Lagoon Shrimp Goby, Cryptocentrus Cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an Additional Fish Element for the Iranian Waters

Total Page:16

File Type:pdf, Size:1020Kb

Lagoon Shrimp Goby, Cryptocentrus Cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an Additional Fish Element for the Iranian Waters Iran. J. Ichthyol. (June 2019), 6(2): 98-105 Received: February 30, 2019 © 2019 Iranian Society of Ichthyology Accepted: May 31, 2019 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v6i2.417 Archive of SID http://www.ijichthyol.org Research Article Lagoon shrimp goby, Cryptocentrus cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an additional fish element for the Iranian waters Reza SADEGHI1, Hamid Reza ESMAEILI*1, Mona RIAZI2, Mohamad Reza TAHERIZADEH2, Mohsen SAFAIE3,4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Marine Biology Department, Faculty of Science, University of Hormozgan, P.O.Box 3995, Bandar Abbas, Iran. 3Fisheries Department, University of Hormozgan, Bandar Abbas, P.O.Box. 3995, Iran. 4Mangrove Forest Research Center, University of Hormozgan, Bandar Abbas, P.O.Box. 3995, Iran. *Email: [email protected] Abstract: Shrimp-associated gobies are burrowing fish of small to medium size that are common inhabitants of sand and mud substrates throughout the tropical Indo-Pacific region. Due to specific habitat preference, cryptic behavior, the small size and sampling difficulties, many gobies were previously overlooked and thus the knowledge about their distribution is rather scarce. This study presents lagoon shrimp goby, Cryptocentrus cyanotaenia, as additional fish element for the Iranian waters in the coast of Hormuz Island (Strait of Hormuz). The distribution range of lagoon shrimp goby was in the Western Central Pacific and eastern Indian Ocean. This species is distinguished by the several traits such as body elongate and compressed, snout truncate, body brownish grey color with 11 vertical narrow whitish blue lines on the sides, largely greenish yellow on head and mandible, head and base of pectoral fin with numerous short blue oblique broken lines and spots with markings on the head and snout. Providing data on C. cyanotaenia which is now widely distributed in the Indo-Pacific, would offer particularly valuable information on the biogeography of species. Keywords: Taxonomy, Gobies, Shrimp-associated fishes, Indo-Pacific, Persian Gulf, Oman Sea. Citation: Sadeghi, R.; Esmaeili H.R.; Riazi, M.; Taherizadeh, M.R. & Safaie M. 2019. Lagoon shrimp goby, Cryptocentrus cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an additional fish element for the Iranian waters. Iranian Journal of Ichthyology 6(2): 98-105. Introduction including interactions between gobies and sessile As currently understood, Gobiiformes with about invertebrates such as corals and sponges, as well as 2228 valid species comprise the most species-rich free-living invertebrates including crustaceans (e.g. group of teleost fishes (Fricke et al. 2019) and show shrimps) and echinoderms (Allen et al. 2003; Myers a spectacular variety in morphology, biology, 1999; Thacker et al. 2011). These associations ecology and behavior. They are generally small fish engage gobies utilizing their mutualistic or and are mostly marine fishes, but roughly 10% of the commensal partner either directly as a habitat or population inhabit fresh waters. The most diverse shelter, or indirectly in that the partner builds a group of gobiiforms is the family Gobiidae with shelter that both animals occupy. Some gobies also worldwide distribution in marine, brackish and involve in mutualistic cleaning behaviors with other, inland waters of tropical and subtropical regions (Gill larger fishes (Böhlke & Robins 1968; Cote 2000; 1993; Nelson et al. 2016; Patzner et al. 2012; Thacker et al. 2011). Schliewen et al. 2018). This family comprises an Shrimp-associated gobies are burrowing fish of interesting group of symbionts, participating in a small to medium size that are common inhabitants of variety of mutualistic associations on coral reefs, sand and mud substrates throughout the tropical 98 www.SID.ir Sadeghi et al.