Koi Herpesvirus Disease (KHVD)1 Kathleen H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trunkloads of Viruses
COMMENTARY Trunkloads of Viruses Philip E. Pellett Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA Elephant populations are under intense pressure internationally from habitat destruction and poaching for ivory and meat. They also face pressure from infectious agents, including elephant endotheliotropic herpesvirus 1 (EEHV1), which kills ϳ20% of Asian elephants (Elephas maximus) born in zoos and causes disease in the wild. EEHV1 is one of at least six distinct EEHV in a phylogenetic lineage that appears to represent an ancient but newly recognized subfamily (the Deltaherpesvirinae) in the family Herpesviridae. lephant endotheliotropic herpesvirus 1 (EEHV1) causes a rap- the Herpesviridae (the current complete list of approved virus tax- Downloaded from Eidly progressing and usually fatal hemorrhagic disease that ons is available at http://ictvonline.org/). In addition, approxi- occurs in the wild in Asia and affects ϳ20% of Asian elephant mately 200 additional viruses detected using methods such as (Elephas maximus) calves born in zoos in the United States and those described above await formal consideration (V. Lacoste, Europe (1). About 60% of juvenile deaths of captive elephants are personal communication). With very few exceptions, the amino attributed to such infections. Development of control measures acid sequence of a small conserved segment of the viral DNA poly- has been hampered by the lack of systems for culture of the virus in merase (ϳ150 amino acids) is sufficient to not only reliably iden- laboratories. Its genetic study has been restricted to analysis of tify a virus as belonging to the evolutionary lineage represented by blood, trunk wash fluid, and tissue samples collected during nec- the Herpesviridae, but also their subfamily, and in most cases a http://jvi.asm.org/ ropsies. -
Cyprinus Carpio
Académie Universitaire Wallonie - Europe Université de Liège Faculté de Médecine Vétérinaire Département des Maladies Infectieuses et Parasitaires Service d’Immunologie et de Vaccinologie Etude des portes d’entrée de l’Herpèsvirus cyprin 3 chez Cyprinus carpio Study of the portals of entry of Cyprinid herpesvirus 3 in Cyprinus carpio Guillaume FOURNIER Thèse présentée en vue de l’obtention du grade de Docteur en Sciences Vétérinaires Année académique 2011-2012 Académie Universitaire Wallonie - Europe Université de Liège Faculté de Médecine Vétérinaire Département des Maladies Infectieuses et Parasitaires Service d’Immunologie et de Vaccinologie Etude des portes d’entrée de l’Herpèsvirus cyprin 3 chez Cyprinus carpio Study of the portals of entry of Cyprinid herpesvirus 3 in Cyprinus carpio Promoteur : Prof. Alain Vanderplasschen Guillaume FOURNIER Thèse présentée en vue de l’obtention du grade de Docteur en Sciences Vétérinaires Année académique 2011-2012 « La science progresse en indiquant l'immensité de l'ignoré. » Louis Pauwels Remerciements Liège, le 15 février 2012 L’accomplissement d’une thèse est un long et palpitant voyage en océan où se mélangent la curiosité, le doute, la persévérance, et la confiance… en soi bien sûr, mais surtout envers toutes les personnes qui, par leurs conseils, leur aide, leur soutien m’ont permis de mener cette thèse à bien. Je tiens ici à remercier mes collègues, amis et famille qui ont été tantôt les phares, tantôt les boussoles, toujours les fidèles compagnons de cette aventure. Je commencerais par adresser mes plus sincères remerciements à mon promoteur, le Professeur Alain Vanderplasschen, qui m’avait déjà remarqué en amphithéâtre pour ma curiosité, à moins que ce ne soit pour mon irrésistible coiffure.. -
A. Syphilis Is a Systemic, Sexually Transmitted Disease (STD) Caused by the Treponema Pallidum Bacterium
Oklahoma State Department of Health 03-2018 Revised SYPHILIS I. DEFINITION: A. Syphilis is a systemic, sexually transmitted disease (STD) caused by the Treponema pallidum bacterium. B. It can cause long-term complications if not treated correctly. Symptoms in adults are divided into stages. These stages are described below in the Clinical Features. Syphilis has been called ‘the great imitator’ because it has so many possible symptoms, many of which look like symptoms from other diseases. The painless syphilis chancre that clients get after they are first infected can be confused for an ingrown hair, zipper cut, or other seemingly harmless bump. Many times the client does not know they had a sore. The non-itchy body rash that develops during the second stage of syphilis can show up on the palms of the client’s hands and soles of their feet, all over the body, or in just a few places. The rash is usually bilateral, meaning it appears equally on both sides of the body. C. The three means of syphilis transmission are: 1. Person to person via vaginal, anal, or oral sex through direct contact with a syphilis chancre. 2. Person to person during foreplay, even when there is no penetrative sex (much less common). 3. Pregnant mother with syphilis to fetus - very serious complications may occur (fetal demise, long bone deformities, “saddle nose”). II. CLINICAL FEATURES: If left untreated, the disease progresses through several stages during which the infected person may or may not be symptomatic. The DIS and ‘Syphilis Diagnosis and Treatment Algorithm’ (Appendix 1) can assist with staging. -
