The Role of Viral Glycoproteins and Tegument Proteins in Herpes

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Viral Glycoproteins and Tegument Proteins in Herpes Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 The Role of Viral Glycoproteins and Tegument Proteins in Herpes Simplex Virus Type 1 Cytoplasmic Virion Envelopment Dmitry Vladimirovich Chouljenko Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Chouljenko, Dmitry Vladimirovich, "The Role of Viral Glycoproteins and Tegument Proteins in Herpes Simplex Virus Type 1 Cytoplasmic Virion Envelopment" (2014). LSU Doctoral Dissertations. 4076. https://digitalcommons.lsu.edu/gradschool_dissertations/4076 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE ROLE OF VIRAL GLYCOPROTEINS AND TEGUMENT PROTEINS IN HERPES SIMPLEX VIRUS TYPE 1 CYTOPLASMIC VIRION ENVELOPMENT A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Sciences through the Department of Pathobiological Sciences by Dmitry V. Chouljenko B.Sc., Louisiana State University, 2006 August 2014 ACKNOWLEDGMENTS First and foremost, I would like to thank my parents for their unwavering support and for helping to cultivate in me from an early age a curiosity about the natural world that would directly lead to my interest in science. I would like to express my gratitude to all of the current and former members of the Kousoulas laboratory who provided valuable advice and insights during my tenure here, as well as the members of GeneLab for their assistance in DNA sequencing. I would like to thank the faculty members that served on my graduate committee, Dr. Shafiqul I. Chowdhury, Dr. Masami Yoshimura, Dr. Bret D. Elderd and Dr. Inder Sehgal for their guidance. Most of all, I would like to thank my mentor, Dr. Konstantin G. Kousoulas, for the tremendous amount of support, patience and guidance he has provided during my journey to graduation. ii TABLE OF CONTENTS ACKNOWLEDGMENTS ...................................................................................................................... ii LIST OF TABLES ................................................................................................................................ vi LIST OF FIGURES ............................................................................................................................. vii ABSTRACT ........................................................................................................................................ ix CHAPTER I: INTRODUCTION ............................................................................................................ 1 Statement of Problem and Hypothesis ............................................................................... 1 Statement of Research Objectives ...................................................................................... 2 CHAPTER II: LITERATURE REVIEW ................................................................................................... 6 History of Herpes ................................................................................................................ 6 Taxonomy of Herpesviruses .............................................................................................. 10 Herpesviral Disease ........................................................................................................... 17 Herpes simplex viruses (HHV-1 and HHV-2) ......................................................... 18 Varicella-zoster virus (HHV-3) ............................................................................... 23 Cytomegalovirus (HHV-5)...................................................................................... 23 Kaposi’s sarcoma-associated herpesvirus (HHV-8) ............................................... 24 Human herpesvirus 7 (HHV-7) .............................................................................. 24 Human herpesvirus 6 (HHV-6A and HHV-6B) ....................................................... 25 Epstein-Barr virus (HHV-4) .................................................................................... 26 Marek’s disease virus (GaHV-2) ............................................................................ 26 Prevention and Treatment of Herpes Simplex Virus Infection ......................................... 27 Structure of the Herpes Virion .......................................................................................... 31 HSV-1 genome ...................................................................................................... 31 HSV-1 capsid ......................................................................................................... 35 HSV-1 tegument .................................................................................................... 39 UL36 protein ............................................................................................. 44 UL37 protein ............................................................................................. 48 HSV-1 envelope ..................................................................................................... 55 Glycoprotein B .......................................................................................... 57 Glycoprotein K........................................................................................... 58 UL20 protein ............................................................................................. 60 Life Cycle of Herpes Simplex Virus .................................................................................... 62 Virus entry ............................................................................................................. 62 Capsid transport to the nucleus ............................................................................ 65 Viral gene expression and DNA replication .......................................................... 67 Capsid assembly .................................................................................................... 68 Primary envelopment ........................................................................................... 70 iii Secondary envelopment ....................................................................................... 72 Egress to extracellular spaces ............................................................................... 