- A lagoon shrimp goby, Cryptocentrus cyanotaenia Archive of SID Fig.1. Cryptocentrus cyanotaenia: female, 111mm SL from coast of Hormuz Island (Strait of Hormuz). Indo-Pacific region (Greenfield & Allen 2018). The central Pacific and eastern Indian Ocean: Andaman shrimp excavates and continually maintains a Sea, Java, Brunei, and Indonesia, east to Papua New burrow, which is generally shared with one or two Guinea, Palau in Micronesia, East Indies, Singapore fish inhabitants (Allen 2015; Greenfield & Allen and India (Fricke et al. 2019; Kumar et al. 2015) (Fig. 2018). A variety of gobies associate with shrimps 1). The individuals of C. cyanotaenia are often found include 13 genera and approximately 150 species on fine sandy bottoms in protected areas, fine-sand (Fricke et al. 2019), of which Amblyeleotris Bleeker, lagoons or bays or silty coastal reefs often in turbid 1874 (39 species), Cryptocentrus Valenciennes, 1837 water with poor visibility with share a burrow with (36 species), and Vanderhorstia Smith, 1949 (29 an Alpheus sp. (Myers 1999). Although species) contain the majority of species (Greenfield C. cyanotaenia has been reported from western & Allen 2018). These fishes live in complex central Pacific and eastern Indian Ocean particularly mutualistic association with snapping shrimps of the the East Indian Archipelago (Kumar et al. 2015), but genus Alpheus Fabricius, 1798 (Allen 2015; Jaafar & there has been no record of it from the Iranian waters. Randall 2009). The alpheid/snapping shrimps, unlike Therefore, the purpose of this study is (1) to report of the gobies has very weak eyesight. The goby, with its C. cyanotaenia based on collected specimens from superior sensory systems, serves as the sentinel near the coast of Hormuz Island in the strait of Hormuz the burrow entrance (Allen 2015; Allen & Randall and (2) to provide its detailed morphology. 2011). Gobies as a sentinel stationed at the entrance of burrow, warn the shrimp of approaching a predator Materials and Methods (Thacker et al. 2011). Due to specific habitat Three specimens of C. cyanotaenia (ZM-CBSU F67- preference which often spend their time among the 1-3, 3, 82-111mm SL, 105-144mm TL) (Fig. 2) were cracks, cave and crevices (Walker & Wood 2005), collected by a fishing hooks in a recent survey from the small size and sampling difficulties, many gobies the coast of Hormuz Island (27°02.37'N, 56°24.99'E) were previously overlooked and thus the knowledge at 4-10 m depth in December 2018 (Figs. 1, 3). After about their distribution is rather scarce (Bogorodsky photography, the specimens were preserved in 70% et al. 2010). This situation is more obvious in shrimp- ethanol and catalogued/ deposited in the Zoological associated gobies which quickly take shelter in the Museum of Shiraz University, Collection of Biology burrow. Department, Shiraz (ZM-CBSU). All morphometric Of these shrimp gobies, the genus Cryptocentrus measurements were measured point to point by Valenciennes, 1837 currently comprises 36 valid calipers to the nearest 0.1mm under the species and all of them have elongate body, with stereomicroscope (Zeiss Stemi sv6). Morphometric small to medium size (Fricke et al. 2019). The species characters were given as standard and head length of this genus have been recorded from the western (Table 1). Meristic and morphometric methods 99 www.SID.ir Iran. J. Ichthyol. (June 2019), 6(2): 98-105 Archive of SID Fig.2. Collecting site of Cryptocentrus cyanotaenia: coast of Hormuz Island (Strait of Hormuz). Fig.3. World distribution map of Cryptocentrus cyanotaenia, including new record site (blue solid square) and previous other reports (red solid circle). follow Randall (1994) and Chen & Miller (2008). centrus meleagris Ehrenberg, in Valenciennes, 1837: Meristic abbreviations are: D1 = First dorsal fin; D2 111, Massuah, Red Sea, by tautonomy). = Second dorsal fin; V = Ventral fin; A = Anal fin; P Etymology: Cryptocentrus: Greek, kryptos = hidden = Pectoral fin; PSD = Predorsal scales; LSS= + Greek, kentron = sting Longitudinal scales series; and TSS = Transverse The systematic difficulties of the genus scales series. For identification, Smith & Heemstra Cryptocentrus has already been discussed by Hoese (1987), Niem & Carpenter (2001) and Kumar et al. & Steene (1978), Winterbottom (2002), Hoese & (2015) were followed. Larson (2004), Agorreta et al. (2013) and Hoese (2019). These difficulties might be due to the Results existence of lacustrine populations, clinical Systematics: variations within their broad range and differential Family Gobiidae growth patterns in the young (Kumar et al. 2015). Subfamily Gobiinae Diagnosis: Based on Hoese & Larson (2004), the Genus Cryptocentrus Valenciennes, 1837 genus is characterized by a number of distinctive Cryptocentrus Valenciennes, 1837: 111 (Gobius features. Head compressed, with eyes placed high on cryptocentrus Valenciennes, 1837: 111=Crypto- sides of head, interorbital much narrower than eye. 100 www.SID.ir Sadeghi et al.