Cyprinid Herpesvirus 3 Genesig Advanced
Primerdesign TM Ltd Cyprinid herpesvirus 3 Pol gene for DNA polymerase genesig® Advanced Kit 150 tests For general laboratory and research use only Quantification of Cyprinid herpesvirus 3 genomes. 1 genesig Advanced kit handbook HB10.03.11 Published Date: 09/11/2018 Introduction to Cyprinid herpesvirus 3 Cyprinid herpesvirus 3 (CyHV3) is the causative agent of a lethal disease in common (Cyprinus carpio carpio) and Koi carp (Cyprnius carpio koi). It was discovered in the late 1990s and has rapidly spread worldwide among cultured common carp and ornamental koi. Previously known as koi herpesvirus, it has caused severe economic losses in the global carp industry with its spread being attributed to international trade. The virus is a member of the order Herepesvirales and family Alloherpesviridae. It has a linear, double stranded genome of approximately 295 kb in length consisting of a large central portion flanked by two 22 kb repeat regions. The genome encodes 156 open reading frames (ORFs) including 8 ORFs encoded by the repeat regions. The genome is packaged in an icosahedral capsid that is contained within viral glycoproteins and then a host derived lipid envelope, giving an overall virion of 170-200nm in diameter. At present, common and koi carp are the only species known to be affected by the virus. The viral particles are transmitted through faeces, sloughing of mucous and inflammatory cells, and secretions that are released into the water. The skin pores are the main source of entry and site of replication but the disease also spreads to the organs, particularly the kidneys. The viral particles are further spread when the carp come into contact with each other during grazing, spawning or when uninfected fish pick at the skin lesions of dead infected fish. -
(12) Patent Application Publication (10) Pub. No.: US 2012/0009150 A1 WEBER Et Al
US 2012O009 150A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0009150 A1 WEBER et al. (43) Pub. Date: Jan. 12, 2012 (54) DIARYLUREAS FORTREATINGVIRUS Publication Classification INFECTIONS (51) Int. Cl. (76) Inventors: Olaf WEBER, Wulfrath (DE); st 2. CR Bernd Riedl, Wuppertal (DE) ( .01) A63/675 (2006.01) (21) Appl. No.: 13/236,865 A6II 3/522 (2006.01) A6IP 29/00 (2006.01) (22) Filed: Sep. 20, 2011 A6II 3/662 (2006.01) A638/14 (2006.01) Related U.S. Application Data A63L/7056 (2006.01) A6IP3L/2 (2006.01) (63) Continuation of application No. 12/097.350. filed on A6II 3/44 (2006.01) Nov. 3, 2008, filed as application No. PCTAEPO6/ A6II 3/52 (2006.01) 11693 on Dec. 6, 2006. O O (52) U.S. Cl. .......... 424/85.6; 514/350; 514/171; 514/81; (30) Foreign Application Priority Data 514/263.38: 514/263.4: 514/120: 514/4.3: Dec. 15, 2005 (EP) .................................. 05O274513 424/85.7; 514/43 Dec. 15, 2005 (EP). ... O5O27452.1 Dec. 15, 2005 (EP). ... O5O27456.2 Dec. 15, 2005 (EP). ... O5O27458.8 The present invention relates to pharmaceutical compositions Dec. 15, 2005 (EP) O5O27.460.4 for treating virus infections and/or diseases caused by virus Dec. 15, 2005 (EP) O5O27462.O infections comprising at least a diary1 urea compound option Dec. 15, 2005 (EP). ... O5O27465.3 ally combined with at least one additional therapeutic agent. Dec. 15, 2005 (EP). ... O5O274.67.9 Useful combinations include e.g. BAY 43-9006 as a diaryl Dec. -
Emerging Viral Diseases of Fish and Shrimp Peter J
Emerging viral diseases of fish and shrimp Peter J. Walker, James R. Winton To cite this version: Peter J. Walker, James R. Winton. Emerging viral diseases of fish and shrimp. Veterinary Research, BioMed Central, 2010, 41 (6), 10.1051/vetres/2010022. hal-00903183 HAL Id: hal-00903183 https://hal.archives-ouvertes.fr/hal-00903183 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2010) 41:51 www.vetres.org DOI: 10.1051/vetres/2010022 Ó INRA, EDP Sciences, 2010 Review article Emerging viral diseases of fish and shrimp 1 2 Peter J. WALKER *, James R. WINTON 1 CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), 5 Portarlington Road, Geelong, Victoria, Australia 2 USGS Western Fisheries Research Center, 6505 NE 65th Street, Seattle, Washington, USA (Received 7 December 2009; accepted 19 April 2010) Abstract – The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry. -
