MS#6 (Tayco Et Al)

Total Page:16

File Type:pdf, Size:1020Kb

MS#6 (Tayco Et Al) Philippine Journal of Science 142 (1): 45-54, June 2013 ISSN 0031 - 7683 Date Received: ?? Feb 20?? Characterization of a κ-Carrageenase-producing Marine Bacterium, Isolate ALAB-001 Crimson C. Tayco1, Francis A. Tablizo1, Raymond S. Regalia2 and Arturo O. Lluisma1* 1The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines 1101 2Center for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, Australia 2052 Carrageenases are glycoside hydrolases that specifically degrade carrageenan, a highly anionic polysaccharide found in the cell wall of many red algal species. To date, only a few of these enzymes have been characterized, and identifying additional sources is important considering the role of carrageenases in production of carrageenan derivatives. In this paper, we report the characterization of a marine bacterial strain that produces κ-carrageenase. The strain, which we designate as ALAB-001, was isolated from diseased thallus fragments of the red alga Kappaphycus alvarezii, a commercially important source of carrageenan. Genotypic and phenotypic data suggest that the isolate belongs to a relatively poorly-characterized group of bacteria in Alteromonadaceae (Alteromonadales) and is closely related to Marinimicrobium and Microbulbifer. Significant κ-carrageenase activity (175 U/mL) was evident when the isolate was grown in the presence of κ-carrageenan. Activity against starch was also high (180 U/mL), but activity against agar, alginate, cellulose, ι-carrageenan, and λ-carrageenan was significantly lower (25-50 U/mL). Laboratory-scale production of the enzyme using batch cultures of the isolate was achieved by optimizing culture medium, length of culture time and degree temperature. Optimal growth was observed at 25°C, though the isolate survived at 30°C. An in-house developed seawater-based medium containing equal concentrations of yeast extract and tryptone (YETS) yielded the highest cell growth based on total protein concentration (~ 3000 μg/mL) and enzyme activity (~ 45 U/mL). Key Words: κ-carrageenan, κ-carrageenase, carrageenan-degrading bacteria, Kappaphycus alvarezii INTRODUCTION with other Family 16 glycoside hydrolases such as β-agarase, laminarase, lichenase and xyloglucan κ-carrageenases are enzymes that catalyze the hydrolysis transglycosylases (Lemos et al. 1985). of κ-carrageenan, a highly sulfated polysaccharide and a major component of the cell wall matrix in many red algal Only a handful of published reports describe the species. κ-carrageenases are members of the Family 16 isolation of κ-carrageenase-producing marine bacteria glycoside hydrolases based on their overall and catalytic and demonstrate their ability to produce carrageenase domain structure (Michel et al. 1999). Studies have already in culture. Bacterial species reported in the scientific demonstrated the structural similarity of κ-carrageenases literature include Pseudomonas carrageenovora (Weigl and Yaphe 1966), Cytophaga strain 1k-C783 (Sarwar *Corresponding author: [email protected] 45 Philippine Journal of Science Tayco et al.: Characterization of a κ-Carrageenase-producing Vol. 142 No. 1, June 2013 Marine Bacterium, Isolate ALAB-001 et al. 1983), Alteromonas fortis (Potin et al. 1995), by marine invertebrates feeding on carrageenophytes, Pseudoalteromonas carrageenovora (Gauthier et al. using them as sources of the enzyme carrageenase will 1995), Vibrio sp. CA-1004 (Araki et al. 1999), ‘Cytophaga necessitate the establishment of a hatchery and culture drobachiensis’ / Zobellia galactanivorans (Barbeyron et facility as well as the development of a laborious al. 1998, Barbeyron et al. 2001), Pseudoalteromonas- process of crude extraction from visceral organs. like bacterium (Zhou et al. 2008), Pseudoalteromonas Conversely, bacteria, as sources of carrageenase, are porphyrae (Liu et al. 2010), and Pseudoaltermonas very easy to handle in the laboratory, do not require large tetraodonis (Kobayashi et al. 2012). These studies storage space, and since the enzyme is secreted in the suggest that the enzyme is synthesized by marine bacteria medium, harvesting of the enzyme with relatively fewer that belong to at least two distantly related lineages, contaminants is easy. Hence, as far as laboratory enzyme Proteobacteria and Bacteroidetes, although most of the