Appendix 9.10A - Aquatic Fauna Recorded in Tai Ho Stream and the Page 1 of 2 Estuarine Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rhinogobius Mizunoi, a New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan
Bull. Kanagawa prefect. Mus. (Nat. Sci.), no. 46, pp. 79-95, Feb. 2017 79 Original Article Rhinogobius mizunoi, A New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan Toshiyuki Suzuki 1), Koichi Shibukawa 2) & Masahiro Aizawa 3) Abstract. A new freshwater goby, Rhinogobius mizunoi, is described based on six specimens from a freshwater stream in Shizuoka Prefecture, Japan. The species is distinguished from all congeneric species by the following combination of characters: I, 8 second dorsal-fin rays; 18–20 pectoral-fin rays; 13–18 predorsal scales; 33–35 longitudinal scales; 8 or 9 transverse scales; 10+16=26 vertebrae 26; first dorsal fin elongate in male, its distal tip reaching to base of fourth branched ray of second dorsal fin in males when adpressed; when alive or freshly-collected, cheek with several pale sky spots; caudal fin without distinct rows of dark dots; a pair of vertically- arranged dark brown blotches at caudal-fin base in young and females. Key words: amphidoromous, fish taxonomy, Rhinogobius sp. CO, valid species Introduction 6–11 segmented rays; anal fin with a single spine and 5–11 The freshwater gobies of the genus Rhinogobius Gill, segmented rays; pectoral fin with 14–23 segmented rays; 1859 are widely distributed in the East and Southeast pelvic fin with a single spine and five segmented rays; Asian regions, including the Russia Far East, Japan, 25–44 longitudinal scales; 7–16 transverse scales; P-V 3/ Korea, China, Taiwan, the Philippines, Vietnam, Laos, II II I I 0/9; 10–11+15–18= 25–29 vertebrae; body mostly Cambodia, and Thailand (Chen & Miller, 2014). -
Estuarine Fish Diversity of Tamil Nadu, India
Indian Journal of Geo Marine Sciences Vol. 46 (10), October 2017, pp. 1968-1985 Estuarine fish diversity of Tamil Nadu, India H.S. Mogalekar*, J. Canciyal#, P. Jawahar, D.S. Patadiya, C. Sudhan, P. Pavinkumar, Prateek, S. Santhoshkumar & A. Subburaj Department of Fisheries Biology and Resource Management, Fisheries College & Research Institute, (Tamil Nadu Fisheries University), Thoothukudi-628 008, India. #ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad-500 030, Telangana, India. *[E-Mail: [email protected]] Received 04 February 2016 ; revised 10 August 2017 Systematic and updated checklist of estuarine fishes contains 330 species distributed under 205 genera, 95 families, 23 orders and two classes. The most diverse order was perciformes with 175 species, 100 genera and 43 families. The top four families with the highest number of species were gobidae (28 species), carangidae (23 species), engraulidae (15 species) and lutjanidae (14 species). Conservation status of all taxa includes one species as endangered, five species as vulnerable, 14 near threatened, 93 least concern and 16 data deficient. As numbers of commercial, sports, ornamental and cultivable fishes are high, commercial and recreational fishing could be organized. Seed production by selective breeding is recommended for aquaculture practices in estuarine areas of Tamil Nadu. [Keywords: Estuarine fishes, updated checklist, fishery and conservation status, Tamil Nadu] Introduction significant component of coastal ecosystem due to The total estuarine area of Tamil Nadu their immense biodiversity values in aquatic was estimated to be 56000 ha, which accounts ecology. The fish fauna inhabiting the estuarine 3.88 % of the total estuarine area of India 1. -
4. Nuralim ED Author Final Reupload02
Aceh Journal of Animal Science (2020) 5 (2): 87 - 91 Aceh Journal of Animal Science Journal homepage: www.jurnal.unsyiah.ac.id/AJAS Are Awaous ocellaris and Belobranchus belobranchus the two species of Nike fish schools ? Nuralim Pasisingi*, Sitty Ainsyah Habibie, Abdul Hafidz Olii Faculty of Fisheries and Marine Science, Gorontalo State University, Gorontalo, 96128, Indonesia ARTICEL INFO ABSTRACT Keywords: Investigating goby fish is vital to perform an integrated and comprehensive study in order to maintain the roles Awaous of the fish, thus providing balanced ecosystem functions and services, as well as contributing to fish biodiversity. Belobranchus Local societies simply recognize fish species by their local names, which are not common. This condition, in