First Record of the Shrimp-Associate Gobiid Fish Cryptocentrus Filifer (Valenciennes) from the Indian Coast

Total Page:16

File Type:pdf, Size:1020Kb

First Record of the Shrimp-Associate Gobiid Fish Cryptocentrus Filifer (Valenciennes) from the Indian Coast Indian Journal of Geo Marine Sciences Vol. 47 (04), April, 2018, pp. 798-801 First record of the shrimp-associate gobiid fish Cryptocentrus filifer (Valenciennes) from the Indian coast Dipanjan Ray1, Anil Mohapatra1,2*& Helen K. Larson2 1Marine Aquarium and Regional Centre, Zoological Survey of India, Digha, India 721 428 2Estuarine Biology Regional Centre, Zoological Survey of India, Gopalpur-on-Sea, Ganjam, Odisha, India-761002. 3Museum and Art Gallery of the Northern Territory, P.O. Box 4646, Darwin, Northern Territory 0801, Australia; Museum of Tropical Queensland, 102 Flinders Street, Townsville, Queensland 4810, Australia *[E.Mail: [email protected]] Received 28 July 2016; revised 23 November 2016 The shrimp-associate gobiid Cryptocentrus filifer (Valenciennes, 1837) is reported for the first time from Indian coastal waters, with four specimens along with its morphometrics. Cryptocentrus is discussed and compared with closely related Indian shrimp-associate gobiids and the sexual dimorphism of the species is described. [Keywords: Bay of Bengal, Cryptocentrus, Myersina, West Bengal, New record] Introduction Indian waters. Four specimens of Cryptocentrus The family Gobiidae is one of the largest groups of filifer were collected from Shankarpur fishing harbor, teleost fishes in the world with at least 1630 species in West Bengal, India, during a routine survey for fish 248 genera1 and with many undescribed species; most collection. This present study describes their meristics of these are Old World coral reef-associates. In the and morphometrics and discusses the status of Indo-Pacific, coral reef gobiids represent 35% of total shrimp-associate gobiids of the Indian coast. fishes and 20 % of species diversity2. Gobiids are also The genus Cryptocentrus Valenciennes so far present in rivers, estuaries, near shore and in fresh comprises 35 valid species worldwide and all are water communities on islands they are particularly distributed within the Indo-Pacific region. The genus diverse3-4. is characterized by having eyes placed high on the In the Indo-Pacific the genus Cryptocentrus is one side of the head with interorbital narrower than eye; of the 12 “shrimp gobies” presently recognized head pores present; a transverse papilla pattern with (Amblyeleotris, Cryptocentrus, Cryptocentroides, two parallel papilla rows on chin and lower horizontal Ctenogobiops, Flabelligobius, Lotilia, Mahidolia, papilla row extending backward from second vertical Myersina, Psilogobius, Stonogobiops, row; pelvic fins connected, forming a disc; dorsal rays Tomiyamichthys, Vanderhorstia); species of these I, 9-12; anal rays I, 9-11; first dorsal fin origin behind genera live commensally with alpheid shrimps (genus pelvic fin insertion; gill opening extending to usually Alpheus)4-5. Most species of these genera interact with below posterior pre-opercular margin; scales usually shrimps either facultatively or obligately; the basic cycloid (if ctenoid then dorsal and anal rays I, 9-10 mechanism of the association is the shrimp and gill opening narrow); jaws long, usually reaching constructing and maintaining a burrow which the to or beyond end of eye7. gobies use as a safe breeding and resting site while also acting as sentinels, being present near the burrow Materials and Methods entrance, warning the shrimp of approaching danger During a survey around January 2013 at the Digha through actions detected by the shrimp’s antennae coast of India, four unusual gobiids were collected (one antenna always in contact with the fish). from Shankarpur fishing harbor of West Bengal. Cryptocentrus