- A lagoon shrimp goby, Cryptocentrus cyanotaenia Archive of SID Table 1. Proportional measurements and meristic counts of new record of Cryptocentrus cyanotaenia (ZM-CBSU F671, ZM-CBSU F672), collected from the coast of Hormuz Island in the Persian Gulf (Strait of Hormuz). Expressed as percentages of the standard length. Damaged ZM-CBSU F67-3 80.7mm SL and 110.2mm TL has not been included. Characters F67-1 (Female) M2741_ F67-2 (Female) Mean Total length 144.4mm 105.45mm 124.9mm Standard Length 111mm 82.37mm 96.7mm Body depth /Sl 16.4 21.5 21.5 Body with /Sl 12.1 10.9 10.9 Head length /Sl 28.6 27.4 27.4
Recommended publications
  • Disease List for Aquaculture Health Certificate
    Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • "Red Sea and Western Indian Ocean Biogeography"
    A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea Item Type Article Authors DiBattista, Joseph; Roberts, May B.; Bouwmeester, Jessica; Bowen, Brian W.; Coker, Darren James; Lozano-Cortés, Diego; Howard Choat, J.; Gaither, Michelle R.; Hobbs, Jean-Paul A.; Khalil, Maha T.; Kochzius, Marc; Myers, Robert F.; Paulay, Gustav; Robitzch Sierra, Vanessa S. N.; Saenz Agudelo, Pablo; Salas, Eva; Sinclair-Taylor, Tane; Toonen, Robert J.; Westneat, Mark W.; Williams, Suzanne T.; Berumen, Michael L. Citation A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea 2015:n/a Journal of Biogeography Eprint version Post-print DOI 10.1111/jbi.12649 Publisher Wiley Journal Journal of Biogeography Rights This is the peer reviewed version of the following article: DiBattista, J. D., Roberts, M. B., Bouwmeester, J., Bowen, B. W., Coker, D. J., Lozano-Cortés, D. F., Howard Choat, J., Gaither, M. R., Hobbs, J.-P. A., Khalil, M. T., Kochzius, M., Myers, R. F., Paulay, G., Robitzch, V. S. N., Saenz-Agudelo, P., Salas, E., Sinclair-Taylor, T. H., Toonen, R. J., Westneat, M. W., Williams, S. T. and Berumen, M. L. (2015), A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. Journal of Biogeography., which has been published in final form at http:// doi.wiley.com/10.1111/jbi.12649. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving. Download date 23/09/2021 15:38:13 Link to Item http://hdl.handle.net/10754/583300 1 Special Paper 2 For the virtual issue, "Red Sea and Western Indian Ocean Biogeography" 3 LRH: J.
    [Show full text]
  • Rhinogobius Mizunoi, a New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan
    Bull. Kanagawa prefect. Mus. (Nat. Sci.), no. 46, pp. 79-95, Feb. 2017 79 Original Article Rhinogobius mizunoi, A New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan Toshiyuki Suzuki 1), Koichi Shibukawa 2) & Masahiro Aizawa 3) Abstract. A new freshwater goby, Rhinogobius mizunoi, is described based on six specimens from a freshwater stream in Shizuoka Prefecture, Japan. The species is distinguished from all congeneric species by the following combination of characters: I, 8 second dorsal-fin rays; 18–20 pectoral-fin rays; 13–18 predorsal scales; 33–35 longitudinal scales; 8 or 9 transverse scales; 10+16=26 vertebrae 26; first dorsal fin elongate in male, its distal tip reaching to base of fourth branched ray of second dorsal fin in males when adpressed; when alive or freshly-collected, cheek with several pale sky spots; caudal fin without distinct rows of dark dots; a pair of vertically- arranged dark brown blotches at caudal-fin base in young and females. Key words: amphidoromous, fish taxonomy, Rhinogobius sp. CO, valid species Introduction 6–11 segmented rays; anal fin with a single spine and 5–11 The freshwater gobies of the genus Rhinogobius Gill, segmented rays; pectoral fin with 14–23 segmented rays; 1859 are widely distributed in the East and Southeast pelvic fin with a single spine and five segmented rays; Asian regions, including the Russia Far East, Japan, 25–44 longitudinal scales; 7–16 transverse scales; P-V 3/ Korea, China, Taiwan, the Philippines, Vietnam, Laos, II II I I 0/9; 10–11+15–18= 25–29 vertebrae; body mostly Cambodia, and Thailand (Chen & Miller, 2014).
