hal-00903183 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2010) 41:51 www.vetres.org DOI: 10.1051/vetres/2010022 Ó INRA, EDP Sciences, 2010 Review article Emerging viral diseases of fish and shrimp 1 2 Peter J. WALKER *, James R. WINTON 1 CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), 5 Portarlington Road, Geelong, Victoria, Australia 2 USGS Western Fisheries Research Center, 6505 NE 65th Street, Seattle, Washington, USA (Received 7 December 2009; accepted 19 April 2010) Abstract – The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry.
    [Show full text]
  • HSV-1 Reprogramming of the Host Transcriptional Environment By
    Title Page HSV-1 reprogramming of the host transcriptional environment by Sarah E. Dremel B.S., University of Minnesota Twin Cities, 2015 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 Committee Page UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Sarah E. Dremel It was defended on March 20, 2020 and approved by Jennifer Bomberger, Associate Professor, Department of Microbiology and Molecular Genetics Fred Homa, Professor, Department of Microbiology and Molecular Genetics Nara Lee, Assistant Professor, Department of Microbiology and Molecular Genetics Martin Schmidt, Professor, Department of Microbiology and Molecular Genetics Dissertation Director: Neal DeLuca, Professor, Department of Microbiology and Molecular Genetics ii Copyright © by Sarah E. Dremel 2020 iii Abstract HSV-1 reprogramming of the host transcriptional environment Sarah E. Dremel, PhD University of Pittsburgh, 2020 Herpes Simplex Virus-1 (HSV-1) is a ubiquitous pathogen of the oral and genital mucosa. The 152 kilobase double stranded DNA virus employs a coordinated cascade of transcriptional events to efficiently generate progeny. Using Next Generation Sequencing (NGS) techniques we were able to determine a global, unbiased view of both the host and pathogen. We propose a model for how viral DNA replication results in the differential utilization of cellular factors that function in transcription initiation. Our work outlines the various cis- and trans- acting factors utilized by the virus for this complex transcriptional program. We further elucidated the critical role that the major viral transactivator, ICP4, plays throughout the life cycle.
    [Show full text]
  • Aquatic Animal Viruses Mediated Immune Evasion in Their Host T ∗ Fei Ke, Qi-Ya Zhang
    Fish and Shellfish Immunology 86 (2019) 1096–1105 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Aquatic animal viruses mediated immune evasion in their host T ∗ Fei Ke, Qi-Ya Zhang State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China ARTICLE INFO ABSTRACT Keywords: Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host Aquatic animal virus and virus would determine the occurrence of diseases. The host will fight against virus infection with various Immune evasion responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also Virus-host interactions develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review Virus targeted molecular and pathway the research advances on virus mediated immune evasions to host responses containing interferon response, NF- Host responses κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications. 1. Introduction Various antiviral responses have been revealed [19–22]. How they are overcome by different viruses? Here, we select twenty three strains Aquatic viruses have been an essential part of the biosphere, and of aquatic animal viruses which represent great harms to aquatic ani- also a part of human and aquatic animal lives.
    [Show full text]
  • "Fischgesundheit Und Fischerei Im Wandel Der Zeit"
    Fischgesundheit und Fischerei im Wandel der Zeit Tagungsband XV. Gemeinschaftstagung der Deutschen, Österreichischen und Schweizer Sektionen der European Association of Fish Pathologists (EAFP) Starnberg, 8. – 10. Oktober 2014 Die Tagung wurde in wesentlichen Teilen finanziert vom Bayerischen Staatsministerium für Ernährung, Landwirtschaft und Forsten (StMELF) aus der Fischereiabgabe Bayerns Weitere Unterstützung erfolgte durch: ― Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit ― Bayerische Landesanstalt für Landwirtschaft, Institut für Fischerei ― MSD Tiergesundheit, Intervet Deutschland GmbH ― Zentralverband Zoologischer Fachbetriebe (ZZF) und Wirtschaftsgemeinschaft Zoolo- gischer Fachbetriebe GmbH (WZF) ― Familie Gerda und Hartmut