filifer (Valenciennes, 1837)6 is Fishermen of this harbor generally use trawl nets for among those species obligately associated with fishing in the northern part of Bay of Bengal. After Alpheus shrimp5 and for first time we report it from collection, photographs were taken (Fig. 1) and RAY et al.: FIRST RECORD OF CRYPTOCENTRUS FILIFER FROM THE INDIAN COAST 799 subsequently identified (by HKL) as Cryptocentrus filifer. Methods of counting and measuring specimens follow Winterbottom8. Morphometric measurements of the fishes were taken by digital caliper with resolution of 0.1 mm and data and ratios presented in Table 1. Sensory pores and papillae were observed by Leica ez4 microscope; vertebral data taken from a digital X-ray. Abbreviation SL and HL represents Fig. 1 — Cryptocentrus filifer (Valenciennes, 1837), 83.6 mm SL standard length and head length respectively. The four specimens (70.5-84.3 mm SL) were preserved in 10% Table 1 — Morphometrics of Cryptocentrus filifer formaldehyde and housed at the Marine Aquarium (Valenciennes, 1837) and Regional Centre, Zoological Survey of India, In percentage of SL Digha; West Bengal, India (registration number Body depth 15.2-16.81 MARC/ZSI/3468). Head length 30.87-31.45 Eye diameter 6.14-6.56 Results Interorbital space 2.97-3.29 Cryptocentrus filifer (Valenciennes, 1837): Silt Maxilla length 15.98-13.75 Snout length 6.10-6.75 shrimp goby Body depth 7.76-8.88 Description Sub orbital depth 4.94-5.06 Dorsal fin with 6+1 spine and 10 rays; anal fin Head length after eye 17.13-17.4 with 1spine and 9 rays; pectoral fin with 17 rays; Predorsal 35.04-35.40 pelvic fin with 1 spine and 5 rays and caudal fin with Preanal 61.72-62.24 Preventral 31.03-31.25 17 segmented rays. Body small, moderately elongate Prepectoral 29.12-29.69 and compressed (Fig 1.); the different body Pectoral fin length 18.40-20.09 measurements with the percentage of standard length Ventral fin length 21.26-29.90 (SL) and head length (HL) are given in Table–1. Caudal fin length 29.56-30.07 Anterior nostril short and tubular, posterior nostril 1st dorsal spine 16.31-22.59 opens in a pore; cheek not bulbous; mouth large, 2nd dorsal spine 25.43-25.43 rd oblique, lower jaw slightly projecting, maxilla 3 dorsal spine 18.59-26.25 4th dorsal spine 17.17-23.98 reaching well behind eye. Upper jaw with outer row th of curved and sharp caniniform teeth, inner teeth in 5- 5 dorsal spine 15.51-23.69 6th dorsal spine 9.13-10 6 rows of irregular small curved teeth across front and 1st soft dorsal rays 14.54-16.02 2-3 rows at side of the jaw; lower jaw with outer row Caudal peduncle depth 7.93-8.11 of conical curved teeth followed by 5-6 inner rows of Caudal peduncle length 14.86-15.90 pointed teeth acrossfront and 2-3 rows on side; tongue In percentage of HL smooth and rounded. Gill membranes fused to Eye diameter 19.88-20.86 isthmus in ventral midline but not forming a free fold Interorbital space 9.46-10.68 across isthmus; 12 gill rakers on lower limb of first Snout length 19.76-20.47 gill arch. Only cycloid scales present on body except Maxilla length 50.93-44.40 for scale less nape, head and pectoral fin base. Suborbital depth 16.02-16.15 Head length after eye 54.46-56.39 Sensory papilla pattern on cheek in five transverse rows radiating from eye and not extending below fourth soft ray of second dorsal; in one specimen longitudinal row (Fig 2); preopercular sensory canal (72.6 mm; female) first five dorsal spines not with two pores; number of infraorbital canal pore, elongate, third longest, 18.59 % SL, first dorsal fin postorbital pore, posterior interorbital pore, posterior when depressed just reaching second dorsal fin origin. nasal pore and anterior interorbital pore is 1 on each First ray of second dorsal fin shorter than others, its side of head. Total vertebrae 26[10+16]. In three length 14.45-16.22 % in SL, longest soft rays specimens the first five dorsal spines are elongate, 21.85-22.50 % in SL. Anal fin origin below third fin with third spine longest, 23.69 % in SL, spinous part ray of second dorsal fin. Origin of pectoral fin just of first dorsal fin when depressed reaching to base of above pelvic fin base. Pectoral fin length 18.40-19.59. 