HSV-1 Reprogramming of the Host Transcriptional Environment By
Title Page HSV-1 reprogramming of the host transcriptional environment by Sarah E. Dremel B.S., University of Minnesota Twin Cities, 2015 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 Committee Page UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Sarah E. Dremel It was defended on March 20, 2020 and approved by Jennifer Bomberger, Associate Professor, Department of Microbiology and Molecular Genetics Fred Homa, Professor, Department of Microbiology and Molecular Genetics Nara Lee, Assistant Professor, Department of Microbiology and Molecular Genetics Martin Schmidt, Professor, Department of Microbiology and Molecular Genetics Dissertation Director: Neal DeLuca, Professor, Department of Microbiology and Molecular Genetics ii Copyright © by Sarah E. Dremel 2020 iii Abstract HSV-1 reprogramming of the host transcriptional environment Sarah E. Dremel, PhD University of Pittsburgh, 2020 Herpes Simplex Virus-1 (HSV-1) is a ubiquitous pathogen of the oral and genital mucosa. The 152 kilobase double stranded DNA virus employs a coordinated cascade of transcriptional events to efficiently generate progeny. Using Next Generation Sequencing (NGS) techniques we were able to determine a global, unbiased view of both the host and pathogen. We propose a model for how viral DNA replication results in the differential utilization of cellular factors that function in transcription initiation. Our work outlines the various cis- and trans- acting factors utilized by the virus for this complex transcriptional program. We further elucidated the critical role that the major viral transactivator, ICP4, plays throughout the life cycle. -
Aquatic Animal Viruses Mediated Immune Evasion in Their Host T ∗ Fei Ke, Qi-Ya Zhang
Fish and Shellfish Immunology 86 (2019) 1096–1105 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Aquatic animal viruses mediated immune evasion in their host T ∗ Fei Ke, Qi-Ya Zhang State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China ARTICLE INFO ABSTRACT Keywords: Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host Aquatic animal virus and virus would determine the occurrence of diseases. The host will fight against virus infection with various Immune evasion responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also Virus-host interactions develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review Virus targeted molecular and pathway the research advances on virus mediated immune evasions to host responses containing interferon response, NF- Host responses κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications. 1. Introduction Various antiviral responses have been revealed [19–22]. How they are overcome by different viruses? Here, we select twenty three strains Aquatic viruses have been an essential part of the biosphere, and of aquatic animal viruses which represent great harms to aquatic ani- also a part of human and aquatic animal lives. -
View • Inclusion in Pubmed and All Major Indexing Services • Maximum Visibility for Your Research
Monaghan et al. Vet Res (2016) 47:8 DOI 10.1186/s13567-015-0297-6 Veterinary Research RESEARCH ARTICLE Open Access Expression of immunogenic structural proteins of cyprinid herpesvirus 3 in vitro assessed using immunofluorescence Sean J. Monaghan1* , Kim D. Thompson1,2, James E. Bron1, Sven M. Bergmann3, Tae S. Jung4, Takashi Aoki5, K. Fiona Muir1, Malte Dauber3, Sven Reiche3, Diana Chee1,6, Shin M. Chong6, Jing Chen7 and Alexandra Adams1 Abstract Cyprinid herpesvirus 3 (CyHV-3), also called koi herpesvirus (KHV), is the aetiological agent of a fatal disease in carp and koi (Cyprinus carpio L.), referred to as koi herpesvirus disease. The virus contains at least 40 structural proteins, of which few have been characterised with respect to their immunogenicity. Indirect immunofluorescence assays (IFAs) using two epitope-specific monoclonal antibodies (MAbs) were used to examine the expression kinetics of two potentially immunogenic and diagnostically relevant viral antigens, an envelope glycoprotein and a capsid-associated protein. The rate of expression of these antigens was determined following a time-course of infection in two CyHV-3 susceptible cell lines. The results were quantified using an IFA, performed in microtitre plates, and image analysis was used to analyse confocal micrographs, enabling measurement of differential virus-associated fluorescence and nucleus-associated fluorescence from stacks of captured scans. An 8-tenfold increase in capsid-associated protein expression was observed during the first 5 days post-infection compared to a 2-fold increase in glycoprotein expres- sion. A dominant protein of ~100 kDa reacted with the capsid-associated MAb≤ (20F10) in western blot analysis. -