Stachowitz ― Oswald Fürneisen ― Tetra GmbH, Melle ― BioMar Group Für die Erstellung des Tagungsbandes wurden die von den Autoren eingesandten Manu- skripte bzw. Zusammenfassungen verwendet. Für die Inhalte und Abbildungen sind die Autoren verantwortlich. Einige Beiträge wurden oder werden an anderer Stelle veröffent- licht. Im vorliegenden Tagungsband sind Zusammenfassungen dieser Beiträge veröffent- licht. Zitiervorschlag KLEINGELD, D. W., und WEDEKIND, H. (Hrsg.) (2015): Fischgesundheit und Fische- rei im Wandel der Zeit. XV. Gemeinschaftstagung der Deutschen, Österreichischen und Schweizer Sektion der European Association of Fish Pathologists (EAFP), 8. – 10. Okto- ber 2014 an der LfL in Starnberg. Impressum Herausgeber: Bayerische Landesanstalt für Landwirtschaft, Vöttinger
    [Show full text]
  • Fish Herpesvirus Diseases
    ACTA VET. BRNO 2012, 81: 383–389; doi:10.2754/avb201281040383 Fish herpesvirus diseases: a short review of current knowledge Agnieszka Lepa, Andrzej Krzysztof Siwicki Inland Fisheries Institute, Department of Fish Pathology and Immunology, Olsztyn, Poland Received March 19, 2012 Accepted July 16, 2012 Abstract Fish herpesviruses can cause significant economic losses in aquaculture, and some of these viruses are oncogenic. The virion morphology and genome organization of fish herpesviruses are generally similar to those of higher vertebrates, but the phylogenetic connections between herpesvirus families are tenuous. In accordance with new taxonomy, fish herpesviruses belong to the family Alloherpesviridae in the order Herpesvirales. Fish herpesviruses can induce diseases ranging from mild, inapparent infections to serious ones that cause mass mortality. The aim of this work was to summarize the present knowledge about fish herpesvirus diseases. Alloherpesviridae, CyHV-3, CyHV-2, CyHV-1, IcHV-1, AngHV-1 Herpesviruses comprise a numerous group of large DNA viruses with common virion structure and biological properties (McGeoch et al. 2008; Mattenleiter et al. 2008). They are host-specific pathogens. Apart from three herpesviruses found recently in invertebrate species, all known herpesviruses infect vertebrates, from fish to mammals (Davison et al. 2005a; Savin et al. 2010). According to a new classification accepted by the International Committee on Taxonomy of Viruses (http:/ictvonline.org), all herpesviruses have been incorporated into a new order named Herpesvirales, which has been split into three families. The revised family Herpesviridae contains mammalian, avian, and reptilian viruses; the newly-created family Alloherpesviridae contains herpesviruses of fish and amphibians, and the new family Malacoherpesviridae comprises single invertebrate herpesvirus (Ostreid herpesvirus).
    [Show full text]
  • Koi Herpesvirus Disease (KHVD)1 Kathleen H
    VM-149 Koi Herpesvirus Disease (KHVD)1 Kathleen H. Hartman, Roy P.E. Yanong, Deborah B. Pouder, B. Denise Petty, Ruth Francis-Floyd, Allen C. Riggs, and Thomas B. Waltzek2 Introduction Koi herpesvirus (KHV) is a highly contagious virus that causes significant morbidity and mortality in common carp (Cyprinus carpio) varieties (Hedrick et al. 2000, Haenen et al. 2004). Common carp is raised as a foodfish in many countries and has also been selectively bred for the ornamental fish industry where it is known as koi. The first recognized case of KHV occurred in the United Kingdom in 1996 (Haenen et al. 2004). Since then other cases have been confirmed in almost all countries that culture koi and/ or common carp with the exception of Australia (Hedrick et al. 2000; Haenen et al. 2004, Pokorova et al. 2005). This information sheet is intended to inform veterinarians, biologists, fish producers and hobbyists about KHV disease. What Is KHV? Figure 1. Koi with mottled gills and sunken eyes due to koi Koi herpesvirus (also known as Cyprinid herpesvirus 3; herpesvirus disease. Credit: Deborah B. Pouder, University of Florida CyHV3) is classified as a double-stranded DNA virus herpesvirus, based on virus morphology and genetics, and belonging to the family Alloherpesviridae (which includes is closely related to carp pox virus (Cyprinid herpesvirus fish herpesviruses). The work of Waltzek and colleagues 1; CyHV1) and goldfish hematopoietic necrosis virus (Waltzek et al. 2005, 2009) revealed that KHV is indeed a (Cyprinid herpesvirus 2; CyHV2). Koi herpesvirus disease has been diagnosed in koi and common carp (Hedrick 1.