800 INDIAN J. MAR. SCI. VOL. 47, NO. 04, APRIL 2018 crocatus and C. pretoriusi from Cryptocentrus and placed the three species in the genus Myersina. A search of literature shows that this species is regularly placed in either Cryptocentrus (most recently by Matsui et al. 19) or Myersina (most recently by Allen & Erdmann15). Work underway by D. Hoese and K. Shibukawa indicates that C. filifer does not fit well within either genus (D.F. Hoese pers. comm.) and its Fig. 2 — Lateral view of head of Cryptocentrusfilifer (84.3 mm SL) status remains to be resolved. Hence, the older showing sensory pores (red dots) and main rows of papillae (black dots). nomenclature is retained here. Pelvic fins fused forming disc; origin of pelvic fin just A comprehensive phylogenetic study of Indo- below dorsal fin origin; in three specimens pelvic fin Pacific shrimp-associate gobies remains to be carried tip reaching anus, its length 29.90 % of SL; in a out. Several recent genetic analyses of gobioid (72.6 mm)specimen the pelvic fin does not reach relationships have not included shrimp-associates anus, its length 21.26 % of SL. Caudal peduncle depth other than Amblyeleotris and Ctenogobiops (e.g. 7.93-8.11 % in SL, caudal peduncle length Agorreta and Rubeer20; Thacker21). However, Thacker 14.86-15.90 % in SL; caudal fin pointed. and Roje4 analysed seven genera of shrimp-gobies but Colour: Body creamy white with very small black excluded six; the shrimp-associates fell out into two dots dorsally and five diffuse, broad dark bars, darker clades. Shibukawa et al.21 reviewed the genus Lotilia dorsally and paler ventrally, first bar beginning from and provided some discussion of the group, pointing first dorsal fin base, second from just anterior to out the poor state of understanding of relationships origin of second dorsal fin, third from middle of among shrimp-gobies.
Recommended publications
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • "Red Sea and Western Indian Ocean Biogeography"
    A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea Item Type Article Authors DiBattista, Joseph; Roberts, May B.; Bouwmeester, Jessica; Bowen, Brian W.; Coker, Darren James; Lozano-Cortés, Diego; Howard Choat, J.; Gaither, Michelle R.; Hobbs, Jean-Paul A.; Khalil, Maha T.; Kochzius, Marc; Myers, Robert F.; Paulay, Gustav; Robitzch Sierra, Vanessa S. N.; Saenz Agudelo, Pablo; Salas, Eva; Sinclair-Taylor, Tane; Toonen, Robert J.; Westneat, Mark W.; Williams, Suzanne T.; Berumen, Michael L. Citation A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea 2015:n/a Journal of Biogeography Eprint version Post-print DOI 10.1111/jbi.12649 Publisher Wiley Journal Journal of Biogeography Rights This is the peer reviewed version of the following article: DiBattista, J. D., Roberts, M. B., Bouwmeester, J., Bowen, B. W., Coker, D. J., Lozano-Cortés, D. F., Howard Choat, J., Gaither, M. R., Hobbs, J.-P. A., Khalil, M. T., Kochzius, M., Myers, R. F., Paulay, G., Robitzch, V. S. N., Saenz-Agudelo, P., Salas, E., Sinclair-Taylor, T. H., Toonen, R. J., Westneat, M. W., Williams, S. T. and Berumen, M. L. (2015), A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. Journal of Biogeography., which has been published in final form at http:// doi.wiley.com/10.1111/jbi.12649. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving. Download date 23/09/2021 15:38:13 Link to Item http://hdl.handle.net/10754/583300 1 Special Paper 2 For the virtual issue, "Red Sea and Western Indian Ocean Biogeography" 3 LRH: J.