turn, Endemic causes hitches in conducting further studies. Nike, the name of a local fish, refers to the schools of goby fish Goby larvae whose adult phase has not been fully confirmed. This study aimed to reveal the species that categorizes as Gorontalo nike fish through tracing adult goby inhabiting freshwater. Two fish samples, i.e., Unknown 01 and Unknown 02, Nike fish were taken from two sites in Bone River, Gorontalo, Indonesia. These samples were captured purposively using a hand net by considering the morphological similarity between the two target samples and the general Received: 28 April 2020 characteristic of goby. Furthermore, the samples were analyzed genetically through the PCR sequencing method Accepted: 4 June 2020 using the Mitochondrial Cytochrome Oxidase Subunit 1 (CO1) gene. Based on the NCBI database, Unknown 01 Available online: 4 June 2020 had the highest similarity to Belobranchus belobranchus (99.54%), while Unknown 02 was identical with Awaous ocellaris (100%). -
5Th Indo-Pacific Fish Conference
)tn Judo - Pacifi~ Fish Conference oun a - e II denia ( vernb ~ 3 - t 1997 A ST ACTS Organized by Under the aegis of L'Institut français Société de recherche scientifique Française pour le développement d'Ichtyologie en coopération ' FI Fish Conference Nouméa - New Caledonia November 3 - 8 th, 1997 ABSTRACTS LATE ARRIVAL ZOOLOGICAL CATALOG OF AUSTRALIAN FISHES HOESE D.F., PAXTON J. & G. ALLEN Australian Museum, Sydney, Australia Currently over 4000 species of fishes are known from Australia. An analysis ofdistribution patterns of 3800 species is presented. Over 20% of the species are endemic to Australia, with endemic species occuiring primarily in southern Australia. There is also a small component of the fauna which is found only in the southwestern Pacific (New Caledonia, Lord Howe Island, Norfolk Island and New Zealand). The majority of the other species are widely distributed in the western Pacific Ocean. AGE AND GROWTH OF TROPICAL TUNAS FROM THE WESTERN CENTRAL PACIFIC OCEAN, AS INDICATED BY DAILY GROWm INCREMENTS AND TAGGING DATA. LEROY B. South Pacific Commission, Nouméa, New Caledonia The Oceanic Fisheries Programme of the South Pacific Commission is currently pursuing a research project on age and growth of two tropical tuna species, yellowfm tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). The daily periodicity of microincrements forrned with the sagittal otoliths of these two spceies has been validated by oxytetracycline marking in previous studies. These validation studies have come from fishes within three regions of the Pacific (eastem, central and western tropical Pacific). Otolith microincrements are counted along transverse section with a light microscope. -
Research Article Lagoon Shrimp Goby, Cryptocentrus Cyanotaenia
Iran. J. Ichthyol. (June 2019), 6(2): 98-105 Received: February 30, 2019 © 2019 Iranian Society of Ichthyology Accepted: May 31, 2019 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v6i2.417 http://www.ijichthyol.org Research Article Lagoon shrimp goby, Cryptocentrus cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an additional fish element for the Iranian waters Reza SADEGHI1, Hamid Reza ESMAEILI*1, Mona RIAZI2, Mohamad Reza TAHERIZADEH2, Mohsen SAFAIE3,4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Marine Biology Department, Faculty of Science, University of Hormozgan, P.O.Box 3995, Bandar Abbas, Iran. 3Fisheries Department, University of Hormozgan, Bandar Abbas, P.O.Box. 3995, Iran. 4Mangrove Forest Research Center, University of Hormozgan, Bandar Abbas, P.O.Box. 3995, Iran. *Email: [email protected] Abstract: Shrimp-associated gobies are burrowing fish of small to medium size that are common inhabitants of sand and mud substrates throughout the tropical Indo-Pacific region. Due to specific habitat preference, cryptic behavior, the small size and sampling difficulties, many gobies were previously overlooked and thus the knowledge about their distribution is rather scarce. This study presents lagoon shrimp goby, Cryptocentrus cyanotaenia, as additional fish element for the Iranian waters in the coast of Hormuz Island (Strait of Hormuz). The distribution range of lagoon shrimp goby was in the Western Central Pacific and eastern Indian Ocean. This species is distinguished by the several traits such as body elongate and compressed, snout truncate, body brownish grey color with 11 vertical narrow whitish blue lines on the sides, largely greenish yellow on head and mandible, head and base of pectoral fin with numerous short blue oblique broken lines and spots with markings on the head and snout. -
