The Spider Club News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Non -Acarine Arachnids
Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity. -
KWIKSTAART SCOPING Deel 5.Pdf
ANNEXURE: E Permit from Department Agriculture ANNEXURE F: Permit from Department Forestry ANNEXURE G WATER USE CERITIFICATES FOR ALLIED RIVERS FARMING ANNEXURE H SPECIALIST STUDIES ECOLOGICAL SURVEY ECOLOGICAL SURVEY OF THE FARM KWIKSTAART 431 KQ, PORTION 2, KOEDOESKOP, THABAZIMBI, LIMPOPO PROVINCE Compiled by: JONK BEGIN ENVIRONMENTAL SERVICES Email Address: [email protected] Postal Address: P.O. Box 70 Koedoeskop 0361 Fax: (014) 785-0611 EXECUTIVE SUMMARY The timing of the survey was during the rainy seasons of March & April. The study site was extensively browsed and grazed by game over the past few years, making it slightly difficult to determine the species composition and vegetation structure normally present on this proposed development area. The site is situated in Limpopo on the Farm Kwikstaart 431 KQ portion 2, Koedoeskop District. The area is a flat undulating plane. The altitude of the site is between 915-960 m above sea level. The mean annual rainfall measured at Koedoeskop Weather Station is 675mm. The rainy season is predominantly from October to April with driest months being June to August. The mean annual temperature measured at Koedoeskop Weather Station is 21◦ with extreme maximum and minimum temperature of -8.5◦ and 45◦ respectively. This year however, was an exceptionally good rainy season with the Crocodile River flooding its banks in low places. According to Mucina and Rutherford (2006) the study site occurs in the Dwaalboom Thornveld with intrusion of Sandy Bushveld. Acacia tortilis, A nilotica and A karroo dominate the Thornveld whereas Acacia nigrescens, A erubescens and Combretum species occurs on the sandy soils. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
SANSA News 16 Final.PUB
Newsletter • Newsletter • Newsletter • Newsletter • Newsletter JAN-MAY 2012 SANSA - Newsletter South African National No 16 Survey of Arachnida This publication is available from: Ansie Dippenaar-Schoeman [email protected] or at www.arc.agric.za/home.asp?pid=3732 This is the newsletter of the South African National Survey Editors: of Arachnida (SANSA). SANSA is an umbrella project Ansie Dippenaar-Schoeman & Charles Haddad dedicated to unifying and strengthening biodiversity re- search on Arachnida in South Africa, and to make an in- Editorial committee: ventory of our arachnofauna. It runs on a national basis in Petro Marais collaboration with other researchers and institutions with Elsa van Niekerk an interest in the fauna of South Africa. Robin Lyle CONGRATULATIONS To Charles Haddad for obtaining his PhD from the Univer- sity of the Free State. The title of his study was “Advances in the systematics and ecology of the African Corinnidae spiders (Arachnida: Araneae), with emphasis on the Casti- aneirinae”. This is a very comprehensive study and deals with two aspects of the Castianeirinae, namely their ecol- ogy as well as their systematics, and it is a very important contribution towards our knowledge of this family of spi- ders, especially in the Afrotropical Region. An illustrated key to all the genera is provided as well as a phylogenetic analysis of the relationships of the Afrotropical Castianeiri- nae. Charles revised the eight genera of the subfamily Castianeirinae known from the Afrotropical Region and described two genera as new to science. He studied 62 species, of which 37 are new species and 20 redescribed for the first time. -
Beitr. Araneol., 7 (2012: 272–331)
BEITR. ARANEOL., 7 (2012: 272–331) A REVIEW ON THE SPIDER GENUS ARGIOPE AUDOUIN 1826 WITH SPECIAL emphasis ON BROKEN EMBOLI IN FEMALE EPIGYNES (ARANEAE: ARANEI- DAE: ARGIOPINAE). PETER JÄGER, Arachnology, Senckenberg Research Institute, Senckenberganla- ge 25, 60325 Frankfurt am Main, Germany; [email protected] „While a published monograph may appear to provide definite solutions, and readers infer that the author is certain of his findings, more likely the work only identifies and illuminates tantalizing problems. Especially to those with no experience with taxonomic problems, a published monograph has an unfortunate aura of authority.“ Herbert Levi (1983: 256) Abstract: Argiope species are revised with special emphasis on broken male emboli in female epigynes. Broken emboli proved suitable for matching conspecifics and rec- ognising cryptic species in species swarms with similar females. Material of 47 species from 63 countries was included in this study: 92 males, 834 females and 316 broken emboli were examined. Broken emboli are documented for 32 species, those of 27 spe- cies are illustrated for the first time, those of 8 species have been known and illustrated before. 19 species are illustrated by means of in situ emboli, 9 of them are not recorded as broken emboli. In total, emboli of 41 species are illustrated. The male of A. luzona could be confirmed by means of broken emboli stuck in the epigyne. One new species is described: Argiope hinderlichi spec. nov. (female; Laos, Lak Sao, Nong Khiao). The male of Argiope jinghongensis Yin, Peng & Wang 1994 is redescribed and the female is described for the first time.Argiope doleschalli Thorell 1873 and Argi- ope bivittigera Strand 1911 are removed from the synonymy of A. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
The Complete Mitochondrial Genome of Endemic Giant Tarantula