    [Show full text]
  • Goby Mutualism A
    Journal of Zoology. Print ISSN 0952-8369 Behavioural interdependence in a shrimp-goby mutualism A. L. Burns1,2 , A. D. M. Wilson1,* & A. J. W. Ward1 1 School of Life and Environmental Sciences, University of Sydney, Sydney, Australia 2 Taronga Conservation Society Australia, Sydney, Australia Keywords Abstract interspecific mutualism; shrimp-goby mutualism; vigilance; activity levels; Ctenogobiops feroculus; The partnership between non-burrowing gobiid fishes and alpheid shrimps is one Alpheus djeddensis. of the most remarkable interspecific mutualisms currently recognised in behavioural biology. The shrimp rely on tactile and chemical cues from their goby partners to Correspondence warn them of approaching predators. In return, the shrimp construct and maintain Alicia L. Burns, School of Life and Environmental, the burrows which provide shelter for the goby. Although aspects of this relation- University of Sydney, Parramatta Road, Sydney, ship have been well studied, less is known about the interdependence of the two NSW 2006, Australia. species’ activity patterns. We conducted field observations of an obligate shrimp- Email: [email protected] goby mutualism, Ctenogobiops feroculus and its common shrimp partner Alpheus djeddensis. We found that individual gobies were consistent in their activity levels *Current address: School of Biological and relative to conspecifics over a 3-day period but were not consistent in terms of the Marine Sciences, University of Plymouth, time allocated to vigilance. Both the activity and the vigilance behaviour of the Plymouth, UK goby directly correlated with the behaviour of their shrimp partners; shrimp with a more active partner were themselves more active, and visibility of the shrimp Editor: Jean-Nicolas Volff increased as vigilance time increased.
    [Show full text]
  • Vanderhorstia Dawnarnallae, a New Species of Shrimpgoby (Pisces: Gobiidae) from West Papua, Indonesia
    Vanderhorstia dawnarnallae, a new species of shrimpgoby (Pisces: Gobiidae) from West Papua, Indonesia GERALD R. ALLEN Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Perth, Western Australia 6986, Australia E-mail: [email protected] MARK V. ERDMANN Conservation International Indonesia Marine Program, Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235, Indonesia California Academy of Sciences, Golden Gate Park, San Francisco, CA 94118, USA E-mail: [email protected] MEITY U. MONGDONG Conservation International Indonesia Marine Program, Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia E-mail: [email protected] Abstract A new species of gobiid fish, Vanderhorstia dawnarnallae, is described from West Papua Province, Indonesia, on the basis of two male specimens, 39.1 and 39.2 mm SL. Diagnostic features include 13 dorsal-fin and anal- fin segmented rays, third dorsal-fin spine long and filamentous, 47–49 lateral scales, body scales mostly cycloid, posteriormost scales of caudal peduncle finely ctenoid, and scales absent on head and nape region. Color in life is pale greyish to yellowish white with 5 mid-lateral clusters of blue-margined yellow spots with one or two vertical rows of 3–5 blue-margined yellow spots between clusters. The new species is most similar to Vanderhorstia phaeosticta from the western Pacific Ocean, but differs most notably in lacking pronounced sexual dichromatism. Key words: taxonomy, systematics, ichthyology, coral-reef fishes, gobies, Indo-Pacific Ocean, symbiosis, Bird’s Head Seascape Citation: Allen, G.R., Erdmann, M.V. & Mongdong, M.U. (2019) Vanderhorstia dawnarnallae, a new species of shrimpgoby (Pisces: Gobiidae) from West Papua, Indonesia.
