Goby Mutualism A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Social Behaviour and Mating System of the Gobiid Fish Amblyeleotris Japonica
Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol.28,No.41982 28巻4号1982年 Social Behaviour and Mating System of the Gobiid Fish Amblyeleotris japonica Yasunobu Yanagisawa (Received March 26,1981) Abstract The behaviour,social interactions and mating system of the gobiid fish Amblyeleotris japonica,that utilize the burrows dug by the snapping shrimp Alpheus bellulus as a sheltering and nesting site,were investigated at two localities on the southern coast of Japan.The fish spent most of their time in the area near the entrance of the burrow in daytime.Movements were limited to an area of about three metres in radius from the entrance.Aggressive encounters occurred between adjacent individuals sometimes resulting in changes of occupation of burrows. Males were more active in pair formation,whereas females were rather passive.Paris were usually maintained for several days or more,but some of them broke up without spawning.All the males that successfully spawned were larger ones that were socially dominant,and they re- mained within the burrow for four to seven days after spawning to care for a clutch of eggs. Variation in social interactions and burrow-use was recognized between two study populations and was attributed to the differences in predation pressure and density of burrows. A number of species of Gobiidae are known history and pair formation of the shrimp to live in the burrows of alpheid shrimps in Alpheus bellulus are described.In this study, tropical and subtropical waters(Luther,1958; the behaviour,social interactions and mating Klausewitz,1960,1969,1974a,b;Palmer,1963; system of its partner fish Amblyeleotris japonica Karplus et al.,1972a,b;Magnus,1967;Harada, are investigated and analyzed. -
Reef Fishes of the Bird's Head Peninsula, West
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes. -
Species and Shape Diversification Are Inversely Correlated Among Gobies and Cardinalfishes (Teleostei: Gobiiformes)
Org Divers Evol (2014) 14:419–436 DOI 10.1007/s13127-014-0175-5 ORIGINAL ARTICLE Species and shape diversification are inversely correlated among gobies and cardinalfishes (Teleostei: Gobiiformes) Christine E. Thacker Received: 7 November 2013 /Accepted: 11 May 2014 /Published online: 23 May 2014 # Gesellschaft für Biologische Systematik 2014 Abstract Gobies and their relatives are significant compo- radiation of acanthomorph fishes in which a decrease in nents of nearshore marine, estuarine, and freshwater fish species diversification is associated with an increase in mor- faunas in both tropical and temperate habitats worldwide. phological disparity. They are remarkable for their ability to adapt to and diversify in a wide range of environments. Among gobiiform clades, Keywords Gobiidae . Gobionellidae . Eleotridae . species diversities vary widely, ranging from two species in Apogonidae . Phylogeny . Morphospace Kurtidae to more than 1,000 species in Gobiidae. There is also great variation in head and body shape and in environmental preferences (fresh, brackish, or marine habitats). In this study, Introduction I used a time-calibrated molecular phylogeny, coupled with morphometric and comparative analyses, to examine evolu- Rates of both phenotypic and species diversification vary tionary rates of both speciation and morphological diversifi- widely among animal clades, and a primary goal of compar- cation among gobiiform lineages. Projection of the phylogeny ative biology is to identify and investigate the evolutionary onto a shape-derived morphospace shows that Gobioidei is and ecological correlates of these rate differences. Speciation morphometrically distinct from its sister taxon Apogonoidei, and phenotypic diversification rates may be related to factors but that families within Gobioidei overlap in morphospace. -
NBSREA Design Cvrs V2.Pub