    [Show full text]
  • Estuarine Fish Diversity of Tamil Nadu, India
    Indian Journal of Geo Marine Sciences Vol. 46 (10), October 2017, pp. 1968-1985 Estuarine fish diversity of Tamil Nadu, India H.S. Mogalekar*, J. Canciyal#, P. Jawahar, D.S. Patadiya, C. Sudhan, P. Pavinkumar, Prateek, S. Santhoshkumar & A. Subburaj Department of Fisheries Biology and Resource Management, Fisheries College & Research Institute, (Tamil Nadu Fisheries University), Thoothukudi-628 008, India. #ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad-500 030, Telangana, India. *[E-Mail: [email protected]] Received 04 February 2016 ; revised 10 August 2017 Systematic and updated checklist of estuarine fishes contains 330 species distributed under 205 genera, 95 families, 23 orders and two classes. The most diverse order was perciformes with 175 species, 100 genera and 43 families. The top four families with the highest number of species were gobidae (28 species), carangidae (23 species), engraulidae (15 species) and lutjanidae (14 species). Conservation status of all taxa includes one species as endangered, five species as vulnerable, 14 near threatened, 93 least concern and 16 data deficient. As numbers of commercial, sports, ornamental and cultivable fishes are high, commercial and recreational fishing could be organized. Seed production by selective breeding is recommended for aquaculture practices in estuarine areas of Tamil Nadu. [Keywords: Estuarine fishes, updated checklist, fishery and conservation status, Tamil Nadu] Introduction significant component of coastal ecosystem due to The total estuarine area of Tamil Nadu their immense biodiversity values in aquatic was estimated to be 56000 ha, which accounts ecology. The fish fauna inhabiting the estuarine 3.88 % of the total estuarine area of India 1.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Social Behaviour and Mating System of the Gobiid Fish Amblyeleotris Japonica
    Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol.28,No.41982 28巻4号1982年 Social Behaviour and Mating System of the Gobiid Fish Amblyeleotris japonica Yasunobu Yanagisawa (Received March 26,1981) Abstract The behaviour,social interactions and mating system of the gobiid fish Amblyeleotris japonica,that utilize the burrows dug by the snapping shrimp Alpheus bellulus as a sheltering and nesting site,were investigated at two localities on the southern coast of Japan.The fish spent most of their time in the area near the entrance of the burrow in daytime.Movements were limited to an area of about three metres in radius from the entrance.Aggressive encounters occurred between adjacent individuals sometimes resulting in changes of occupation of burrows. Males were more active in pair formation,whereas females were rather passive.Paris were usually maintained for several days or more,but some of them broke up without spawning.All the males that successfully spawned were larger ones that were socially dominant,and they re- mained within the burrow for four to seven days after spawning to care for a clutch of eggs. Variation in social interactions and burrow-use was recognized between two study populations and was attributed to the differences in predation pressure and density of burrows. A number of species of Gobiidae are known history and pair formation of the shrimp to live in the burrows of alpheid shrimps in Alpheus bellulus are described.In this study, tropical and subtropical waters(Luther,1958; the behaviour,social interactions and mating Klausewitz,1960,1969,1974a,b;Palmer,1963; system of its partner fish Amblyeleotris japonica Karplus et al.,1972a,b;Magnus,1967;Harada, are investigated and analyzed.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]
  • Appendix 9.10A - Aquatic Fauna Recorded in Tai Ho Stream and the Page 1 of 2 Estuarine Area
    Project: Agreement No. CE32/2011 (CE) Planning and Engineering Study on the Remaining Development in Tung Chung Appendix 9.10a - Aquatic Fauna recorded in Tai Ho Stream and the Page 1 of 2 Estuarine area No. Family Species Commonness Conservation Status Fish 1 Dasyatidae Dasyatis akaje 2 Dasyatidae Gymnura japonica China Red Data Book – Endangered; 3 Anguillidae Anguilla japonica Uncommon China Key List – II; IUCN (2015) - Endangered AFCD Assessment - Species of Conservation Importance; Fellowes et al. 2000. - GC; Class II Protected animal in 4 Anguillidae Anguilla marmorata Uncommon PRC; China Red Data Book - Endangered; 5 Ophichthidae Pisodonophis boro 6 Ophichthidae Pisodonophis cancrivorus 7 Clupeidae Nematalosa nasus 8 Engraulidae Thryssa hamiltonii 9 Plotosidae Plotosus lineatus AFCD Assessment: Species of Conservation Importance; China Red Data Book: 10 Osmeridae Plecoglossus altivelis Vulnerable; Fellowes et al. (2002): Regional Concern China Red Data Book - 11 Cyprinidae Parazacco spilurus Common Vulnerable 12 Cyprinidae Puntius semifasciolatus 13 Balitoridae Schistura fasciolata 14 Clariidae Clarias fuscus 15 Mugilidae Mugil cephalus 16 Mugilidae Chelon subviridis 17 Hemiramphidae Rhynchorhamphus georgii 18 Belonidae Tylosurus strongylurus 19 Centropomidae Lates calcarifer 20 Ambassidae Ambassis gymnocephalus 21 Percichthyidae Lateolabrax japonicus 22 Sillaginidae Sillago japonica 23 Lutjanidae Lutjanus argentimaculatus 24 Gerreidae Gerres oyena 25 Haemulidae Pomadasys maculatus 26 Sparidae Acanthopagrus latus 27 Terapontidae Terapon jarbua 28 Cichlidae Tilapia zillii 29 Blenniidae Omobranchus fasciolatoceps \\HKGNTS22\ACOUSTIC\ENV\PROJECT\219844-70\12 REPORTS © Arup F0.13 DELIVERABLES\43 EIA REPORT\03 FINAL DRAFT\APPENDICES\9. Page 1 of 2 Rev 9.2, 1 May 2003 ECOLOGY\INPUT FROM ECOSYSTEM__20150929\APPENDIX 9.10A AQUATIC FAUNA RECORDED IN TAI HO STREAM_20150925.DOC Project: Agreement No.