    [Show full text]
  • Social Behaviour and Mating System of the Gobiid Fish Amblyeleotris Japonica
    Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol.28,No.41982 28巻4号1982年 Social Behaviour and Mating System of the Gobiid Fish Amblyeleotris japonica Yasunobu Yanagisawa (Received March 26,1981) Abstract The behaviour,social interactions and mating system of the gobiid fish Amblyeleotris japonica,that utilize the burrows dug by the snapping shrimp Alpheus bellulus as a sheltering and nesting site,were investigated at two localities on the southern coast of Japan.The fish spent most of their time in the area near the entrance of the burrow in daytime.Movements were limited to an area of about three metres in radius from the entrance.Aggressive encounters occurred between adjacent individuals sometimes resulting in changes of occupation of burrows. Males were more active in pair formation,whereas females were rather passive.Paris were usually maintained for several days or more,but some of them broke up without spawning.All the males that successfully spawned were larger ones that were socially dominant,and they re- mained within the burrow for four to seven days after spawning to care for a clutch of eggs. Variation in social interactions and burrow-use was recognized between two study populations and was attributed to the differences in predation pressure and density of burrows. A number of species of Gobiidae are known history and pair formation of the shrimp to live in the burrows of alpheid shrimps in Alpheus bellulus are described.In this study, tropical and subtropical waters(Luther,1958; the behaviour,social interactions and mating Klausewitz,1960,1969,1974a,b;Palmer,1963; system of its partner fish Amblyeleotris japonica Karplus et al.,1972a,b;Magnus,1967;Harada, are investigated and analyzed.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]
  • First Record of the Chocolate Shrimp-Goby
    First record of the chocolate shrimp-goby (Gobiidae: Cryptocentrus malindiensis) from Réunion Island with a brief description of its natural habitat Mathieu Pinault, Ronald Fricke, Julien Wickel, Cédric Peneau, Jean-Pascal Quod To cite this version: Mathieu Pinault, Ronald Fricke, Julien Wickel, Cédric Peneau, Jean-Pascal Quod. First record of the chocolate shrimp-goby (Gobiidae: Cryptocentrus malindiensis) from Réunion Island with a brief description of its natural habitat. Cybium : Revue Internationale d’Ichtyologie, Paris : Muséum national d’histoire naturelle, 2015, 39 (3), pp.237-239. hal-01225288 HAL Id: hal-01225288 https://hal.univ-reunion.fr/hal-01225288 Submitted on 22 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ichthyological note – Note ichtyologique First record of the chocolate shrimp-goby (Gobiidae: Cryptocentrus malindiensis) from Réunion Island with a brief © SFI © description of its natural habitat Received: 10 Mar. 2015 Accepted: 2 Apr. 2015 by Editor: R. Causse Mathieu PINAULT* (1, 2), Ronald FRICKE (3, 4), Julien WICKEL (5), Cédric PÉNEAU (6) & Jean-Pascal QUOD (7) Résumé – Premier signalement du gobie de Malindi (Gobiidae : Cryptocentrus malindiensis) à La Réunion avec une brève descrip- tion de son habitat naturel.
    [Show full text]
  • Identifying Sagittae Otoliths of Mediterranean Sea Gobies
    Manuscript 1 Identifying sagittae otoliths of Mediterranean Sea gobies: 2 variability among phylogenetic lineages 3 4 5 A. LOMBARTE *† , M. MILETIĆ ‡, M. KOVAČIĆ §, J. L. OTERO -F ERRER ∏ AND V. M. TUSET * 6 7 *Institut de Ciències del Mar-CSIC, Passeig Marítim 37-48, 08003, Barcelona, Catalonia, 8 Spain, 9 ‡ Energy Institute Hrvoje Pozar, Savska cesta 163, 10001 Zagreb, Croatia, 10 §Natural History Museum Rijeka, Lorenzov prolaz 1HR-51000, Rijeka, Croatia, 11 ∏Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Campus Universitario 12 de Vigo, Fonte das Ab elleiras, s/n 36310, Vigo, Gali za, Spain 13 14 15 16 17 18 19 20 21 22 23 24 †Author to whom correspondence should be addressed. Tel.: +34 932309564; email: 25 [email protected] 1 26 Gobiidae is the most species rich teleost family in the Mediterranean Sea, where this family is 27 characterized by high taxonomic complexity. Gobies are also an important but often- 28 underestimated part of coastal marine food webs. In this study, we describe and analyse the 29 morphology of the sagittae, the largest otoliths, of 25 species inhabiting the Adriatic and 30 northwestern Mediterranean seas. Our goal was to test the usefulness and efficiency of 31 sagittae otoliths for species identification. Our analysis of otolith contours was based on 32 mathematical descriptors called wavelets, which are related to multi-scale decompositions of 33 contours. Two methods of classification were used: an iterative system based on 10 wavelets 34 that searches the Anàlisi de Formes d'Otòlits (AFORO) database, and a discriminant method 35 based only on the fifth wavelet.