77 HSV-1 egress in neurons: “married” vs. “separate” models ................................ 79 References ........................................................................................................................ 85 CHAPTER III: FUNCTIONAL HIERARCHY OF HERPES SIMPLEX VIRUS 1 VIRAL GLYCOPROTEINS IN CYTOPLASMIC VIRION ENVELOPMENT AND EGRESS ............................................................. 118 Introduction .................................................................................................................... 118 Materials and Methods ................................................................................................... 121 Cells and antibodies ............................................................................................ 121 Construction of HSV-1 mutant viruses ............................................................... 121 Confirmation of the targeted mutations, recovery of infectious virus and marker-rescue experiments ................................................................................ 123 Plaque morphology of mutant viruses and relative plaque area measurements .................................................................................................... 123 One-step viral growth kinetics ............................................................................ 124 SDS-PAGE, Western immunoblotting, and indirect immunofluorescence assay .................................................................................................................... 124 Electron microscopy............................................................................................ 124 Preparation of cytoplasmic and extracellular virions ......................................... 125 Q-PCR .................................................................................................................. 126 Results ............................................................................................................................. 126 Construction and molecular analysis of recombinant viruses ............................ 126 Recovery and plaque morphologies of infectious viruses produced by HSV-1 BAC DNAs ............................................................................................................ 127 Replication characteristics of HSV-1 mutants ..................................................... 129 Protein expression profiles of viral mutants....................................................... 131 Ultrastructural characterization of wild-type and mutant viruses ..................... 132 Quantification of relative
Recommended publications
  • Trunkloads of Viruses
    COMMENTARY Trunkloads of Viruses Philip E. Pellett Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA Elephant populations are under intense pressure internationally from habitat destruction and poaching for ivory and meat. They also face pressure from infectious agents, including elephant endotheliotropic herpesvirus 1 (EEHV1), which kills ϳ20% of Asian elephants (Elephas maximus) born in zoos and causes disease in the wild. EEHV1 is one of at least six distinct EEHV in a phylogenetic lineage that appears to represent an ancient but newly recognized subfamily (the Deltaherpesvirinae) in the family Herpesviridae. lephant endotheliotropic herpesvirus 1 (EEHV1) causes a rap- the Herpesviridae (the current complete list of approved virus tax- Downloaded from Eidly progressing and usually fatal hemorrhagic disease that ons is available at http://ictvonline.org/). In addition, approxi- occurs in the wild in Asia and affects ϳ20% of Asian elephant mately 200 additional viruses detected using methods such as (Elephas maximus) calves born in zoos in the United States and those described above await formal consideration (V. Lacoste, Europe (1). About 60% of juvenile deaths of captive elephants are personal communication). With very few exceptions, the amino attributed to such infections. Development of control measures acid sequence of a small conserved segment of the viral DNA poly- has been hampered by the lack of systems for culture of the virus in merase (ϳ150 amino acids) is sufficient to not only reliably iden- laboratories. Its genetic study has been restricted to analysis of tify a virus as belonging to the evolutionary lineage represented by blood, trunk wash fluid, and tissue samples collected during nec- the Herpesviridae, but also their subfamily, and in most cases a http://jvi.asm.org/ ropsies.
    [Show full text]
  • The Koi Herpesvirus (Khv): an Alloherpesviru
    Aquacu nd ltu a r e s e J Bergmann et al., Fish Aquac J 2016, 7:2 i o r u e r h n http://dx.doi.org/10.4172/2150-3508.1000169 s a i l F Fisheries and Aquaculture Journal ISSN: 2150-3508 ResearchResearch Artilce Article OpenOpen Access Access Is There Any Species Specificity in Infections with Aquatic Animal Herpesviruses?–The Koi Herpesvirus (KHV): An Alloherpesvirus Model Sven M Bergmann1*, Michael Cieslak1, Dieter Fichtner1, Juliane Dabels2, Sean J Monaghan3, Qing Wang4, Weiwei Zeng4 and Jolanta Kempter5 1FLI Insel Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany 2University of Rostock, Aquaculture and Sea Ranching, Justus-von-Liebig-Weg 6, Rostock 18059, Germany 3Aquatic Vaccine Unit, Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK 4Pearl-River Fisheries Research Institute, Xo. 1 Xingyu Reoad, Liwan District, Guangzhou 510380, P. R. of China 5West Pomeranian Technical University, Aquaculture, K. Królewicza 4, 71-550, Szczecin, Poland Abstract Most diseases induced by herpesviruses are host-specific; however, exceptions exist within the family Alloherpesviridae. Most members of the Alloherpesviridae are detected in at least two different species, with and without clinical signs of a disease. In the current study the Koi herpesvirus (KHV) was used as a model member of the Alloherpesviridae and rainbow trout as a model salmonid host, which were infected with KHV by immersion. KHV was detected using direct methods (qPCR and semi-nested PCR) and indirect (enzyme-linked immunosorbant assay; ELISA, serum neutralization test; SNT). The non-koi herpesvirus disease (KHVD)-susceptible salmonid fish were demonstrated to transfer KHV to naïve carp at two different temperatures including a temperature most suitable for the salmonid (15°C) and cyprinid (20°C).