    [Show full text]
  • Whole-Proteome Phylogeny of Large Dsdna Virus Families by an Alignment-Free Method
    Whole-proteome phylogeny of large dsDNA virus families by an alignment-free method Guohong Albert Wua,b, Se-Ran Juna, Gregory E. Simsa,b, and Sung-Hou Kima,b,1 aDepartment of Chemistry, University of California, Berkeley, CA 94720; and bPhysical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 Contributed by Sung-Hou Kim, May 15, 2009 (sent for review February 22, 2009) The vast sequence divergence among different virus groups has self-organizing maps (18) have also been used to understand the presented a great challenge to alignment-based sequence com- grouping of viruses. parison among different virus families. Using an alignment-free In the previous alignment-free phylogenomic studies using l-mer comparison method, we construct the whole-proteome phylogeny profiles, 3 important issues were not properly addressed: (i) the for a population of viruses from 11 viral families comprising 142 selection of the feature length, l, appears to be without logical basis; large dsDNA eukaryote viruses. The method is based on the feature (ii) no statistical assessment of the tree branching support was frequency profiles (FFP), where the length of the feature (l-mer) is provided; and (iii) the effect of HGT on phylogenomic relationship selected to be optimal for phylogenomic inference. We observe was not considered. HGT in LDVs has been documented by that (i) the FFP phylogeny segregates the population into clades, alignment-based methods (19–22), but these studies have mostly the membership of each has remarkable agreement with current searched for HGT from host to a single family of viruses, and there classification by the International Committee on the Taxonomy of has not been a study of interviral family HGT among LDVs.
    [Show full text]
  • Shedding of the Salmonid Herpesvirus-3 by Infected Lake Trout (Salvelinus Namaycush)
    viruses Communication Shedding of the Salmonid Herpesvirus-3 by Infected Lake Trout (Salvelinus namaycush) Mohamed Faisal 1,2,3, Mochamad Purbayu 3, Megan A. Shavalier 2,3, Terence L. Marsh 4 and Thomas P. Loch 1,2,* 1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA 2 Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA 3 Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA 4 Department of Microbiology and Molecular Genetics, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA * Correspondence: [email protected]; Tel.: +517-884-2019; Fax: +517-432-2310 Received: 9 May 2019; Accepted: 20 June 2019; Published: 26 June 2019 Abstract: Salmonid Herpesvirus-3, commonly known as the Epizootic Epitheliotropic Disease virus (EEDV), causes a disease of lake trout (Salvelinus namaycush) that has killed millions of fish over the past several decades. Currently, most aspects of EEDV disease ecology remain unknown. In this study, we investigated EEDV shedding in experimentally challenged (intracoelomic injection) lake trout that were individually microchipped. In order to assess viral shedding, each infected fish was placed in individual static, aerated aquaria for a period of 8 h, after which the water was assessed for the presence of EEDV DNA using quantitative PCR. Water sampling was conducted every seven days for 93 days post-infection (pi), followed by additional sampling after one year. Results demonstrated that lake trout began shedding EEDV into the water as early as 9 days pi.
    [Show full text]
  • Cyprinid Herpesvirus 3
    1 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 2 http://creativecommons.org/licenses/by-nc-nd/4.0/ 3 doi:10.1016/bs.aivir.2015.03.001 4 Running title: Cyprinid herpesvirus 3 5 Title: Cyprinid herpesvirus 3, an archetype of fish alloherpesviruses 6 Authors and Affiliations 7 Maxime Boutier 1, Maygane Ronsmans 1, Krzysztof Rakus 1, Joanna Jazowiecka-Rakus 1, 8 Catherine Vancsok 1, Léa Morvan 1, Ma. Michelle D. Peñaranda 1, David M. Stone 2, Keith 9 Way 2, Steven J. van Beurden 3, Andrew J. Davison 4 and Alain Vanderplasschen 1* 10 11 1 Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, 12 Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary 13 Medicine, University of Liège, B-4000 Liège, Belgium. 14 2 The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, 15 Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom. 16 3 Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 17 1, 3584CL Utrecht, The Netherlands. 18 4 MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 19 5JR, United Kingdom. 20 21 22 * Corresponding author. Mailing address: Immunology-Vaccinology (B43b), Department of 23 Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 24 B-4000 Liège, Belgium. Phone: 32-4-366 42 64 - Fax: 32-4-366 42 61 25 E-mail: [email protected] 26 Author’s contacts (see affiliations above) 27 28 Maxime Boutier: [email protected] ; +32 4 366 42 66 29 Maygane Ronsmans: [email protected] ; +32 4 366 42 66 30 Krzysztof Rakus: [email protected] ; +32 4 366 42 66 31 Joanna Jazowiecka-Rakus: [email protected] ; +32 4 366 42 66 32 Catherine Vancsok: [email protected] ; +32 4 366 42 66 33 Léa Morvan: [email protected] ; +32 4 366 42 66 34 Ma.
    [Show full text]