www.nature.com/scientificreports OPEN The Complete Mitochondrial Genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis Vikas Kumar, Kaomud Tyagi *, Rajasree Chakraborty, Priya Prasad, Shantanu Kundu, Inderjeet Tyagi & Kailash Chandra The complete mitochondrial genome of Lyrognathus crotalus is sequenced, annotated and compared with other spider mitogenomes. It is 13,865 bp long and featured by 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and a control region (CR). Most of the PCGs used ATN start codon except cox3, and nad4 with TTG. Comparative studies indicated the use of TTG, TTA, TTT, GTG, CTG, CTA as start codons by few PCGs. Most of the tRNAs were truncated and do not fold into the typical cloverleaf structure. Further, the motif (CATATA) was detected in CR of nine species including L. crotalus. The gene arrangement of L. crotalus compared with ancestral arthropod showed the transposition of fve tRNAs and one tandem duplication random loss (TDRL) event. Five plesiomophic gene blocks (A-E) were identifed, of which, four (A, B, D, E) retained in all taxa except family Salticidae. However, block C was retained in Mygalomorphae and two families of Araneomorphae (Hypochilidae and Pholcidae). Out of 146 derived gene boundaries in all taxa, 15 synapomorphic gene boundaries were identifed. TreeREx analysis also revealed the transposition of trnI, which makes three derived boundaries and congruent with the result of the gene boundary mapping. Maximum likelihood and Bayesian inference showed similar topologies and congruent with morphology, and previously reported multi-gene phylogeny. However, the Gene-Order based phylogeny showed sister relationship of L. -
On Three Monotypic Nursery Web Spider Genera from Madagascar
Zootaxa 3750 (3): 277–288 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3750.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:34710705-6F09-4489-B206-C2CA969D77DE On three monotypic nursery web spider genera from Madagascar with first description of the male of Tallonia picta Simon, 1889 and redescription of the type-species of Paracladycnis Blandin, 1979 and Thalassiopsis Roewer, 1955 (Araneae: Lycosoidea: Pisauridae) ESTEVAM L. CRUZ DA SILVA & PETRA SIERWALD Division of Insects, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA. E-mail: [email protected], [email protected] With 333 described species, the Pisauridae is a moderately species-rich spider family. The family is world wide in distribution and its members exhibit an exceptionally wide range of foraging and prey capture behavior, from web- based hunters, water surface hunters to ambusher hunters in the vegetation. While some pisaurid genera are diverse, boasting numerous species, such as Dolomedes with 96 described species, nearly half of pisaurid genera (22/48) are monotypic (Platnick 2013). Recent collecting and biodiversity research has uncovered several new species, especially from heretofore poorly collected regions in Africa (including Madagascar) and Asia (e.g. Jaeger 2011, Jocqué 1994). Initial steps have been undertaken to develop a phylogenetic framework for parts of the family, e.g., Sierwald 1987; Santos 2007. However, no phylogenetic analysis exists that includes a representatively wide range of genera. The clade Pisaurinae (see Sierwald 1997) appears to be well supported by morphological characters, while the relationships among non-pisaurine genera remain uncertain. -
Spider Ecology in Southwestern Zimbabwe, with Emphasis on the Impact of Holistic Planned Grazing Practices Sicelo Sebata Thesis
Spider ecology in southwestern Zimbabwe, with emphasis on the impact of holistic planned grazing practices Sicelo Sebata Thesis submitted in satisfaction of the requirements for the degree Philosophiae Doctor in the Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State January 2020 Supervisors Prof. Charles R. Haddad (PhD): Associate Professor: Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa. Prof. Stefan H. Foord (PhD): Professor: Department of Zoology, School of Mathematics and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa. Dr. Moira J FitzPatrick (PhD): Regional Director: Natural History Museums of Zimbabwe, cnr Park Road and Leopold Takawira Avenue, Centenary Park Suburbs, Bulawayo, Zimbabwe. i STUDENT DECLARATION I, the undersigned, hereby assert that the work included in this thesis is my own original work and that I have not beforehand in its totality or in part submitted it at any university for a degree. I also relinquish copyright of the thesis in favour of the University of the Free State. S. Sebata 31 January 2020 ii SUPERVISOR DECLARATION iii DEDICATION I would like to dedicate this thesis to all the spiders that lost their lives in the name of Science. iv ABSTRACT The current information on Zimbabwean spiders is fairly poor and is mostly restricted to taxonomic descriptions, while their ecology remains largely unknown. While taxonomic studies are very important, as many species are becoming extinct before they are described, a focus on the ecology of spiders is also essential, as it helps with addressing vital questions such as the effect of anthropogenic activities on spider fauna. -
A Check List of the Spider Fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae)
foord.qxd 2005/12/09 10:03 Page 35 A check list of the spider fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae) S.H. FOORD, ANNA S. DIPPENAAR-SCHOEMAN and M. VAN DER MERWE Foord, S.H., Anna S. Dippenaar-Schoeman and M. van der Merwe. 2002. A check list of the spider fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae). Koedoe 45(2): 35–43. Pretoria. ISSN 0075-6458. By virtue of its geological history and geographical location the Soutpansberg consti- tutes a refuge for a high diversity of organisms. The Western Soutpansberg forms part of the Savanna Biome and is presently the area with the highest concentration of Nat- ural Heritage Sites in South Africa. A unique private initiative is under way to improve its national and international conservation status in a bid to conserve the mountain. A checklist of the spider species of the Western Soutpansberg collected over a five-year period is presented. Forty-six families, represented by 109 genera and 127 species have been collected. Of the species collected, 81 (64 %) were wandering spiders and 46 (36 %) web builders. The Thomisidae have the highest number of species (15) followed by the Araneidae and the Salticidae with 10 species each. Ninety-six genera are repre- sented by a single species. Ninety six percent of the species collected are new records for the area. This survey is the first for the area and forms part of the South African National Survey of Arachnida (SANSA). Keywords: biodiversity, guilds, conservancy. S.H. Foord ( ) and M. van der Merwe, Department of Biological Sciences, Universi- ty of Venda, Thohoyandou, 0950, Republic of South Africa; Anna S. -
Araneae (Spider) Photos
Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison. -
Arachnides 88
ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky,