Basidiomycota

Total Page:16

File Type:pdf, Size:1020Kb

Basidiomycota COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE BASIDIOMYCOTA BY BANGAMOTI HANSDA ASSISTANT PROFESSOR DEPARTMENT OF BOTANY NARAJOLE RAJ COLLEGE BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE GENERAL CHARACTERISTICS The members included in the subdivision Basidiomycotina are characterised by the formation of basidiospores exogenously on the basidium and absence of flagelleted structure. The members include rusts, smuts, mushrooms, puffs balls, toad stools, bracket fungi etc. Presence of well developed, branched and septate mycelium having simple (e.g. Ustilaginales &Uredinales) or dolipore (e.g. Aphyllophorales & Auriculariaceae) septum. The mycelial cells may contain one nucleus, called monokaryotic i.e. primary mycelium or two nuclei, called dikaryotic i.e. secondary mycelium. The secondary mycelia may organise and form fruit body, called tertiary. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE The cell wall is mainly composed of chitin and glucans. Reproduction: (a) Vegetative reproduction takes place by budding and fragmentation. (b) Asexual reproduction takes place by conidia , oidia or chlamydospores that are absent in some higher taxa of this subdivision. (c) Sex organs are absent. During sexual reproduction, the dikaryotic cell is formed by somatogamy, spermatization or by buller phenomenon. Karyogamy occurs in basidium mother cell and forms diploid nucleus which is ephemeral. Basidiospores (4-haploid) are developed exogenously on the horn shaped structure, called sterigmata on the basidium. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE Ecology of basidiomycota Basidiomycota are found in virtually all terrestrial ecosystems, as well as freshwater and marine habitats. They are an ecological and taxonomically diverse group. Most are. able to utilize simple carbohydrates, while filamentous species can decompose cellulose, hemicellulose and lignin. Many Basidiomycota obtain nutrition by decaying dead organic matter, including wood and leaf litter. Unfortunately, Basidiomycota frequently attack the wood in buildings and other structures, which has negative economic consequences for humans. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE Systematic Position of Puccinia graminis tritici (Ainsworth, 1973) Puccinia graminis tritici is a heteroceious, macrocyclic, polymorphic and obligate parasite. It requires two host to finish its life cycle- The wheat plant (Triticum aestivum) The Barberry plant (Berberis vulgaris) Kingdom- Mycota Division- Basidiomycota Subdivision- Basidiomycotina Class-Teliomycetes Order- Uredinales Family- Pucciniaceae Genus- Puccinia Species- graminis tritci BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE Symptoms on wheat plant Characterized by the presence of uredinia on the plant, which are brick-red, elongated, blister-like pustules that are easily shaken off. They most frequently occur on the leaf sheaths, but are also found on stems, leaves, glumes and awns. On leaf sheaths and glumes pustules rupture the epidermis, giving a ragged appearance. Towards the end of the growing season black telia are produced. For this reason stem rust is also known as 'black rust‘. The telia are firmly attached to the plant tissue. Symptoms on Barberry plant Pycnia appear on barberry plants in the spring, usually in the upper leaf surfaces. They are often in small clusters and exude pycniospores in a sticky honeydew. Five to ten days later, cup-shaped structures filled with orange- yellow, powdery aeciospores break through the lower leaf surface. The aecial cups are yellow and sometimes elongate to extend up to 5 mm from the leaf surface. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE The pathogen (Puccinia graminis tritici) can survive on straw of wheat plant, (the primary host), for several months as teleutospores, which then transfer the disease to the barberry (the alternate host). Teleutospores, on germination, produce the basidiospores of two opposite strains i.e., 2 of (+) type and other 2 of (-) type. Basidiospores are dispersed by wind and fall on the berberry plant and infect mainly the leaves. Pycnia (+ and – type) are produced on the upper epidermis of the leaflet by the (+) and (– )type basidiospores, respectively. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE After spermatisation between pycnospore and receptive hypha, and with the help of raindrop or insect, dikaryotic condition is established resulting into the formation of aecia and aeciospores development in different aecium are of the same type. After release from the barberry leaflet with the help of wind, it falls on the surface of wheat plant and after infection it produces uredosorus containing uredospores. Then uredospores infect different region of the same plant or the different plants and develop next crop of uredospores in the same season. This is the secondary cycle which may repeat several times in the growing season. At the end of the growing season i.e. during February to March, infection of uredospores takes place, but instead of developing uredosorus it develops teleutosorus containing teleutospores and thus complete the disease cycle. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE Teleutospore is the thick- Each Basidiospores contain a Pycniospores are walled resting spore of haploid nucleus that is the produced in special cup- some fungi from which product of meiosis and like structures called the basidium arises. attached to the basidium by pycnia or pynidia. short spikes called sterigmata. Different type spores Aeciospores have two nuclei Uredospores are thin-walled and are typically seen in chain- spores produced by the uredium, like formations in the aecium. a stage in the life-cycle of rusts. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE Loose Smut disease Loose smut of barley is caused by Ustilago nuda. but there are many strains of Ustilago which infect many different cereal crops in a similar manner. Ustilago tritici, causes loose smut of wheat. Systematic Position of Ustilago nuda: Kingdom- Fungi Division- Basidiomycota Class- Ustilaginomycetes Order- Ustilaginales Family- Ustilaginaceae Genus- Ustilago Species- nuda BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE Symptoms: .The major symptom of loose smut is the "smutted" grain heads, which contain masses of black or brown spores where the grain would normally be. .The spores completely replace the grain head so that there is no grain to be harvested on infected plants. .The fungus causes infected plants to grow slightly taller and mature slightly sooner than the uninfected plants in the field. .Since it must infect through the open florets, this gives the fungus a competitive advantage by allowing it to fall down to the healthy plants and ensuring that the fungus has a little extra time to produce and disperse spores before the florets of the healthy plants open. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE Disease Cycle of Loose smut The disease cycle of loose smut begins when teliospores are blown to open flowers and infect the ovary either through the stigma or directly through the ovary wall. There are multiple mating types for Ustilago spp. So infection will only occur if two compatible mating types are present in the same flower. After landing in an open floret, the teliospores give rise to basidiospores. Without dispersing to any alternate host plant, the basidiospores germinate right where they are. The hyphae of two compatible basidiospores then fuse to establish a dikarytic stage. After germination inside the ovary, the fungal mycelia invade the developing embryo in the seed. The fungus stays alive in the seed until the next growing season, when it is planted along with the seed. As the developing plant grows, the fungus grows with it. Once it's time for the flowers to form, teliospores are produced in place of the flowers and develop where the grain would be. BOATNY: SEM-II, PAPER-C 3T: MYCOLOGY AND PHYTOPATHOLOGY, UNIT 4: BASIDIOMYCOTA COMPILED AND
Recommended publications
  • Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes
    Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes For B.Sc. Botany 1st By Dr. Meenu Gupta Assistant Professor Botany J.D.W.C. Patna 1. Habit and Habitat of Ustilago: Ustilago, the largest genus of the family Ustilaginaceae is represented by more than 400 cosmopolitan species. Butler and Bisby (1958) reported 108 species from India. All species are parasitic and infect the floral parts of wheat, barley, oat, maize, sugarcane, Bajra, rye and wild grasses. The name Ustilago has been derived from a Latin word ustus meaning ‘burnt’ because the members of the genus produce black, sooty powdery mass of spores on the host plant parts imparting them a ‘burnt’ appearance. This black dusty mass of spores resembles soot or smut, therefore, commonly it is also known as smut fungus. The fungus is of much economic importance, because it causes heavy loss to various economically important plants. This genus is very common in U.P., Bihar, Punjab and Madhya Pradesh. 2. Symptoms of Ustilago: The symptoms appear only on the floral parts. The floral spikes turn black and remain filled with the smut spores. Ustilago produces two main types of symptoms: 1. The blackish powder of spores is easily blown away by the wind, leaving a bare stalk of inflorescence (Fig. 1 B). Species showing such symptoms are called loose smuts e.g., (a) Loose smut of oat caused by U. avenae (b) Loose smut of barley caused by U. nuda (c) Loose smut of wheat caused by U. nuda var. tritici. (Fig. 13A, B). (d) Loose smut of doob grass caused by U.
    [Show full text]
  • Puccinia Psidii Winter MAY10 Tasmania (C)
    MAY10Pathogen of the month – May 2010 a b c Fig. 1. Puccinia psidii; (a) Symptoms on Eucalyptus grandis seedling; (b) Stem distortion and multiple branching caused by repeated infections of E. grandis, (c) Syzygium jambos; (d) Psidium guajava; (e) Urediniospores. Photos: A. Alfenas, Federal University of Viçosa, Brazil (a, b,d and e) and M. Glen, University of Tasmania (c). Common Name: Guava rust, Eucalyptus rust d e Winter Disease: Rust in a wide range of Myrtaceous species Classification: K: Fungi, D: Basidiomycota, C: Pucciniomycetes, O: Pucciniales, F: Pucciniaceae Puccinia psidii (Fig. 1) is native to South America and is not present in Australia. It causes rust on a wide range of plant species in the family Myrtaceae. First described on guava, P. psidii became a significant problem in eucalypt plantations in Brazil and also requires control in guava orchards. A new strain of the rust severely affected the allspice industry in Jamaica in the 1930s. P. psidii has spread to Florida, California and Hawaii. In 2007, P. psidii arrived in Japan, on Metrosideros polymorpha cuttings imported from Hawaii. Host Range: epiphytotics on Syzygium jambos in Hawaii, with P. psidii infects young leaves, shoots and fruits of repeated defoliations able to kill 12m tall trees. many species of Myrtaceae. Key Distinguishing Features: Impact: Few rusts are recorded on Myrtaceae. These include In the wild, in its native range, P. psidii has only a P. cygnorum, a telial rust on Kunzea ericifolia, and minor effect. As eucalypt plantations in Brazil are Physopella xanthostemonis on Xanthostemon spp. in largely clonal, impact in areas with a suitable climate Australia.
    [Show full text]
  • The Diversity of Basidiomycota Fungi That Have the Potential As a Source of Nutraceutical to Be Developed in the Concept of Integrated Forest Management Poisons
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2S, July 2019 The Diversity of Basidiomycota Fungi that Have the Potential as a Source of Nutraceutical to be Developed in the Concept of Integrated Forest Management Mustika Dewi, I Nyoman Pugeg Aryantha, Mamat Kandar straw mushrooms, oyster mushrooms, and shiitake Abstract: The fungus Basidiomycota found in Indonesia have mushrooms. very high diversity, but have not been explored so far. The development of local Basidiomycota mushrooms that Development of fungi Basidiomycota is an alternative as a are cultivated by utilizing space on the forest floor has not source of natural nutraceuticals, especially beta glucan and been done mostly in Indonesia. In several countries such as lovastatin compounds. This compound can be used in the pharmaceutical and food fields. This study aims to obtain Japan, people have long been cultivating shitake mushrooms Basidiomycota fungi isolates that have the potential as a by utilizing forest floors. Reported by (Savoie & Largeteau, nutraceutical source. As the first stage in this research, the 2011) that mushrooms from the Basidiomycota group are activities carried out were exploration, isolation on culture widely produced in forest areas through the utilization of media, and identification of fungi based on genotypic forest floors as a place to grow these fungi which have characters. The results showed that the fungi identified based on economic value quite high by applying the concept of their genotypic characters were Pleurotusostreatus, Ganodermacf, Resinaceum, Lentinulaedodes, micosilviculture. The concept of micosilviculture is a Vanderbyliafraxinea, Auricularia delicate, Pleurotusgiganteus, concept that is applied in the management of integrated Auricularia sp.
    [Show full text]
  • CONTROL of SMUT in WHEAT and OTHER SMALL GRAINS by H
    Bulletin No. 116 June, 1931 Montana State College, Extension Service, J. C. Taylor, Director, Cooperative Extension Work in Agriculture and Home Economics. Montana State College and Uni~ed States Department of Agriculture, co-operating. Distributed in furtherance of the Acts of Congress ~ay 8 and June 30, 1.914. ~ CONTROL OF SMUT IN WHEAT AND OTHER SMALL GRAINS By H. E. Morris, Extension Plant Pathologist Waldo Kidder, Extension Agronomist Smuts cost the farmers of Montana many thousands of dollars each year. In 1930, stinking smut of wheat alone caused a loss of approximately $750;000, due to decreased yields and to a lower price per bushel. This loss and also that due to the smuts {..:Fig. 1. Smutted and normal heads of wheat. The head at the left ,is a typi:cal head affected with covered or stinking smut, The next, head IS a he'althy head. The two heads on the right show two stages of the loose smut in wheat. (-Courtesy,D. S. Dept. of Agr.) . ,( 2 MONTANA EXTENSION SERVICE of oats, barley and rye may be largely prevented by adopting the methods of seed treatment described in this bulletin. What Is Smut Smut is produced by a small parasitic plant, mould-like in appearance, belonging to a group called fungi (Fig. 2). Smut lives most of its life within and at the expense of the wheat plant. The smut powder, so familiar to all, is composed of myriads of spores which correspond to seeds in the higher plants. In the process of harvesting and threshing, these spores are dis· I Fig'.
    [Show full text]
  • Molecular Phylogeny of Ustilago and Sporisorium Species (Basidiomycota, Ustilaginales) Based on Internal Transcribed Spacer (ITS) Sequences1
    Color profile: Disabled Composite Default screen 976 Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences1 Matthias Stoll, Meike Piepenbring, Dominik Begerow, Franz Oberwinkler Abstract: DNA sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA genes were used to determine a phylogenetic relationship between the graminicolous smut genera Ustilago and Sporisorium (Ustilaginales). Fifty-three members of both genera were analysed together with three related outgroup genera. Neighbor-joining and Bayesian inferences of phylogeny indicate the monophyly of a bipartite genus Sporisorium and the monophyly of a core Ustilago clade. Both methods confirm the recently published nomenclatural change of the cane smut Ustilago scitaminea to Sporisorium scitamineum and indicate a putative connection between Ustilago maydis and Sporisorium. Overall, the three clades resolved in our analyses are only weakly supported by morphological char- acters. Still, their preferences to parasitize certain subfamilies of Poaceae could be used to corroborate our results: all members of both Sporisorium groups occur exclusively on the grass subfamily Panicoideae. The core Ustilago group mainly infects the subfamilies Pooideae or Chloridoideae. Key words: basidiomycete systematics, ITS, molecular phylogeny, Bayesian analysis, Ustilaginomycetes, smut fungi. Résumé : Afin de déterminer la relation phylogénétique des genres Ustilago et Sporisorium (Ustilaginales), responsa- bles du charbon chez les graminées, les auteurs ont utilisé les données de séquence de la région espaceur transcrit interne (ITS) des gènes nucléiques ADNr. Ils ont analysé 53 membres de ces genres, ainsi que trois genres apparentés. Les liens avec les voisins et l’inférence bayésienne de la phylogénie indiquent la monophylie d’un genre Sporisorium bipartite et la monophylie d’un clade Ustilago central.
    [Show full text]
  • The Smut Fungi Determined in Aladağlar and Bolkar Mountains (Turkey)
    MANTAR DERGİSİ/The Journal of Fungus Ekim(2019)10(2)82-86 Geliş(Recevied) :21/03/2019 Araştırma Makalesi/Research Article Kabul(Accepted) :08/05/2019 Doi:10.30708.mantar.542951 The Smut Fungi Determined in Aladağlar and Bolkar Mountains (Turkey) Şanlı KABAKTEPE1, Ilgaz AKATA*2 *Corresponding author: [email protected] ¹Malatya Turgut Ozal University, Battalgazi Vocat Sch., Battalgazi, Malatya, Turkey. Orcid. ID:0000-0001-8286-9225/[email protected] ²Ankara University, Faculty of Science, Department of Biology, Tandoğan, Ankara, Turkey, Orcid ID:0000-0002-1731-1302/[email protected] Abstract: In this study, 17 species of smut fungi and their hosts, which were found in Aladağlar and Bolkar mountains were described. The research was carried out between 2013 and 2016. The 17 species of microfungi were observed on a total of 16 distinct host species from 3 families and 14 genera. The smut fungi determined from the study area are distributed in 8 genera, 5 families and 3 orders and 2 classes. Melanopsichium eleusines (Kulk.) Mundk. & Thirum was first time recorded for Turkish mycobiota. Key words: smut fungi, biodiversity, Aladağlar and Bolkar mountains, Turkey Aladağlar ve Bolkar Dağları (Türkiye)’ndan Belirlenen Sürme Mantarları Öz: Bu çalışmada, Aladağlar ve Bolkar dağlarında bulunan 17 sürme mantar türü ve konakçıları tanımlanmıştır. Araştırma 2013-2016 yılları arasında gerçekleştirilmiş, 3 familya ve 14 cinsten toplam 16 farklı konakçı türü üzerinde 17 mikrofungus türü gözlenmiştir. Çalışma alanından belirlenen sürme mantarları 8 cins, 5 familya ve 3 takım ve 2 sınıf içinde dağılım göstermektedir. Melanopsichium eleusines (Kulk.) Mundk. & Thirum ilk kez Türkiye mikobiyotası için kaydedilmiştir.
    [Show full text]
  • <I>Ustilago-Sporisorium-Macalpinomyces</I>
    Persoonia 29, 2012: 55–62 www.ingentaconnect.com/content/nhn/pimj REVIEW ARTICLE http://dx.doi.org/10.3767/003158512X660283 A review of the Ustilago-Sporisorium-Macalpinomyces complex A.R. McTaggart1,2,3,5, R.G. Shivas1,2, A.D.W. Geering1,2,5, K. Vánky4, T. Scharaschkin1,3 Key words Abstract The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species smut fungi placement. Previous studies have indicated that the genera cannot be separated based on morphology alone. systematics Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its Ustilaginaceae resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological ap- proach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi. Article info Received: 18 May 2012; Accepted: 3 October 2012; Published: 27 November 2012. INTRODUCTION TAXONOMIC HISTORY Three genera of smut fungi (Ustilaginomycotina), Ustilago, Ustilago Spo ri sorium and Macalpinomyces, contain about 540 described Ustilago, derived from the Latin ustilare (to burn), was named species (Vánky 2011b). These three genera belong to the by Persoon (1801) for the blackened appearance of the inflores- family Ustilaginaceae, which mostly infect grasses (Begerow cence in infected plants, as seen in the type species U.
    [Show full text]
  • The History, Fungal Biodiversity, Conservation, and Future Volume 1 · No
    IMA FungUs · vOlume 1 · no 2: 123–142 The history, fungal biodiversity, conservation, and future ARTICLE perspectives for mycology in Egypt Ahmed M. Abdel-Azeem Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt; e-mail: [email protected] Abstract: Records of Egyptian fungi, including lichenized fungi, are scattered through a wide array Key words: of journals, books, and dissertations, but preliminary annotated checklists and compilations are not checklist all readily available. This review documents the known available sources and compiles data for more distribution than 197 years of Egyptian mycology. Species richness is analysed numerically with respect to the fungal diversity systematic position and ecology. Values of relative species richness of different systematic and lichens ecological groups in Egypt compared to values of the same groups worldwide, show that our knowledge mycobiota of Egyptian fungi is fragmentary, especially for certain systematic and ecological groups such as species numbers Agaricales, Glomeromycota, and lichenized, nematode-trapping, entomopathogenic, marine, aquatic and coprophilous fungi, and also yeasts. Certain groups have never been studied in Egypt, such as Trichomycetes and black yeasts. By screening available sources of information, it was possible to delineate 2281 taxa belonging to 755 genera of fungi, including 57 myxomycete species as known from Egypt. Only 105 taxa new to science have been described from Egypt, one belonging to Chytridiomycota, 47 to Ascomycota, 55 to anamorphic fungi and one to Basidiomycota. Article info: Submitted: 10 August 2010; Accepted: 30 October 2010; Published: 10 November 2010. INTRODUCTION which is currently accepted as a working figure although recognized as conservative (Hawksworth 2001).
    [Show full text]
  • Archaeobotanical Evidence of the Fungus Covered Smut (Ustilago Hordei) in Jordan and Egypt
    ANALECTA Thijs van Kolfschoten, Wil Roebroeks, Dimitri De Loecker, Michael H. Field, Pál Sümegi, Kay C.J. Beets, Simon R. Troelstra, Alexander Verpoorte, Bleda S. Düring, Eva Visser, Sophie Tews, Sofia Taipale, Corijanne Slappendel, Esther Rogmans, Andrea Raat, Olivier Nieuwen- huyse, Anna Meens, Lennart Kruijer, Harmen Huigens, Neeke Hammers, Merel Brüning, Peter M.M.G. Akkermans, Pieter van de Velde, Hans van der Plicht, Annelou van Gijn, Miranda de Kreek, Eric Dullaart, Joanne Mol, Hans Kamermans, Walter Laan, Milco Wansleeben, Alexander Verpoorte, Ilona Bausch, Diederik J.W. Meijer, Luc Amkreutz, Bertil van Os, Liesbeth Theunissen, David R. Fontijn, Patrick Valentijn, Richard Jansen, Simone A.M. Lemmers, David R. Fontijn, Sasja A. van der Vaart, Harry Fokkens, Corrie Bakels, L. Bouke van der Meer, Clasina J.G. van Doorn, Reinder Neef, Federica Fantone, René T.J. Cappers, Jasper de Bruin, Eric M. Moormann, Paul G.P. PRAEHISTORICA Meyboom, Lisa C. Götz, Léon J. Coret, Natascha Sojc, Stijn van As, Richard Jansen, Maarten E.R.G.N. Jansen, Menno L.P. Hoogland, Corinne L. Hofman, Alexander Geurds, Laura N.K. van Broekhoven, Arie Boomert, John Bintliff, Sjoerd van der Linde, Monique van den Dries, Willem J.H. Willems, Thijs van Kolfschoten, Wil Roebroeks, Dimitri De Loecker, Michael H. Field, Pál Sümegi, Kay C.J. Beets, Simon R. Troelstra, Alexander Verpoorte, Bleda S. Düring, Eva Visser, Sophie Tews, Sofia Taipale, Corijanne Slappendel, Esther Rogmans, Andrea Raat, Olivier Nieuwenhuyse, Anna Meens, Lennart Kruijer, Harmen Huigens, Neeke Hammers, Merel Brüning, Peter M.M.G. Akkermans, Pieter van de Velde, Hans van der Plicht, Annelou van Gijn, Miranda de Kreek, Eric Dullaart, Joanne Mol, Hans Kamermans, Walter Laan, Milco Wansleeben, Alexander Verpoorte, Ilona Bausch, Diederik J.W.
    [Show full text]
  • Color Plates
    Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper.
    [Show full text]
  • Population Biology of Switchgrass Rust
    POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) By GABRIELA KARINA ORQUERA DELGADO Bachelor of Science in Biotechnology Escuela Politécnica del Ejército (ESPE) Quito, Ecuador 2011 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2014 POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) Thesis Approved: Dr. Stephen Marek Thesis Adviser Dr. Carla Garzon Dr. Robert M. Hunger ii ACKNOWLEDGEMENTS For their guidance and support, I express sincere gratitude to my supervisor, Dr. Marek, who has supported thought my thesis with his patience and knowledge whilst allowing me the room to work in my own way. One simply could not wish for a better or friendlier supervisor. I give special thanks to M.S. Maxwell Gilley (Mississippi State University), Dr. Bing Yang (Iowa State University), Arvid Boe (South Dakota State University) and Dr. Bingyu Zhao (Virginia State), for providing switchgrass rust samples used in this study and M.S. Andrea Payne, for her assistance during my writing process. I would like to recognize Patricia Garrido and Francisco Flores for their guidance, assistance, and friendship. To my family and friends for being always the support and energy I needed to follow my dreams. iii Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. Name: GABRIELA KARINA ORQUERA DELGADO Date of Degree: JULY, 2014 Title of Study: POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) Major Field: ENTOMOLOGY AND PLANT PATHOLOGY Abstract: Switchgrass (Panicum virgatum L.) is a perennial warm season grass native to a large portion of North America.
    [Show full text]
  • Common Diseases of Small Grains and Their Management
    Common Diseases of Small Grains and Their Management Gary C. Bergstrom Cornell University Section of Plant Pathology and Plant-Microbe Biology Central New York Small Grains Workshop February 3, 2015 West Winfield, NY Plant Disease: A condition of a plant of abnormal growth or function Plant Pathogen: A living organism that can incite plant disease Gary C. Bergstrom, Cornell University When a microbe feeds on a: It is called a: Living host parasite Non-living host saprophyte When a pathogen: It is called a: Gets its nutrients from biotroph living cells Kills host cells before necrotroph acquiring nutrients Gary C. Bergstrom, Cornell University Causal agents (pathogens) of infectious plant diseases • FUNGUS • OOMYCETE • BACTERIUM • VIRUS • NEMATODE Gary C. Bergstrom, Cornell University Factors affecting disease epidemiology and management • Pathogen dissemination potential – (long-distance, regional, local) • Survival in debris • Vector relationship • Favorable environment Gary C. Bergstrom, Cornell University Methods of disease management • Cultural (e.g., crop rotation) • Resistance (e.g., resistant or tolerant varieties) • Biological (e.g., biopesticides) • Chemical (e.g., fungicide seed treatment) • Regulatory (e.g., seed certification) Gary C. Bergstrom, Cornell University Yellow dwarf of cereals and grasses Gary C. Bergstrom, Cornell University Yellow dwarf of cereals and grasses • Pathogen: Barley yellow dwarf luteovirus and Cereal yellow dwarf polerovirus strains • Host range: all grasses • Symptoms: leaves yellow to red or purple; stunting • Conditions: early planting; large aphid populations • Survival: in infected aphids and grasses • Spread: by aphids (short & long distance) • Management:plant after Hessian fly free date, systemic seed insecticides Gary C. Bergstrom, Cornell University Soilborne viruses © G.C. Bergstrom Gary C.
    [Show full text]