    [Show full text]
  • Fishes Collected During the 2017 Marinegeo Assessment of Kāne
    Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families.
    [Show full text]
  • By Rijksmuseum Van Natuurlijke Historie, Leiden in Preparing The
    RESULTS OF A REEXAMINATION OF TYPES AND SPECIMENS OF GOBIOID FISHES, WITH NOTES ON THE FISHFAUNA OF THE SURROUNDINGS OF BATAVIA by Dr. F. P. KOUMANS Rijksmuseum van Natuurlijke Historie, Leiden In preparing the volume of the Gobioidea in M. Weber and L. F. de Beaufort: The Fishes of the Indo-Australian Archipelago, several de- scribed species, collected in the Indo-Australian Archipelago or its surroundings, were not clear to me. Of a number of these the description was distinct enough to see what was meant with such a new species, but there were several species which I could not recognize from their description. Bleeker described a large number of new species, but, unfortunately, several of his descriptions are too vague to recognize the species. So many authors had described several species which proved, after comparison with Bleeker's type specimens or descriptions made after his types, to be either closely allied, or identical with species already described by Bleeker. In order to see whether the described species of authors were synonyms of already described species, or to reexamine the types in order to enlarge the descriptions, I visited several Museums and other Institutions in the United States of N. America, Honolulu, Australia, Philippines, Singapore and British India. During a stay in Batavia, I had the opportunity to make colour sketches of freshly-caught specimens and to go out and collect specimens myself. My visit to the different countries mentioned was made possible by a grant of the "Pieter Langerhuizen Lambertuszoon fonds", endowed by the "Hollandsche Maatschappij der Wetenschappen". During these visits I received great help and friendship of the staff of the Museums and Institutions, for which I am very thankful.
    [Show full text]
  • The Assessment of Current Biogeographic Patterns of Coral Reef
    THE ASSESSMENT OF CURRENT BIOGEOGRAPHIC PATTERNS OF CORAL REEF FISHES IN THE RED SEA BY INCORPORATING THEIR EVOLUTIONARY AND ECOLOGICAL BACKGROUND Dissertation by Vanessa S. N. Robitzch Sierra In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia ©March, 2017 Vanessa S. N. Robitzch Sierra All rights reserved 2 EXAMINATION COMMITTEE PAGE The dissertation of Vanessa S. N. Robitzch Sierra is approved by the examination committee. Committee Chairperson: Dr. Michael Berumen Committee Members: Dr. Christian Voolstra, Dr. Timothy Ravasi, Dr. Giacomo Bernardi 3 ABSTRACT THE ASSESSMENT OF CURRENT BIOGEOGRAPHIC PATTERNS OF CORAL REEF FISHES IN THE RED SEA BY INCORPORATING THEIR EVOLUTIONARY AND ECOLOGICAL BACKGROUND Vanessa S. N. Robitzch Sierra The exceptional environment of the Red Sea has lead to high rates of endemism and biodiversity. Located at the periphery of the world’s coral reefs distribution, its relatively young reefs offer an ideal opportunity to study biogeography and underlying evolutionary and ecological triggers. Here, I provide baseline information on putative seasonal recruitment patterns of reef fishes along a cross shelf gradient at an inshore, mid-shelf, and shelf-edge reef in the central Saudi Arabian Red Sea. I propose a basic comparative model to resolve biogeographic patterns in endemic and cosmopolitan reef fishes. Therefore, I chose the genetically, biologically, and ecologically similar coral-dwelling damselfishes Dascyllus aruanus and D. marginatus as a model species-group. As a first step, basic information on the distribution, population structure, and genetic diversity is evaluated within and outside the Red Sea along most of their global distribution.
    [Show full text]