The Smuts of Wheat, Oats, Barley
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes
Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes For B.Sc. Botany 1st By Dr. Meenu Gupta Assistant Professor Botany J.D.W.C. Patna 1. Habit and Habitat of Ustilago: Ustilago, the largest genus of the family Ustilaginaceae is represented by more than 400 cosmopolitan species. Butler and Bisby (1958) reported 108 species from India. All species are parasitic and infect the floral parts of wheat, barley, oat, maize, sugarcane, Bajra, rye and wild grasses. The name Ustilago has been derived from a Latin word ustus meaning ‘burnt’ because the members of the genus produce black, sooty powdery mass of spores on the host plant parts imparting them a ‘burnt’ appearance. This black dusty mass of spores resembles soot or smut, therefore, commonly it is also known as smut fungus. The fungus is of much economic importance, because it causes heavy loss to various economically important plants. This genus is very common in U.P., Bihar, Punjab and Madhya Pradesh. 2. Symptoms of Ustilago: The symptoms appear only on the floral parts. The floral spikes turn black and remain filled with the smut spores. Ustilago produces two main types of symptoms: 1. The blackish powder of spores is easily blown away by the wind, leaving a bare stalk of inflorescence (Fig. 1 B). Species showing such symptoms are called loose smuts e.g., (a) Loose smut of oat caused by U. avenae (b) Loose smut of barley caused by U. nuda (c) Loose smut of wheat caused by U. nuda var. tritici. (Fig. 13A, B). (d) Loose smut of doob grass caused by U. -
Four Master Teachers Who Fostered American Turn-Of-The-(20<Sup>TH
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021 January–March 2021—Volume 136, pp. 1–58 https://doi.org/10.5248/136.1 Four master teachers who fostered American turn-of-the-(20TH)-century mycology and plant pathology Ronald H. Petersen Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville, TN 37919-1100 Correspondence to: [email protected] Abstract—The Morrill Act of 1862 afforded the US states the opportunity to found state colleges with agriculture as part of their mission—the so-called “land-grant colleges.” The Hatch Act of 1887 gave the same opportunity for agricultural experiment stations as functions of the land-grant colleges, and the “third Morrill Act” (the Smith-Lever Act) of 1914 added an extension dimension to the experiment stations. Overall, the end of the 19th century and the first quarter of the 20th was a time for growing appreciation for, and growth of institutional education in the natural sciences, especially botany and its specialties, mycology, and phytopathology. This paper outlines a particular genealogy of mycologists and plant pathologists representative of this era. Professor Albert Nelson Prentiss, first of Michigan State then of Cornell, Professor William Russel Dudley of Cornell and Stanford, Professor Mason Blanchard Thomas of Wabash College, and Professor Herbert Hice Whetzel of Cornell Plant Pathology were major players in the scenario. The supporting cast, the students selected, trained, and guided by these men, was legion, a few of whom are briefly traced here. Key words—“New Botany,” European influence, agrarian roots Chapter 1. Introduction When Dr. Lexemual R. -
Corn Smuts, RPD No
report on RPD No. 203 PLANT February 1990 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CORN SMUTS Corn smuts occur throughout the world. Common corn smut, caused by the fungus Ustilago zeae (synonym U. maydis), and head smut, caused by the fungus Sporisorium holci-sorghi (synonyms Sphacelotheca reiliana, Sorosporium reilianum and Sporisorium reilianum), are spectacular in appearance and easily distinguished. Common smut occurs worldwide wherever corn (maize) is grown, by presence of large conspicuous galls or replacement of grain kernels with smut sori. The quality of the remaining yield is often reduced by the presence of black smut spores on the surface of healthy kernels. COMMON SMUT Common smut is well known to all Illinois growers. The fungus attacks only corn–field corn (dent and flint), Indian or ornamental corn, popcorn, and sweet corn–and the closely related teosinte (Zea mays subsp. mexicana) but is most destructive to sweet corn. The smut is most prevalent on young, actively growing plants that have Figure 1. Infection of common corn smut been injured by detasseling in seed fields, hail, blowing soil or and on the ear. Smut galls are covered by the particles, insects, “buggy-whipping”, and by cultivation or spraying silvery white membrane. equipment. Corn smut differs from other cereal smuts in that any part of the plant above ground may be attacked, from the seedling stage to maturity. Losses from common smut are highly variable and rather difficult to measure, ranging from a trace up to 10 percent or more in localized areas. In rare cases, the loss in a particular field of sweet corn may approach 100 percent. -
CONTROL of SMUT in WHEAT and OTHER SMALL GRAINS by H
Bulletin No. 116 June, 1931 Montana State College, Extension Service, J. C. Taylor, Director, Cooperative Extension Work in Agriculture and Home Economics. Montana State College and Uni~ed States Department of Agriculture, co-operating. Distributed in furtherance of the Acts of Congress ~ay 8 and June 30, 1.914. ~ CONTROL OF SMUT IN WHEAT AND OTHER SMALL GRAINS By H. E. Morris, Extension Plant Pathologist Waldo Kidder, Extension Agronomist Smuts cost the farmers of Montana many thousands of dollars each year. In 1930, stinking smut of wheat alone caused a loss of approximately $750;000, due to decreased yields and to a lower price per bushel. This loss and also that due to the smuts {..:Fig. 1. Smutted and normal heads of wheat. The head at the left ,is a typi:cal head affected with covered or stinking smut, The next, head IS a he'althy head. The two heads on the right show two stages of the loose smut in wheat. (-Courtesy,D. S. Dept. of Agr.) . ,( 2 MONTANA EXTENSION SERVICE of oats, barley and rye may be largely prevented by adopting the methods of seed treatment described in this bulletin. What Is Smut Smut is produced by a small parasitic plant, mould-like in appearance, belonging to a group called fungi (Fig. 2). Smut lives most of its life within and at the expense of the wheat plant. The smut powder, so familiar to all, is composed of myriads of spores which correspond to seeds in the higher plants. In the process of harvesting and threshing, these spores are dis· I Fig'. -
Archaeobotanical Evidence of the Fungus Covered Smut (Ustilago Hordei) in Jordan and Egypt
ANALECTA Thijs van Kolfschoten, Wil Roebroeks, Dimitri De Loecker, Michael H. Field, Pál Sümegi, Kay C.J. Beets, Simon R. Troelstra, Alexander Verpoorte, Bleda S. Düring, Eva Visser, Sophie Tews, Sofia Taipale, Corijanne Slappendel, Esther Rogmans, Andrea Raat, Olivier Nieuwen- huyse, Anna Meens, Lennart Kruijer, Harmen Huigens, Neeke Hammers, Merel Brüning, Peter M.M.G. Akkermans, Pieter van de Velde, Hans van der Plicht, Annelou van Gijn, Miranda de Kreek, Eric Dullaart, Joanne Mol, Hans Kamermans, Walter Laan, Milco Wansleeben, Alexander Verpoorte, Ilona Bausch, Diederik J.W. Meijer, Luc Amkreutz, Bertil van Os, Liesbeth Theunissen, David R. Fontijn, Patrick Valentijn, Richard Jansen, Simone A.M. Lemmers, David R. Fontijn, Sasja A. van der Vaart, Harry Fokkens, Corrie Bakels, L. Bouke van der Meer, Clasina J.G. van Doorn, Reinder Neef, Federica Fantone, René T.J. Cappers, Jasper de Bruin, Eric M. Moormann, Paul G.P. PRAEHISTORICA Meyboom, Lisa C. Götz, Léon J. Coret, Natascha Sojc, Stijn van As, Richard Jansen, Maarten E.R.G.N. Jansen, Menno L.P. Hoogland, Corinne L. Hofman, Alexander Geurds, Laura N.K. van Broekhoven, Arie Boomert, John Bintliff, Sjoerd van der Linde, Monique van den Dries, Willem J.H. Willems, Thijs van Kolfschoten, Wil Roebroeks, Dimitri De Loecker, Michael H. Field, Pál Sümegi, Kay C.J. Beets, Simon R. Troelstra, Alexander Verpoorte, Bleda S. Düring, Eva Visser, Sophie Tews, Sofia Taipale, Corijanne Slappendel, Esther Rogmans, Andrea Raat, Olivier Nieuwenhuyse, Anna Meens, Lennart Kruijer, Harmen Huigens, Neeke Hammers, Merel Brüning, Peter M.M.G. Akkermans, Pieter van de Velde, Hans van der Plicht, Annelou van Gijn, Miranda de Kreek, Eric Dullaart, Joanne Mol, Hans Kamermans, Walter Laan, Milco Wansleeben, Alexander Verpoorte, Ilona Bausch, Diederik J.W. -
Corn Smuts S
A Pacific Northwest Extension Publication Oregon State University • University of Idaho • Washington State University PNW 647 • July 2013 Corn Smuts S. K. Mohan, P. B. Hamm, G. H. Clough, and L. J. du Toit orn smuts are widely distributed throughout the world. The incidence of corn smuts in the Pacific Northwest (PNW) varies Cby location and is usually low. Nonetheless, these diseases occasionally cause significant economic losses when susceptible cultivars are grown under conditions favorable for disease development. Smut diseases of corn are, in general, more destructive to sweet corn than to field corn. The term smut is derived from the powdery, dark brown to black, soot-like mass of spores produced in galls. These galls can form on various plant parts. Three types of smut infect corn—common smut, caused by Ustilago maydis (= Ustilago zeae); head smut, caused by Sphacelotheca reiliana; and false smut, caused by Ustilaginoidea virens. False smut is not a concern in the PNW, so this publication deals University S. Krishna by State Mohan,Photo © Oregon only with common and head smuts. Figure 1. Common smut galls on an ear of sweet corn. Each gall represents a single kernel infected by the common Common smut smut fungus. Common smut is caused by the fungal pathogen U. maydis and is also known as boil smut or blister smut (Figure 1). Common smut occurs throughout PNW corn production areas, although it is less common in western Oregon and western Washington than east of the Cascade Mountains. Infection in commercial plantings may result in considerable damage and yield loss in some older sweet corn cultivars, but yield loss in some of the newer, less susceptible cultivars is rarely significant. -
Color Plates
Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper. -
Control of Loose Smut of Barley Richard Mullington Lewis Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1962 Control of loose smut of barley Richard Mullington Lewis Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Plant Pathology Commons Recommended Citation Lewis, Richard Mullington, "Control of loose smut of barley " (1962). Retrospective Theses and Dissertations. 2102. https://lib.dr.iastate.edu/rtd/2102 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 63-1587 microfilmed exactly as received LEWIS, Richard Mullington, 1920- CONTROL OF LOOSE SMUT OF BARLEY. Iowa State University of Science and Technology Ph.D., 1962 Agriculture, plant pathology University Microfilms, Inc., Ann Arbor, Michigan CONTROL OF LOOSE SMUT OF BARLEY by Richard Mullington Lewis A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Plant Pathology Approved: Signature was redacted for privacy. In Charge of Major Signature was redacted for privacy. Head of Major D rtment Signature was redacted for privacy. D^ân of Grad lollege Iowa State University Of Science and Technology Ames, Iowa 1962 ii TABLE OF CONTENTS Page INTRODUCTION 1 PERTINENT LITERATURE 3 MATERIALS AND METHODS 6 Materials 6 Methods of Application 7 Seed Treatment Evaluations 12 EXPERIMENTAL RESULTS 15 1952 Results 15 1953 Results 18 195m- Results 24 1955 Results 39 DISCUSSION 41 SUMMARY AND CONCLUSIONS 48 LITERATURE CITED 51 ACKNOWLEDGEMENTS 53 APPENDIX 54 iii LIST OF TABLES Page Table 1. -
Iodiversity of Australian Smut Fungi
Fungal Diversity iodiversity of Australian smut fungi R.G. Shivas'* and K. Vanky2 'Queensland Department of Primary Industries, Plant Pathology Herbarium, 80 Meiers Road, Indooroopilly, Queensland 4068, Australia 2 Herbarium Ustilaginales Vanky, Gabriel-Biel-Str. 5, D-72076 Tiibingen, Germany Shivas, R.G. and Vanky, K. (2003). Biodiversity of Australian smut fungi. Fungal Diversity 13 :137-152. There are about 250 species of smut fungi known from Australia of which 95 are endemic. Fourteen of these endemic species were first collected in the period culminating with the publication of Daniel McAlpine's revision of Australian smut fungi in 1910. Of the 68 species treated by McAlpine, 10 were considered to be endemic to Australia at that time. Only 23 of the species treated by McAlpine have names that are currently accepted. During the following eighty years until 1990, a further 31 endemic species were collected and just 11 of these were named and described in that period. Since 1990, 50 further species of endemic smut fungi have been collected and named in Australia. There are 115 species that are restricted to either Australia or to Australia and the neighbouring countries of Indonesia, New Zealand, Papua New Guinea and the Philippines . These 115 endemic species occur in 24 genera, namely Anthracoidea (1 species), Bauerago (1), Cintractia (3), Dermatosorus (1), Entyloma (3), Farysporium (1), Fulvisporium (1), Heterotolyposporium (1), Lundquistia (1), Macalpinomyces (4), Microbotryum (2), Moreaua (20), Pseudotracya (1), Restiosporium (5), Sporisorium (26), Thecaphora (2), Tilletia (12), Tolyposporella (1), Tranzscheliella (1), Urocystis (2), Ustanciosporium (1), Ustilago (22), Websdanea (1) and Yelsemia (2). About a half of these local and regional endemic species occur on grasses and a quarter on sedges. -
Comparative Analysis of the Maize Smut Fungi Ustilago Maydis and Sporisorium Reilianum
Comparative Analysis of the Maize Smut Fungi Ustilago maydis and Sporisorium reilianum Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Bernadette Heinze aus Johannesburg Marburg / Lahn 2009 Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation angenommen am: Erstgutachterin: Prof. Dr. Regine Kahmann Zweitgutachter: Prof. Dr. Michael Bölker Tag der mündlichen Prüfung: Die Untersuchungen zur vorliegenden Arbeit wurden von März 2003 bis April 2007 am Max-Planck-Institut für Terrestrische Mikrobiologie in der Abteilung Organismische Interaktionen unter Betreuung von Dr. Jan Schirawski durchgeführt. Teile dieser Arbeit sind veröffentlicht in : Schirawski J, Heinze B, Wagenknecht M, Kahmann R . 2005. Mating type loci of Sporisorium reilianum : Novel pattern with three a and multiple b specificities. Eukaryotic Cell 4:1317-27 Reinecke G, Heinze B, Schirawski J, Büttner H, Kahmann R and Basse C . 2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Molecular Plant Pathology 9(3): 339-355. Erklärung Erklärung Ich versichere, dass ich meine Dissertation mit dem Titel ”Comparative analysis of the maize smut fungi Ustilago maydis and Sporisorium reilianum “ selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Diese Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient. Ort, Datum Bernadette Heinze In memory of my fathers Jerry Goodman and Christian Heinze. “Every day I remind myself that my inner and outer life are based on the labors of other men, living and dead, and that I must exert myself in order to give in the same measure as I have received and am still receiving. -
Oat Smuts RPD No
report on RPD No. 114 PLANT December 1988 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN OAT SMUTS There are two smuts of oats, loose smut and covered smut. They look very much alike and occur worldwide wherever the crop is grown. Diseased plants cannot be recognized in the field before the oats head out. Before wide acceptance of fungicide seed treatment and release of highly resistant oat varieties, both loose and covered smuts were found wherever this crop was grown in Illinois. When disease outbreaks are heavy, both yield and quality of grain may be highly reduced. Loose smut (or black loose smut), caused by the fungus Ustilago avenae, is quite conspicuous (Figure 1). In individual fields planted to susceptible varieties in Illinois, smut has been reported on as many as 25 percent, or more, of the plants. Data collected for a 15-year period in the state indicate an average annual loose smut infection of 2 percent of the heads or panicles. Covered smut, caused by the closely related fungus Ustilago kolleri (synonyms U. hordei and U. levis), was found in a trace to 3 percent of the heads. The 15-year data show an average annual Figure 1. Oat smut. (1) healthy plant; 2, 3, 4) covered smut infection of slightly more than 1 percent in the smutted panicles; in 4 some of the spores have state. already dispersed. Covered smut may be as abundant as loose smut in Illinois oat fields. Because of the difficulty in distinguishing the two smuts, some of the loss attributed to loose smut is undoubtedly caused by covered smut. -
The Smut Fungi, Morphological Diff Erent to the Type of the Genus Tolyposporium, I Again Studied the Two Moesziomyces Species and Came to the T
MYCOLOGIA BALCANICA 2: 105–111 (2005) 105 Th e smut fungi (Ustilaginomycetes) of Eriocaulaceae. I. Eriomoeszia gen. nov. Kálmán Vánky Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany (e-mail: [email protected]) Received 7 May 2005 / Accepted 14 May 2005 Abstract. A new genus, Eriomoeszia, is described for Tolyposporium eriocauli (Moesziomyces eriocauli) on Eriocaulon. It is compared with Moesziomyces bullatus, the type species of the genus Moesziomyces, found on Echinochloa and other grass genera. Key words: Eriocaulon, Eriomoeszia, Moesziomyces bullatus, new genus, smut fungi, Ustilaginomycetes Introduction also supported by molecular analyses (comp. Begerow et al. 1998, Figs 2-3). Initially, three other similar smut fungi, According to Heywood (1978: 281), the Eriocaulaceae, within parasitising various grass genera, were recombined into the the subclass Commelinidae, order Commelinales, is a largish genus Moesziomyces. Th ese are: M. evernius (Syd.) Vánky, type family of herbaceous plants, usually with grass-like leaves. It on Paspalum distichum L., M. globuligerus (Berk. & Broome) comprises 13 genera and about 1200 species. It is centred Vánky, type on Leersia hexandra Swartz, and M. penicillariae in the New World, but found throughout the tropics and (Bref.) Vánky, type on Penicillaria spicata Willd. subtropics, usually on swampy or seasonally water inundated In a later study of the genus (Vánky 1986), it was not ground. Its systemic position varies considerably according possible to construct a good key to diff erentiate the four to author. Takhtajan (1996: 18) places the Eriocaulaceae species of Moesziomyces; the morphological diff erences being in the order Eriocaulales, superorder Commelinanae of small, or possibly non-existent.