February 2009 TNC Pacific Island Countries Report No 1/09 Rapid Ecological Assessment Northern Bismarck Sea Papua New Guinea Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Supported by: AP Anonymous February 2009 TNC Pacific Island Countries Report No 1/09 Rapid Ecological Assessment Northern Bismarck Sea Papua New Guinea Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Dr. Richard Hamilton, 51 Edmondstone Street, South Brisbane, QLD 4101 Australia Email: [email protected] Suggested Citation: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: Manus © Gerald Allen ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications ii Foreword Manus and New Ireland provinces lie north of the Papua New Guinea mainland in the Bismarck Archipelago. More than half of the local communities in our provinces are coastal inhabitants, who for thousands of years have depended on marine resources for their livelihood. For coastal communities survival and prosperity is integrally linked to healthy marine ecosystems. -
Alpheid Shrimp Symbiosis Does Not Correlate with Larger Fish Eye Size Klaus M
bioRxiv preprint doi: https://doi.org/10.1101/329094; this version posted May 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The marine goby – alpheid shrimp symbiosis does not correlate with larger fish eye size Klaus M. Stiefel1,2* & Rodolfo B. Reyes Jr.3 1. Neurolinx Research Institute, La Jolla, CA, USA 2. Marine Science Institute, University of the Philippines, Dilliman, Quezon City, Philippines. 3. FishBase Information and Research Group, Inc., Kush Hall, IRRI, Los Baños, Laguna, Philippines. *Corresponding author: [email protected] Abstract The symbiosis between marine gobies and Alpheid shrimp is based on an exchange of sensory performance (look-out for predators) by the goby versus muscular performance (burrow digging) by the shrimp. Using a comparative approach, we estimate the excess investment by the goby into its visual system as a consequence of the symbiosis. When correlating eye size with fish length for both shrimp-associated and solitary gobies, we find that the shrimp- associated gobies do not have larger eyes than size-matched solitary gobies. We do find a trend, however, in that the shrimp-associated gobies live at shallower depths than the solitary gobies, indicative of the visual nature of the symbiosis. We discuss the implications of symbiosis based on large and small energy investments, and the evolutionary modifications likely necessary to include shrimp-goby communication into the behavior of the goby. -
Paramasivam KODEESWARAN*1, Jayasimhan PRAVEENRAJ2, Natarajan JAYAKUMAR1, Krishna Moorthy ABARNA3, Nallathambi MOULITHARAN1, and Subhrendu S
ACTA ICHTHYOLOGICA ET PISCATORIA (2020) 50 (2): 219–222 DOI: 10.3750/AIEP/02833 FIRST RECORD OF A SHRIMPGOBY, MYERSINA YANGII (ACTINOPTERYGII: GOBIIFORMES: GOBIIDAE), FROM INDIAN WATERS Paramasivam KODEESWARAN*1, Jayasimhan PRAVEENRAJ2, Natarajan JAYAKUMAR1, Krishna Moorthy ABARNA3, Nallathambi MOULITHARAN1, and Subhrendu S. MISHRA4 1 Dr. M.G.R. Fisheries College and Research Institute, Ponneri, Tamil Nadu, India 2 ICAR–Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India 3 Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India 4 Marine Fish Section, Zoological Survey of India, Kolkata, India Kodeeswaran P., Praveenraj J., Jayakumar N., Abarna K.M., Moulitharan N., Mishra S.S. 2020. First record of a shrimpgoby, Myersina yangii (Actinopterygii: Gobiiformes: Gobiidae), from Indian waters. Acta Ichthyol. Piscat. 50 (2): 219–222. Abstract. A shrimp-associated goby, Myersina yangii (Chen, 1960), is reported from the east coast of India, based on a single specimen. It measured 61.16 mm in standard length. This finding represents the second record of the genus Myersina and the first record of M. yangii from Indian waters. The species is discussed herein with its meristic and morphometric characteristics. Keywords: range extension, shrimp-associate, east coast of India, new record, Myersina, Cryptocentrus INTRODUCTION 1934, Myersina nigrivirgata Akihito et Meguro, 1983, Shrimp gobies are small gobies having facultative Myersina pretoriusi (Smith, 1958), and Myersina yangii or obligate relation with alpheid shrimps (Decapoda: (Chen, 1960). Only one species of this genus, M. filifer, Caridea) and live commensally for their mutual benefit have hitherto been recorded from Indian waters (Ray et (Allen and Erdmann 2012, Hoese et al. -
Systematics of Callogobius (Teleostei: Gobiidae)