    [Show full text]
  • Cyprinus Carpio
    Académie Universitaire Wallonie - Europe Université de Liège Faculté de Médecine Vétérinaire Département des Maladies Infectieuses et Parasitaires Service d’Immunologie et de Vaccinologie Etude des portes d’entrée de l’Herpèsvirus cyprin 3 chez Cyprinus carpio Study of the portals of entry of Cyprinid herpesvirus 3 in Cyprinus carpio Guillaume FOURNIER Thèse présentée en vue de l’obtention du grade de Docteur en Sciences Vétérinaires Année académique 2011-2012 Académie Universitaire Wallonie - Europe Université de Liège Faculté de Médecine Vétérinaire Département des Maladies Infectieuses et Parasitaires Service d’Immunologie et de Vaccinologie Etude des portes d’entrée de l’Herpèsvirus cyprin 3 chez Cyprinus carpio Study of the portals of entry of Cyprinid herpesvirus 3 in Cyprinus carpio Promoteur : Prof. Alain Vanderplasschen Guillaume FOURNIER Thèse présentée en vue de l’obtention du grade de Docteur en Sciences Vétérinaires Année académique 2011-2012 « La science progresse en indiquant l'immensité de l'ignoré. » Louis Pauwels Remerciements Liège, le 15 février 2012 L’accomplissement d’une thèse est un long et palpitant voyage en océan où se mélangent la curiosité, le doute, la persévérance, et la confiance… en soi bien sûr, mais surtout envers toutes les personnes qui, par leurs conseils, leur aide, leur soutien m’ont permis de mener cette thèse à bien. Je tiens ici à remercier mes collègues, amis et famille qui ont été tantôt les phares, tantôt les boussoles, toujours les fidèles compagnons de cette aventure. Je commencerais par adresser mes plus sincères remerciements à mon promoteur, le Professeur Alain Vanderplasschen, qui m’avait déjà remarqué en amphithéâtre pour ma curiosité, à moins que ce ne soit pour mon irrésistible coiffure..
    [Show full text]
  • An Assay Redesign and Evaluation
    Deficiencies in the current assays for the detection and identification of DNA viruses of carp: an assay redesign and evaluation. David Stone1, Peng Jia2 and Hong Liu2 1Cefas Weymouth Laboratory, UK 2Shenzhen Exit & Entry Inspection and Quarantine Bureau, People's Republic of China. World Class Science for the Marine and Freshwater Environment Overview • BREXIT • Cyprinivirus-specific primers • Failures in CyHV-3 detection using the Gilad qPCR assay • Design and initial evaluation of a CyHV-3 pol qPCR assay • CEV • Current PCR based assays • Failures in the Cefas conventional PCR assay • Design and initial evaluation of a modified nested PCR assay • Work to be done KHV (Cyprinid herpesvirus 3) • Large DNA virus (295 kbp genome) – of the Alloherpesviridae family in the order Herpesvirales • CyHV-3 (Koi herpesvirus - KHV) is the type species of the Cyprinivirus genus -also contains Cyprinid herpesviruses 1 & 2 and Anguillid herpesvirus • Disease affects Common carp (Cyprinus carpio), including ornamental koi carp and varieties and hybrids such as mirror and ghost carp. Goldfish (Carassius auratus) x common carp hybrids also have low susceptibility to CyHV-3 infection Cyprinivirus- specific DNA polymerase primers Nested conventional PCR assay based on CyHV 1-3 DNA polymerase sequences • Analytical sensitivity of 1-10 copies/reaction (~DNA from 0.25mg tissue) • Assay accredited to ISO 17025 Initially run in parallel to the TK primers recommended by the OIE. In the UK the assay was adopted as the primary assay for confirmation of disease outbreaks