Fundamentals of Dermatology Describing Rashes and Lesions
Dermatology for the Non-Dermatologist May 30 – June 3, 2018 - 1 - Fundamentals of Dermatology Describing Rashes and Lesions History remains ESSENTIAL to establish diagnosis – duration, treatments, prior history of skin conditions, drug use, systemic illness, etc., etc. Historical characteristics of lesions and rashes are also key elements of the description. Painful vs. painless? Pruritic? Burning sensation? Key descriptive elements – 1- definition and morphology of the lesion, 2- location and the extent of the disease. DEFINITIONS: Atrophy: Thinning of the epidermis and/or dermis causing a shiny appearance or fine wrinkling and/or depression of the skin (common causes: steroids, sudden weight gain, “stretch marks”) Bulla: Circumscribed superficial collection of fluid below or within the epidermis > 5mm (if <5mm vesicle), may be formed by the coalescence of vesicles (blister) Burrow: A linear, “threadlike” elevation of the skin, typically a few millimeters long. (scabies) Comedo: A plugged sebaceous follicle, such as closed (whitehead) & open comedones (blackhead) in acne Crust: Dried residue of serum, blood or pus (scab) Cyst: A circumscribed, usually slightly compressible, round, walled lesion, below the epidermis, may be filled with fluid or semi-solid material (sebaceous cyst, cystic acne) Dermatitis: nonspecific term for inflammation of the skin (many possible causes); may be a specific condition, e.g. atopic dermatitis Eczema: a generic term for acute or chronic inflammatory conditions of the skin. Typically appears erythematous, -
GET YOURSELF TESTED Testing Is Confidential
GET YOURSELF TESTED Testing is confidential. If you are under 18 years old, you can consent to be checked and treated for STIs. • Warts may grow on or around the genital area virus will still be in your body and you may still pass (penis, scrotum, vagina, vulva), the anus, or mouth. it during sex. They can also grow inside the body where they are hard to see. • Talk with your provider about when it’s safe to have • Usually are painless, but if the warts are injured, sex after getting treatment. they may become sore when touched. • It’s important to talk with your partner(s) about any sexually transmitted infections (STIs) you may have. Why Does It Matter? • Certain types of HPV can lead to cervical cancer in To Learn More females, or cancer of the penis in males. Some types of HPV may also lead to oral or anal cancer. Contact a health care provider or your local STI clinic. • In some cases, warts can become quite large and To learn more about STIs, or to find your local STI cause discomfort. clinic, visit www.health.ny.gov/STD. • A small percentage of pregnant people with You can find other STI testing locations at genital warts can pass the virus to the baby https://gettested.cdc.gov. during birth. Partners Because symptoms of HPV can take a long time to show up, if at all, it’s hard to know when a person first got it. • If you have genital warts, tell your partner(s) so they can be checked by a health care provider, and treated if they have them. -
Evaluation of Cyprinid Herpesvirus 2 Latency and Reactivation in Carassius Gibel
microorganisms Article Evaluation of Cyprinid Herpesvirus 2 Latency and Reactivation in Carassius gibel 1, 1, 1 1 2 1,3 Wenjun Chai y, Lin Qi y, Yujun Zhang , Mingming Hong , Ling Jin , Lijuan Li and Junfa Yuan 1,3,* 1 Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (W.C.); [email protected] (L.Q.); [email protected] (Y.Z.); [email protected] (M.H.); [email protected] (L.L.) 2 Department of Biomedical Science, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97330, USA; [email protected] 3 Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China * Correspondence: [email protected] These authors contribute equal. y Received: 20 January 2020; Accepted: 19 March 2020; Published: 21 March 2020 Abstract: Cyprinid herpesvirus 2 (CyHV-2, species Cyprinid herpesvirus 2) causes severe mortality in ornamental goldfish, crucian carp (Carassius auratus), and gibel carp (Carassius gibelio). It has been shown that the genomic DNA of CyHV-2 could be detected in subclinical fish, which implied that CyHV-2 could establish persistent infection. In this study, the latency of CyHV-2 was investigated in the survival fish after primary infection. CyHV-2 genomic DNA was detected in multiple tissues of acute infection samples; however, detection of CyHV-2 DNA was significantly reduced in fish recovered from the primary infection on day 300 postinfection. No active viral gene transcription, such as DNA polymerase and ORF99, was detected in recovered fish.