production is concerned, bacteria are still preferred isolates described in the reports belong to the former sources of κ-carrageenase over marine invertebrates. In group. this paper, we report the characterization of ALAB -001, a κ-carrageenase-producing bacterial isolate. Polysaccharides from marine rhodophytes, particularly carrageenan and agar, are major raw materials for a number of industries worldwide (Renn 1997). Carrageenan is a highly sulphated polysaccharide made MATERIALS AND METHODS up of D-galactose units linked by α (1→3) and β (1→4) glycosidic bonds. It exists in different forms depending on the number of sulphate substituents per disaccharide unit: Bacterial isolate one in κ-carrageenan, two in ι-carrageenan and three in A carrageenan-degrading marine bacterial strain, λ-carrageenan. Although carrageenan is principally used designated as ALAB-001, was previously isolated via in the industry as gelling, emulsifying, stabilizing and standard microbiological strategy. Diseased thallus texturing agents, studies have revealed other potential fragments of the red seaweed Kappaphycus alvarezii applications, particularly, in health and biomedicine. For (collected from a seaweed farm in Calatagan, Batangas, example, oligosaccharides derived from κ-carrageenan Philippines) were swabbed onto solid κ-carrageenan- (using carrageenases) have been shown to exhibit anti- (1.5%)-sterile seawater media and the plates were tumor activity, particularly, those with a molecular weight then screened for bacterial colonies that manifest of 1726 Da (Mou et al. 2003). Although the mechanism plate depression-forming activity. Pure cultures of the of anti-tumor activity is still unclear, the researchers depression-forming bacterial isolates were obtained concluded that oligo-carrageenan could be a potent anti- by repeated streaking and picking on plates and then tumor substance. Similar studies (Caceres et al. 2000; maintained by regular spot inoculation on carrageenan- Yuan and Song 2005) also found significant anti-tumor solidifed medium prepared using marine broth (Pronadisa) activity of certain fractions of carrageenans and oligo- with 1.5% κ-carrageenan (MBC) (Shemberg Corporation, carrageenans. These studies indicate that carrageenan- Philippines). derivatives, i.e., oligo-carrageenans obtained via degradation of carrageenan, possess significant potential Phenotypic, Biochemical, and Phylogenetic for biomedical and physiological applications. Characterization To determine the cellular morphology of the isolate, light Carrageenan-derivatives can be obtained using two microscopy of Gram-stained specimens was carried out different methods. The first method employs acid and a sample of the bacterium (1 mL, OD = 0.1) was hydrolysis of carrageenan in order to generate oligo- 600 sent to an electron microscopy facility at the University carrageenans. The downside of this procedure, however, of the Philippines at Los Banos, Laguna, Philippines is that acid hydrolysis produces degradation products for photomicrography. Colonial characteristics were with considerably varied molecular weights. The second observed by spot inoculating the isolate on MBC plates. method, on the other hand, utilizes enzymes that catalyze To determine the biochemical properties, oxidative the hydrolysis of carrageenan (e.g. ĸ-carrageenase) or fermentative (OF) behavior was determined via a into its oligosaccharide components. Since enzymes modified OF medium for marine bacteria (Lemos et have specific activities, this approach is more likely to al. 1985); substrate utilization was determined using produce carrageenan-derivatives with uniform molecular BIOLOG GN2 (Biolog, Inc.). The morphology and weights which can be more advantageous since the physiology of isolate ALAB-001 were compared with observed physiological activities of oligo-carrageenans two related strains Microbulbifer (Gonzalez et al. 1997) are associated with their molecular weights. and Marinimicrobium (Lim et al. 2006), both belonging Although carrageenases are also known to be produced to Alteromonadales (Proteobacteria). ALAB-001 was also 46 Philippine Journal of Science Tayco et al.: Characterization of a κ-Carrageenase-producing Vol. 142 No. 1, June 2013 Marine Bacterium, Isolate ALAB-001 compared with several carrageenase-producing bacteria, (ZDM) (Barbeyron et al. 2000), used for carrageenase in particular Zobellia galactanovorans (Barbeyron et al. production from Zobellia galactanovorans; and, Sarwar 2001) and isolates described by Sarwar et al. (1983). These salts medium (SSM) (Sarwar et al. 1985), used for carrageenase-producing bacteria are members of the two carrageenase production from Cytophaga sp. In addition, distantly-related taxa, Alteromonadales (Proteobacteria) we also used an in-house formulated culture medium and Flavobacteriaceae (Bacteroidetes). referred to as YETS, composed of equal concentrations of yeast extract and tryptone (5 g/L each) in seawater Genomic DNA (gDNA) was extracted using the supplemented with 1.5 % carrageenan. MBC was used QIamp DNA mini kit (Qiagen). The 16S rRNA gene as a basal salt medium
Recommended publications
  • Mining Saltmarsh Sediment Microbes for Enzymes to Degrade Recalcitrant Biomass
    Mining saltmarsh sediment microbes for enzymes to degrade recalcitrant biomass Juliana Sanchez Alponti PhD University of York Biology September 2019 Abstract Abstract The recalcitrance of biomass represents a major bottleneck for the efficient production of fermentable sugars from biomass. Cellulase cocktails are often only able to release 75-80% of the potential sugars from biomass and this adds to the overall costs of lignocellulosic processing. The high amounts of fresh water used in biomass processing also adds to the overall costs and environmental footprint of this process. A more sustainable approach could be the use of seawater during the process, saving the valuable fresh water for human consumption and agriculture. For such replacement to be viable, there is a need to identify salt tolerant lignocellulose-degrading enzymes. We have been prospecting for enzymes from the marine environment that attack the more recalcitrant components of lignocellulosic biomass. To achieve these ends, we have carried out selective culture enrichments using highly degraded biomass and inoculum taken from a saltmarsh. Saltmarshes are highly productive ecosystems, where most of the biomass is provided by land plants and is therefore rich in lignocellulose. Lignocellulose forms the major source of biomass to feed the large communities of heterotrophic organisms living in saltmarshes, which are likely to contain a range of microbial species specialised for the degradation of lignocellulosic biomass. We took biomass from the saltmarsh grass Spartina anglica that had been previously degraded by microbes over a 10-week period, losing 70% of its content in the process. This recalcitrant biomass was then used as the sole carbon source in a shake-flask culture inoculated with saltmarsh sediment.
    [Show full text]
  • Updating the Taxonomic Toolbox: Classification of Alteromonas Spp
    1 Updating the taxonomic toolbox: classification of Alteromonas spp. 2 using Multilocus Phylogenetic Analysis and MALDI-TOF Mass 3 Spectrometry a a a 4 Hooi Jun Ng , Hayden K. Webb , Russell J. Crawford , François a b b c 5 Malherbe , Henry Butt , Rachel Knight , Valery V. Mikhailov and a, 6 Elena P. Ivanova * 7 aFaculty of Life and Social Sciences, Swinburne University of Technology, 8 PO Box 218, Hawthorn, Vic 3122, Australia 9 bBioscreen, Bio21 Institute, The University of Melbourne, Vic 3010, Australia 10 cG.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian 11 Academy of Sciences, Vladivostok 690022, Russian Federation 12 13 *Corresponding author: Tel: +61-3-9214-5137. Fax: +61-3-9214-5050. 14 E-mail: [email protected] 15 16 Abstract 17 Bacteria of the genus Alteromonas are Gram-negative, strictly aerobic, motile, 18 heterotrophic marine bacteria, known for their versatile metabolic activities. 19 Identification and classification of novel species belonging to the genus Alteromonas 20 generally involves DNA-DNA hybridization (DDH) as distinct species often fail to be 1 21 resolved at the 97% threshold value of the 16S rRNA gene sequence similarity. In this 22 study, the applicability of Multilocus Phylogenetic Analysis (MLPA) and Matrix- 23 Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF 24 MS) for the differentiation of Alteromonas species has been evaluated. Phylogenetic 25 analysis incorporating five house-keeping genes (dnaK, sucC, rpoB, gyrB, and rpoD) 26 revealed a threshold value of 98.9% that could be considered as the species cut-off 27 value for the delineation of Alteromonas spp.
    [Show full text]
  • Motiliproteus Sediminis Gen. Nov., Sp. Nov., Isolated from Coastal Sediment
    Antonie van Leeuwenhoek (2014) 106:615–621 DOI 10.1007/s10482-014-0232-2 ORIGINAL PAPER Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment Zong-Jie Wang • Zhi-Hong Xie • Chao Wang • Zong-Jun Du • Guan-Jun Chen Received: 3 April 2014 / Accepted: 4 July 2014 / Published online: 20 July 2014 Ó Springer International Publishing Switzerland 2014 Abstract A novel Gram-stain-negative, rod-to- demonstrated that the novel isolate was 93.3 % similar spiral-shaped, oxidase- and catalase- positive and to the type strain of Neptunomonas antarctica, 93.2 % facultatively aerobic bacterium, designated HS6T, was to Neptunomonas japonicum and 93.1 % to Marino- isolated from marine sediment of Yellow Sea, China. bacterium rhizophilum, the closest cultivated rela- It can reduce nitrate to nitrite and grow well in marine tives. The polar lipid profile of the novel strain broth 2216 (MB, Hope Biol-Technology Co., Ltd) consisted of phosphatidylethanolamine, phosphatidyl- with an optimal temperature for growth of 30–33 °C glycerol and some other unknown lipids. Major (range 12–45 °C) and in the presence of 2–3 % (w/v) cellular fatty acids were summed feature 3 (C16:1 NaCl (range 0.5–7 %, w/v). The pH range for growth x7c/iso-C15:0 2-OH), C18:1 x7c and C16:0 and the main was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylo- respiratory quinone was Q-8. The DNA G?C content genetic analysis based on 16S rRNA gene sequences of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical charac- teristics, strain HS6T represents a novel genus and The GenBank accession number for the 16S rRNA gene T species and the name Motiliproteus sediminis gen.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • D 3111 Suppl
    The following supplement accompanies the article Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster Sarah G. Feinman, Andrea Unzueta Martínez, Jennifer L. Bowen, Michael F. Tlusty* *Corresponding author: [email protected] Diseases of Aquatic Organisms 124: 41–54 (2017) Figure S1. Principal coordinates analysis of bacterial communities on lobster shell samples taken on different days. Principal coordinates analysis of the weighted UniFrac metric comparing bacterial community composition of diseased lobster shell on different days of sampling. Diseased lobster shell includes samples collected from the site of disease (square), as well as 0.5 cm (circle), 1 cm (triangle), and 1.5 cm (diamond) away from the site of the disease, while colors depict different days of sampling. Note that by day four, two of the lobsters had molted, hence there are fewer red symbols 1 Figure S2. Rank relative abundance curve for the 200+ most abundant OTUs for each shell condition. The number of OTUs, their abundance, and their order varies for each bar graph based on the relative abundance of each OTU in that shell condition. Please note the difference in scale along the y-axis for each bar graph. Bars appear in color if the OTU is a part of the core microbiome of that shell condition or appear in black if the OTU is not a part of the core microbiome of that shell condition. Dotted lines indicate OTUs that are part of the “abundant microbiome,” i.e. those whose cumulative total is ~50%, as well as OTUs that are a part of the “rare microbiome,” i.e.
    [Show full text]
  • Alishewanella Jeotgali Sp. Nov., Isolated from Traditional Fermented Food, and Emended Description of the Genus Alishewanella
    International Journal of Systematic and Evolutionary Microbiology (2009), 59, 2313–2316 DOI 10.1099/ijs.0.007260-0 Alishewanella jeotgali sp. nov., isolated from traditional fermented food, and emended description of the genus Alishewanella Min-Soo Kim,1,2 Seong Woon Roh,1,2 Young-Do Nam,1,2 Ho-Won Chang,1 Kyoung-Ho Kim,1 Mi-Ja Jung,1 Jung-Hye Choi,1 Eun-Jin Park1 and Jin-Woo Bae1,2 Correspondence 1Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee Jin-Woo Bae University, Seoul 130-701, Republic of Korea [email protected] 2University of Science and Technology, Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea A novel Gram-negative and facultative anaerobic strain, designated MS1T, was isolated from gajami sikhae, a traditional fermented food in Korea made from flatfish. Strain MS1T was motile, rod-shaped and oxidase- and catalase-positive, and required 1–2 % (w/v) NaCl for growth. Growth occurred at temperatures ranging from 4 to 40 6C and the pH range for optimal growth was pH 6.5–9.0. Strain MS1T was capable of reducing trimethylamine oxide, nitrate and thiosulfate. Phylogenetic analysis placed strain MS1T within the genus Alishewanella. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MS1T was related closely to Alishewanella aestuarii B11T (98.67 % similarity) and Alishewanella fetalis CCUG 30811T (98.04 % similarity). However, DNA–DNA reassociation experiments between strain MS1T and reference strains showed relatedness values ,70 % (42.6 and 14.8 % with A.
    [Show full text]
  • Thalassomonas Agarivorans Sp. Nov., a Marine Agarolytic Bacterium Isolated from Shallow Coastal Water of An-Ping Harbour, Taiwan
    International Journal of Systematic and Evolutionary Microbiology (2006), 56, 1245–1250 DOI 10.1099/ijs.0.64130-0 Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas Wen Dar Jean,1 Wung Yang Shieh2 and Tung Yen Liu2 Correspondence 1Center for General Education, Leader University, No. 188, Sec. 5, An-Chung Rd, Tainan, Wung Yang Shieh Taiwan [email protected] 2Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan A marine agarolytic bacterium, designated strain TMA1T, was isolated from a seawater sample collected in a shallow-water region of An-Ping Harbour, Taiwan. It was non-fermentative and Gram-negative. Cells grown in broth cultures were straight or curved rods, non-motile and non-flagellated. The isolate required NaCl for growth and exhibited optimal growth at 25 6C and 3 % NaCl. It grew aerobically and was incapable of anaerobic growth by fermenting glucose or other carbohydrates. Predominant cellular fatty acids were C16 : 0 (17?5 %), C17 : 1v8c (12?8 %), C17 : 0 (11?1 %), C15 : 0 iso 2-OH/C16 : 1v7c (8?6 %) and C13 : 0 (7?3 %). The DNA G+C content was 41?0 mol%. Phylogenetic, phenotypic and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus Thalassomonas in the family Colwelliaceae. The name Thalassomonas agarivorans sp. nov. is proposed for the novel species, with TMA1T (=BCRC 17492T=JCM 13379T) as the type strain. Alteromonas-like bacteria in the class Gammaproteobacteria however, they are not exclusively autochthonous in the comprise a large group of marine, heterotrophic, polar- marine environment, since some reports have shown that flagellated, Gram-negative rods that are mainly non- they also occur in freshwater, sewage and soil (Agbo & Moss, fermentative aerobes.
    [Show full text]
  • Colwellia and Marinobacter Metapangenomes Reveal Species
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317438; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Colwellia and Marinobacter metapangenomes reveal species-specific responses to oil 2 and dispersant exposure in deepsea microbial communities 3 4 Tito David Peña-Montenegro1,2,3, Sara Kleindienst4, Andrew E. Allen5,6, A. Murat 5 Eren7,8, John P. McCrow5, Juan David Sánchez-Calderón3, Jonathan Arnold2,9, Samantha 6 B. Joye1,* 7 8 Running title: Metapangenomes reveal species-specific responses 9 10 1 Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, 11 Georgia 30602-3636, USA 12 13 2 Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, Georgia 14 30602-7229, USA 15 16 3 Grupo de Investigación en Gestión Ecológica y Agroindustrial (GEA), Programa de 17 Microbiología, Facultad de Ciencias Exactas y Naturales, Universidad Libre, Seccional 18 Barranquilla, Colombia 19 20 4 Microbial Ecology, Center for Applied Geosciences, University of Tübingen, 21 Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany 22 23 5 Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA 92037, 24 USA 25 26 6 Integrative Oceanography Division, Scripps Institution of Oceanography, UC San 27 Diego, La Jolla, CA 92037, USA 28 29 7 Department of Medicine, University of Chicago, Chicago, IL, USA 30 31 8 Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA 32 33 9Department of Genetics, University of Georgia, 120 Green St., Athens, Georgia 30602- 34 7223, USA 35 36 *Correspondence: Samantha B.
    [Show full text]
  • Development of a Free Radical Scavenging Probiotic to Mitigate Coral Bleaching
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185645; this version posted July 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title: Development of a free radical scavenging probiotic to mitigate coral bleaching 2 Running title: Making a probiotic to mitigate coral bleaching 3 4 Ashley M. Dungana#, Dieter Bulachb, Heyu Linc, Madeleine J. H. van Oppena,d, Linda L. Blackalla 5 6 aSchool of Biosciences, The University of Melbourne, Melbourne, VIC, Australia 7 bMelbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia 8 c School of Earth Sciences, The University of Melbourne, Melbourne, VIC, Australia 9 dAustralian Institute of Marine Science, Townsville, QLD, Australia 10 11 12 #Address correspondence to Ashley M. Dungan, [email protected] 13 14 Abstract word count: 216 15 Text word count: 16 17 Keywords: symbiosis, Exaiptasia diaphana, Exaiptasia pallida, probiotic, antioxidant, ROS, 18 Symbiodiniaceae, bacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185645; this version posted July 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 ABSTRACT 20 Corals are colonized by symbiotic microorganisms that exert a profound influence on the 21 animal’s health.
    [Show full text]
  • Ecological Drivers of Bacterial Community Assembly in Synthetic Phycospheres
    Ecological drivers of bacterial community assembly in synthetic phycospheres He Fua, Mario Uchimiyaa,b, Jeff Gorec, and Mary Ann Morana,1 aDepartment of Marine Sciences, University of Georgia, Athens, GA 30602; bComplex Carbohydrate Research Center, University of Georgia, Athens, GA 30602; and cDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved January 6, 2020 (received for review October 3, 2019) In the nutrient-rich region surrounding marine phytoplankton The ecological mechanisms that influence the assembly of cells, heterotrophic bacterioplankton transform a major fraction of phycosphere microbiomes are not well understood, however, in recently fixed carbon through the uptake and catabolism of part because of the micrometer scale at which bacterial commu- phytoplankton metabolites. We sought to understand the rules by nities congregate. It remains unclear whether simple rules exist which marine bacterial communities assemble in these nutrient- that could predict the composition of these communities. enhanced phycospheres, specifically addressing the role of host Phycospheres are short-lived in the ocean, constrained by the resources in driving community coalescence. Synthetic systems with 1- to 2-d average life span of phytoplankton cells (20, 21). The varying combinations of known exometabolites of marine phyto- phycosphere bacterial communities must therefore form and dis- plankton were inoculated with seawater bacterial assemblages, and perse rapidly within a highly dynamic metabolite landscape (14). communities were transferred daily to mimic the average duration We hypothesized a simple rule for assembly in metabolically di- of natural phycospheres. We found that bacterial community verse phycospheres in which communities congregate as the sum assembly was predictable from linear combinations of the taxa of discrete metabolite guilds (22).
    [Show full text]
  • View a Copy of This Licence, Visit
    Raimundo et al. Microbiome (2021) 9:43 https://doi.org/10.1186/s40168-020-00970-2 RESEARCH Open Access Functional metagenomics reveals differential chitin degradation and utilization features across free-living and host-associated marine microbiomes I. Raimundo1†, R. Silva1†, L. Meunier1,2, S. M. Valente1, A. Lago-Lestón3, T. Keller-Costa1* and R. Costa1,4,5,6* Abstract Background: Chitin ranks as the most abundant polysaccharide in the oceans yet knowledge of shifts in structure and diversity of chitin-degrading communities across marine niches is scarce. Here, we integrate cultivation- dependent and -independent approaches to shed light on the chitin processing potential within the microbiomes of marine sponges, octocorals, sediments, and seawater. Results: We found that cultivatable host-associated bacteria in the genera Aquimarina, Enterovibrio, Microbulbifer, Pseudoalteromonas, Shewanella, and Vibrio were able to degrade colloidal chitin in vitro. Congruent with enzymatic activity bioassays, genome-wide inspection of cultivated symbionts revealed that Vibrio and Aquimarina species, particularly, possess several endo- and exo-chitinase-encoding genes underlying their ability to cleave the large chitin polymer into oligomers and dimers. Conversely, Alphaproteobacteria species were found to specialize in the utilization of the chitin monomer N-acetylglucosamine more often. Phylogenetic assessments uncovered a high degree of within-genome diversification of multiple, full-length endo-chitinase genes for Aquimarina and Vibrio strains, suggestive of a versatile chitin catabolism aptitude. We then analyzed the abundance distributions of chitin metabolism-related genes across 30 Illumina-sequenced microbial metagenomes and found that the endosymbiotic consortium of Spongia officinalis is enriched in polysaccharide deacetylases, suggesting the ability of the marine sponge microbiome to convert chitin into its deacetylated—and biotechnologically versatile—form chitosan.
    [Show full text]
  • Characterization of Alginate Lyase from Microbulbifer Mangrovi Sp. Nov
    Characterization of alginate lyase from Microbulbifer mangrovi sp. nov. DD-13T Thesis Submitted to Goa University For the degree of Doctor of Philosophy in Biotechnology by Ms. Poonam Vashist Department Of Biotechnology Goa University Taleigao- Goa 2014 Characterization of alginate lyase from Microbulbifer mangrovi sp. nov. DD-13T Thesis Submitted to Goa University For the degree of Doctor of Philosophy in Biotechnology by Ms. Poonam Vashist Under the supervision of: Dr. S. C. Ghadi Department Of Biotechnology Goa University Taleigao- Goa 2014 CERTIFICATE This is to certify that the thesis entitled “Characterization of alginate lyase from Microbulbifer mangrovi sp.nov. DD-13T” submitted by Ms. Poonam Vashist, for the award of the Degree of Doctor of Philosophy in Biotechnology is based on original studies carried out by him under my supervision. The thesis or any part thereof has not been submitted for any other degree or diploma in any university or institution. Place : Goa University Date : 25/06/2014 Dr. S.C. Ghadi (Research Guide) Professor, Department of Biotechnology Goa University, Goa -403 206, India STATEMENT As required by the Goa university ordinance OB-09.9(ii), I state that the present thesis entitled “Characterization of alginate lyase from Microbulbifer mangrovi sp.nov. DD-13T” is my original contribution and that the same has been submitted on any previous occasions for any degree. To best of my knowledge, the present study is the first comprehensive work of its kind from the area mentioned. The literature related to the problem investigated has been cited. Due acknowledgments have been made wherever facilities and suggestions have been availed of.
    [Show full text]