    [Show full text]
  • Cytomegalovirus Disease Fact Sheet
    WISCONSIN DIVISION OF PUBLIC HEALTH Department of Health Services Cytomegalovirus (CMV) Disease Fact Sheet Series What is Cytomegalovirus infection? Cytomegalovirus (CMV) is a common viral infection that rarely causes disease in healthy individuals. When it does cause disease, the symptoms vary depending on the patient’s age and immune status. Who gets CMV infection? In the United States, approximately 1% of newborns is infected with CMV while growing in their mother's womb (congenital CMV infection). Many newborns however, will acquire CMV infection during delivery by passage through an infected birth canal or after birth through infected breast milk (perinatal CMV infection). Children, especially those attending day-care centers, who have not previously been infected with CMV, may become infected during the toddler or preschool years. Most people will have been infected with CMV by the time they reach puberty. How is CMV spread? CMV is excreted in urine, saliva, breast milk, cervical secretions and semen of infected individuals, even if the infected person has never experienced clinical symptoms. CMV may also be transmitted through blood transfusions, and through bone marrow, organ and tissue transplants from donors infected with CMV. CMV is not spread by casual contact with infected persons. Transmission requires repeated prolonged contact with infected items. What are the signs and symptoms of CMV infection? While most infants with congenital CMV infection do not show symptoms at birth, some will develop psychomotor, hearing, or dental abnormalities over the first few years of their life. Prognosis for infants with profound congenital CMV infection is poor and survivors may exhibit mental retardation, deficiencies in coordination of muscle movements, hearing losses, and chronic liver disease.
    [Show full text]
  • THE ROLE of HERPESVIRUSES in MARINE TURTLE DISEASES By
    THE ROLE OF HERPESVIRUSES IN MARINE TURTLE DISEASES By SADIE SHEA COBERLEY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2002 Copyright 2002 by Sadie Shea Coberley For the turtles, and Carter and my family for encouraging me to pursue what I love. ACKNOWLEDGEMENTS I would like to thank my mentor, Dr. Paul Klein, for sharing his knowledge and for all of his encouragement and patience throughout my graduate education. He has been a true mentor in every sense of the word, and has done everything possible to prepare me for not only my scientific future, but phases of life outside of the laboratory as well. I would also like to thank my co-mentor, Dr. Rich Condit, first for seeing graduate student potential, and then for taking me in and helping to provide the necessary tools and expertise to cultivate it. In addition, I am indebted to Dr. Larry Herbst, who was not only my predecessor but a pioneer in FP research. His insight into studying such a complex problem has been invaluable. I am grateful for the critical analysis and raised eyebrow of Dr. Daniel Brown and for his assistance with trouble-shooting experiments, evaluating data, and preparing manuscripts. I am also appreciative of the assistance of Dr. Elliott Jacobson for including me in many discussions, necropsies, and analyses of marine turtles with interesting clinical signs of disease, and for sharing his vast knowledge of reptile diseases. I would like to thank Dr.