Systematics of Callogobius (Teleostei: Gobiidae) by Naomi Rachel Delventhal A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirement of the degree of DOCTOR OF PHILOSOPHY Department of Biological Sciences University of Manitoba Winnipeg Copyright © 2018 by Naomi R Delventhal i Abstract Callogobius is a large genus of gobies characterized by fleshy ridges of papillae on the head in both horizontal and vertical rows. The taxonomy and phylogenetics of the genus are difficult and poorly understood. The purpose of my research is to better categorize the diversity within Callogobius by identifying and describing morphological characters and using them to aid species identification and discovery of monophyletic sub-groups within the genus. In this thesis, I construct separate phylogenetic hypothesizes for the intrarelationships of Callogobius using morphological and molecular data, respectively. Parsimony analysis using morphological characters (external anatomy and osteology) supports the presence of three monophyletic groups within Callogobius, the hasseltii, sclateri and maculipinnis groups. A fourth group, the tutuilae group, contains several species, at least some of which share some characters with members of the sclateri group. A molecular phylogenetic approach using four genes (zic1, a partial fragment containing 12S, tRNAVal and 16S, rag1 and sreb2) and analyzed using maximum parsimony, maximum likelihood and Bayesian inference supports the monophyly of Callogobius, the hasseltii, sclateri and maculipinnis groups; the tutuilae group is resolved as paraphyletic with respect to the sclateri group. Reductive traits, such as small size and loss of head pores appear to have evolved multiple times independently. In addition to phylogenetic analyses, I address some of the taxonomic issues within Callogobius through the descriptions of two new species, C. -
JD Dibattista Et Al
This is the peer reviewed version of the following article: Di Battista, J. and Roberts, M. and Bouwmeester, J. and Bowen, B. and Coker, D. and Lozano-Cortes, D. and Choat, J. et al. 2015. Journal of Biogeography. 43 (3): pp. 423-439., which has been published in final form at http://doi.org/10.1111/jbi.12649. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving at http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms 1 Special Paper 2 For the virtual issue, "Red Sea and Western Indian Ocean Biogeography" 3 LRH: J. D. DiBattista et al. 4 RRH: Contemporary patterns of Red Sea endemism 5 6 A review of contemporary patterns of endemism for shallow water reef fauna in the Red 7 Sea 8 Joseph D. DiBattista1,2*, May B. Roberts1, Jessica Bouwmeester1,3, Brian W. Bowen4, Darren J. 9 Coker1, Diego F. Lozano-Cortés1, J. Howard Choat5, Michelle R. Gaither6, Jean-Paul A. Hobbs2, 10 Maha T. Khalil1, Marc Kochzius7, Robert F. Myers8, Gustav Paulay9, Vanessa S. N. Robitzch1, 11 Pablo Saenz-Agudelo1,10, Eva Salas11,12, Tane H. Sinclair-Taylor1, Robert J. Toonen4, Mark W. 12 Westneat13, Suzanne T. Williams14, Michael L. Berumen1 13 14 1Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 15 King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, 2Department 16 of Environment and Agriculture, Curtin University, Perth, WA 6845, Australia, 3Department of 17 Geology and Carl R. Woese Institute for Genomic Biology, University -
A Preliminary List of Animal Names in the Chuuk District, Micronesia with Some Notes on Plant Names
Micronesica 31(1):1-245, 1999 A Preliminary List of Animal Names in the Chuuk District, Micronesia with some notes on plant names Alan E. Davis1 1 Current Address: AAA196, Box 10001, Saipan, MP 96950, CNMI This list is dedicated to my children, Forrest LeRoy Eugene Davis, Timothy Davis, and Thomas Gotthelf Fischer Davis, Tian Taky Davis, and Dianne Eclipse Davis and to all other little boys and girls in Chuuk whose mothers and fathers do not understand one another very well. Revised from a technical report printed by the College of Mi- cronesia and the Micronesian Language Institute (UOG). °c 1996, 1999 Alan Eugene Davis °c 1996, 1999 College of Micronesia, Chuuk °c 1996, 1999 Micronesian Language Institute, University of Guam This document may be freely copied, on the condition that a copy of this notice is provided or else, for excerpts, that full acknowledgement is given of this source. Abstract—This is an unfinished list of animal names, including many unverified names, from dialects / languages commonly heard in Chuuk Lagoon, the Mortlock Islands, Hall Islands, Western Islands (Pattiw) and Nominweit´e,constituting the Eastern end of a chain of related dialects and cultures extending from Sonsorol and Tobi to Chuuk Lagoon. This list may emphasize a relatively small number of dialects; names are listed, however, from throughout the district. Animal names are ordered phylogenetically, divided into chapters according to broad classification. Chapters on sponges, coelenterates, worms, molluscs, crus- taceans, and insects and allies are divided into sections by category. Fishes are the subject of one large chapter, divided into sections by family. -
Functional Niche Partitioning in Herbivorous Coral Reef Fishes
ResearchOnline@JCU This file is part of the following reference: Brandl, Simon Johannes (2016) Functional niche partitioning in herbivorous coral reef fishes. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/45253/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/45253/ Functional niche partitioning in herbivorous coral reef fishes Thesis submitted by: Simon Johannes Brandl January 2016 For the degree: Doctor of Philosophy College of Marine and Environmental Sciences ARC Centre of Excellence for Coral Reef Studies James Cook University i Acknowledgements I am deeply indebted to my supervisor, David Bellwood, whose invaluable intellectual and emotional support has been the cornerstone of my degree. His outstanding guidance, astute feedback, incredible generosity, and tremendous patience cannot be credited adequately within the scope of this acknowledgements section. Besides his supervisory contribution to my degree, I am grateful for the countless hours full of cheerful negotiations, curly remarks, philosophical debates, humorous chitchat, and priceless counselling. I also thank everybody who has helped me in the field: Jordan Casey, Christopher Goatley, Jennifer Hodge, James Kerry, Michael Kramer, Katia Nicolet, Justin Welsh, and the entire staff of Lizard Island Research Station. I am especially grateful for Christopher Mirbach’s help, commitment, and loyalty throughout many weeks of fieldwork. This thesis would have been impossible without his dedication and enthusiasm for marine fieldwork. -
First Record of the Shrimp-Associate Gobiid Fish Cryptocentrus Filifer (Valenciennes) from the Indian Coast
Indian Journal of Geo Marine Sciences Vol. 47 (04), April, 2018, pp. 798-801 First record of the shrimp-associate gobiid fish Cryptocentrus filifer (Valenciennes) from the Indian coast Dipanjan Ray1, Anil Mohapatra1,2*& Helen K. Larson2 1Marine Aquarium and Regional Centre, Zoological Survey of India, Digha, India 721 428 2Estuarine Biology Regional Centre, Zoological Survey of India, Gopalpur-on-Sea, Ganjam, Odisha, India-761002. 3Museum and Art Gallery of the Northern Territory, P.O. Box 4646, Darwin, Northern Territory 0801, Australia; Museum of Tropical Queensland, 102 Flinders Street, Townsville, Queensland 4810, Australia *[E.Mail: [email protected]] Received 28 July 2016; revised 23 November 2016 The shrimp-associate gobiid Cryptocentrus filifer (Valenciennes, 1837) is reported for the first time from Indian coastal waters, with four specimens along with its morphometrics. Cryptocentrus is discussed and compared with closely related Indian shrimp-associate gobiids and the sexual dimorphism of the species is described. [Keywords: Bay of Bengal, Cryptocentrus, Myersina, West Bengal, New record] Introduction Indian waters. Four specimens of Cryptocentrus The family Gobiidae is one of the largest groups of filifer were collected from Shankarpur fishing harbor, teleost fishes in the world with at least 1630 species in West Bengal, India, during a routine survey for fish 248 genera1 and with many undescribed species; most collection. This present study describes their meristics of these are Old World coral reef-associates. In the and morphometrics and discusses the status of Indo-Pacific, coral reef gobiids represent 35% of total shrimp-associate gobiids of the Indian coast. fishes and 20 % of species diversity2.