    [Show full text]
  • Marine Ecology Progress Series 290:207
    MARINE ECOLOGY PROGRESS SERIES Vol. 290: 207–221, 2005 Published April 13 Mar Ecol Prog Ser Life-history characteristics of coral reef gobies. I. Growth and life-span V. Hernaman1, 3,*, P. L. Munday2 1Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand 2School of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia 3Present address: School of Biological Sciences, Victoria University, PO Box 600, Wellington, New Zealand ABSTRACT: Life-history theory predicts that small species will exhibit short life-spans and fast growth rates; however, previous studies indicate that a positive relationship between size and maxi- mum age may not be universally applicable to coral reef fishes. Here, we investigate the growth and life-span of 5 small species of coral reef goby (family Gobiidae): Istigobius goldmanni, Asterropteryx semipunctatus, Amblygobius bynoensis, Amblygobius phalaena and Valenciennea muralis. All 5 species were relatively short-lived, with the oldest individual sampled ranging from 11 to 16 mo depending on species and sex. Rapid growth occurred over much of the size range of all 5 species and, in contrast to most reef fishes, relatively little or no time was spent at an asymptotic size. Patterns of growth were best described by a Broken Stick model for I. goldmanni, and by either a Broken Stick model or the von Bertalanffy growth function for the other 4 species. Summer-growing individuals had higher growth rates than winter-growing individuals, but this did not affect the overall patterns of growth. Sex-specific differences in growth were evident for I. goldmanni and A.
    [Show full text]
  • 4. Nuralim ED Author Final Reupload02
    Aceh Journal of Animal Science (2020) 5 (2): 87 - 91 Aceh Journal of Animal Science Journal homepage: www.jurnal.unsyiah.ac.id/AJAS Are Awaous ocellaris and Belobranchus belobranchus the two species of Nike fish schools ? Nuralim Pasisingi*, Sitty Ainsyah Habibie, Abdul Hafidz Olii Faculty of Fisheries and Marine Science, Gorontalo State University, Gorontalo, 96128, Indonesia ARTICEL INFO ABSTRACT Keywords: Investigating goby fish is vital to perform an integrated and comprehensive study in order to maintain the roles Awaous of the fish, thus providing balanced ecosystem functions and services, as well as contributing to fish biodiversity. Belobranchus Local societies simply recognize fish species by their local names, which are not common. This condition, in turn, Endemic causes hitches in conducting further studies. Nike, the name of a local fish, refers to the schools of goby fish Goby larvae whose adult phase has not been fully confirmed. This study aimed to reveal the species that categorizes as Gorontalo nike fish through tracing adult goby inhabiting freshwater. Two fish samples, i.e., Unknown 01 and Unknown 02, Nike fish were taken from two sites in Bone River, Gorontalo, Indonesia. These samples were captured purposively using a hand net by considering the morphological similarity between the two target samples and the general Received: 28 April 2020 characteristic of goby. Furthermore, the samples were analyzed genetically through the PCR sequencing method Accepted: 4 June 2020 using the Mitochondrial Cytochrome Oxidase Subunit 1 (CO1) gene. Based on the NCBI database, Unknown 01 Available online: 4 June 2020 had the highest similarity to Belobranchus belobranchus (99.54%), while Unknown 02 was identical with Awaous ocellaris (100%).
    [Show full text]