    [Show full text]
  • Infection Status of Human Parvovirus B19, Cytomegalovirus and Herpes Simplex Virus-1/2 in Women with First-Trimester Spontaneous
    Gao et al. Virology Journal (2018) 15:74 https://doi.org/10.1186/s12985-018-0988-5 RESEARCH Open Access Infection status of human parvovirus B19, cytomegalovirus and herpes simplex Virus- 1/2 in women with first-trimester spontaneous abortions in Chongqing, China Ya-Ling Gao1, Zhan Gao3,4, Miao He3,4* and Pu Liao2* Abstract Background: Infection with Parvovirus B19 (B19V), Cytomegalovirus (CMV) and Herpes Simplex Virus-1/2 (HSV-1/2) may cause fetal loses including spontaneous abortion, intrauterine fetal death and non-immune hydrops fetalis. Few comprehensive studies have investigated first-trimester spontaneous abortions caused by virus infections in Chongqing, China. Our study intends to investigate the infection of B19V, CMV and HSV-1/2 in first-trimester spontaneous abortions and the corresponding immune response. Methods: 100 abortion patients aged from 17 to 47 years were included in our study. The plasma samples (100) were analyzed qualitatively for specific IgG/IgM for B19V, CMV and HSV-1/2 (Virion\Serion, Germany) according to the manufacturer’s recommendations. B19V, CMV and HSV-1/2 DNA were quantification by Real-Time PCR. Results: No specimens were positive for B19V, CMV, and HSV-1/2 DNA. By serology, 30.0%, 95.0%, 92.0% of patients were positive for B19V, CMV and HSV-1/2 IgG respectively, while 2% and 1% for B19V and HSV-1/2 IgM. Conclusion: The low rate of virus DNA and a high proportion of CMV and HSV-1/2 IgG for most major of abortion patients in this study suggest that B19V, CMV and HSV-1/2 may not be the common factor leading to the spontaneous abortion of early pregnancy.
    [Show full text]
  • Molecular Identification and Genetic Characterization of Cetacean Herpesviruses and Porpoise Morbillivirus
    MOLECULAR IDENTIFICATION AND GENETIC CHARACTERIZATION OF CETACEAN HERPESVIRUSES AND PORPOISE MORBILLIVIRUS By KARA ANN SMOLAREK BENSON A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Kara Ann Smolarek Benson I dedicate this to my best friend and husband, Brock, who has always believed in me. ACKNOWLEDGMENTS First and foremost I thank my mentor, Dr. Carlos Romero, who once told me that love is fleeting but herpes is forever. He welcomed me into his lab with very little experience and I have learned so much from him over the past few years. Without his excellent guidance, this project would not have been possible. I thank my parents, Dave and Judy Smolarek, for their continual love and support. They taught me the importance of hard work and a great education, and always believed that I would be successful in life. I would like to thank Dr. Tom Barrett for the wonderful opportunity to study porpoise morbillivirus in his laboratory at the Institute for Animal Health in England, and Dr. Romero for making the trip possible. I especially thank Dr. Ashley Banyard for helping me accomplish all the objectives of the project, and all the wonderful people at the IAH for making a Yankee feel right at home in the UK. I thank Alexa Bracht and Rebecca Woodruff who have been with me in Dr. Romero’s lab since the beginning. Their continuous friendship and encouragement have kept me sane even in the most hectic of times.
    [Show full text]
  • Cyprinid Herpesvirus 3 Genesig Advanced
    Primerdesign TM Ltd Cyprinid herpesvirus 3 Pol gene for DNA polymerase genesig® Advanced Kit 150 tests For general laboratory and research use only Quantification of Cyprinid herpesvirus 3 genomes. 1 genesig Advanced kit handbook HB10.03.11 Published Date: 09/11/2018 Introduction to Cyprinid herpesvirus 3 Cyprinid herpesvirus 3 (CyHV3) is the causative agent of a lethal disease in common (Cyprinus carpio carpio) and Koi carp (Cyprnius carpio koi). It was discovered in the late 1990s and has rapidly spread worldwide among cultured common carp and ornamental koi. Previously known as koi herpesvirus, it has caused severe economic losses in the global carp industry with its spread being attributed to international trade. The virus is a member of the order Herepesvirales and family Alloherpesviridae. It has a linear, double stranded genome of approximately 295 kb in length consisting of a large central portion flanked by two 22 kb repeat regions. The genome encodes 156 open reading frames (ORFs) including 8 ORFs encoded by the repeat regions. The genome is packaged in an icosahedral capsid that is contained within viral glycoproteins and then a host derived lipid envelope, giving an overall virion of 170-200nm in diameter. At present, common and koi carp are the only species known to be affected by the virus. The viral particles are transmitted through faeces, sloughing of mucous and inflammatory cells, and secretions that are released into the water. The skin pores are the main source of entry and site of replication but the disease also spreads to the organs, particularly the kidneys. The viral particles are further spread when the carp come into contact with each other during grazing, spawning or when uninfected fish pick at the skin lesions of dead infected fish.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0009150 A1 WEBER Et Al
    US 2012O009 150A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0009150 A1 WEBER et al. (43) Pub. Date: Jan. 12, 2012 (54) DIARYLUREAS FORTREATINGVIRUS Publication Classification INFECTIONS (51) Int. Cl. (76) Inventors: Olaf WEBER, Wulfrath (DE); st 2. CR Bernd Riedl, Wuppertal (DE) ( .01) A63/675 (2006.01) (21) Appl. No.: 13/236,865 A6II 3/522 (2006.01) A6IP 29/00 (2006.01) (22) Filed: Sep. 20, 2011 A6II 3/662 (2006.01) A638/14 (2006.01) Related U.S. Application Data A63L/7056 (2006.01) A6IP3L/2 (2006.01) (63) Continuation of application No. 12/097.350. filed on A6II 3/44 (2006.01) Nov. 3, 2008, filed as application No. PCTAEPO6/ A6II 3/52 (2006.01) 11693 on Dec. 6, 2006. O O (52) U.S. Cl. .......... 424/85.6; 514/350; 514/171; 514/81; (30) Foreign Application Priority Data 514/263.38: 514/263.4: 514/120: 514/4.3: Dec. 15, 2005 (EP) .................................. 05O274513 424/85.7; 514/43 Dec. 15, 2005 (EP). ... O5O27452.1 Dec. 15, 2005 (EP). ... O5O27456.2 Dec. 15, 2005 (EP). ... O5O27458.8 The present invention relates to pharmaceutical compositions Dec. 15, 2005 (EP) O5O27.460.4 for treating virus infections and/or diseases caused by virus Dec. 15, 2005 (EP) O5O27462.O infections comprising at least a diary1 urea compound option Dec. 15, 2005 (EP). ... O5O27465.3 ally combined with at least one additional therapeutic agent. Dec. 15, 2005 (EP). ... O5O274.67.9 Useful combinations include e.g. BAY 43-9006 as a diaryl Dec.
    [Show full text]
  • Emerging Viral Diseases of Fish and Shrimp Peter J
    Emerging viral diseases of fish and shrimp Peter J. Walker, James R. Winton To cite this version: Peter J. Walker, James R. Winton. Emerging viral diseases of fish and shrimp. Veterinary Research, BioMed Central, 2010, 41 (6), 10.1051/vetres/2010022. hal-00903183 HAL Id: hal-00903183 https://hal.archives-ouvertes.fr/hal-00903183 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2010) 41:51 www.vetres.org DOI: 10.1051/vetres/2010022 Ó INRA, EDP Sciences, 2010 Review article Emerging viral diseases of fish and shrimp 1 2 Peter J. WALKER *, James R. WINTON 1 CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), 5 Portarlington Road, Geelong, Victoria, Australia 2 USGS Western Fisheries Research Center, 6505 NE 65th Street, Seattle, Washington, USA (Received 7 December 2009; accepted 19 April 2010) Abstract – The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry.
    [Show full text]
  • Herpes: a Patient's Guide
    Herpes: A Patient’s Guide Herpes: A Patient’s Guide Introduction Herpes is a very common infection that is passed through HSV-1 and HSV-2: what’s in a name? ....................................................................3 skin-to-skin contact. Canadian studies have estimated that up to 89% of Canadians have been exposed to herpes simplex Herpes symptoms .........................................................................................................4 type 1 (HSV-1), which usually shows up as cold sores on the Herpes transmission: how do you get herpes? ................................................6 mouth. In a British Columbia study, about 15% of people tested positive for herpes simplex type 2 (HSV-2), which Herpes testing: when is it useful? ..........................................................................8 is the type of herpes most commonly thought of as genital herpes. Recently, HSV-1 has been showing up more and Herpes treatment: managing your symptoms ...................................................10 more on the genitals. Some people can have both types of What does herpes mean to you: receiving a new diagnosis ......................12 herpes. Most people have such minor symptoms that they don’t even know they have herpes. What does herpes mean to you: accepting your diagnosis ........................14 While herpes is very common, it also carries a lot of stigma. What does herpes mean to you: dating with herpes ....................................16 This stigma can lead to anxiety, fear and misinformation
    [Show full text]