Conservation of Mangrove Gobies in Lesser Sunda Islands, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 17, Number 2, October 2016 E-ISSN: 2085-4722 Pages: 553-557 DOI: 10.13057/biodiv/d170223 Short Communication: Conservation of mangrove gobies in Lesser Sunda Islands, Indonesia YULIADI ZAMRONI1,2,♥, KADARWAN SOEWARDI3, BAMBANG SURYOBROTO1, ZEEHAN JAAFAR4,5,♥♥ 1Department of Biology, Institut Pertanian Bogor, Bogor 16680, West Java, Indonesia. Telp/Fax. (0251) 8625481, ♥email: [email protected] 2Biology Study Programme, Faculty of Mathematics and Natural Sciences, Universitas Mataram. Mataram 83125, West Nusa Tenggara, Indonesia 3Department of Living Aquatic Resources Management, Institut Pertanian Bogor. Bogor 16680, West Java, Indonesia 4Department of Biological Sciences, National University of Singapore. 14 Science Drive 4, S117543, Singapore. ♥♥email: [email protected] 5Division of Fishes, Smithsonian Institution. PO Box 37012, National Museum of Natural History, MRC 159, Washington, D.C. 20013-7012 USA Manuscript received: 30 May 2016. Revision accepted: 7 July 2016. Abstract. Zamroni Y, Soewardi K, Suryobroto B, Jaafar Z. 2016. Short Communication: Conservation of mangrove gobies in Lesser Sunda Islands, Indonesia. Biodiversitas 17: 553-557. Ecosystems goods and services from mangrove forests are especially vital to coastal communities. Yet mangrove areas continue to be deforested at unprecedented rates. Using gobioid fishes associated with mangrove forests as focal organisms, we assessed their diversity in 14 selected sites within the Lesser Sunda group of islands. We applied Correspondence analysis to determine the relationships between ecosystems based on the occurrence of these fishes and complementarity analysis to identify the minimum number of sites to conserve maximum diversity based on a rarity algorithm. We recovered 55 gobioid fish species at these mangrove areas, and proposed six mangrove areas within the Lesser Sunda group of islands as areas of conservation priority: Loh Sebita, Oebelo, Bipolo, Lembar Bay, Selindungan, and Kawangu. -
Lagoon Shrimp Goby, Cryptocentrus Cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an Additional Fish Element for the Iranian Waters
Iran. J. Ichthyol. (June 2019), 6(2): 98-105 Received: February 30, 2019 © 2019 Iranian Society of Ichthyology Accepted: May 31, 2019 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v6i2.417 Archive of SID http://www.ijichthyol.org Research Article Lagoon shrimp goby, Cryptocentrus cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an additional fish element for the Iranian waters Reza SADEGHI1, Hamid Reza ESMAEILI*1, Mona RIAZI2, Mohamad Reza TAHERIZADEH2, Mohsen SAFAIE3,4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Marine Biology Department, Faculty of Science, University of Hormozgan, P.O.Box 3995, Bandar Abbas, Iran. 3Fisheries Department, University of Hormozgan, Bandar Abbas, P.O.Box. 3995, Iran. 4Mangrove Forest Research Center, University of Hormozgan, Bandar Abbas, P.O.Box. 3995, Iran. *Email: [email protected] Abstract: Shrimp-associated gobies are burrowing fish of small to medium size that are common inhabitants of sand and mud substrates throughout the tropical Indo-Pacific region. Due to specific habitat preference, cryptic behavior, the small size and sampling difficulties, many gobies were previously overlooked and thus the knowledge about their distribution is rather scarce. This study presents lagoon shrimp goby, Cryptocentrus cyanotaenia, as additional fish element for the Iranian waters in the coast of Hormuz Island (Strait of Hormuz). The distribution range of lagoon shrimp goby was in the Western Central Pacific and eastern Indian Ocean. This species is distinguished by the several traits such as body elongate and compressed, snout truncate, body brownish grey color with 11 vertical narrow whitish blue lines on the sides, largely greenish yellow on head and mandible, head and base of pectoral fin with numerous short blue oblique broken lines and spots with markings on the head and snout. -
THE STATUS and DISTRIBUTION of Freshwater Biodiversity in Madagascar and the Indian Ocean Islands Hotspot
THE THE STATUs aNd dISTRIBUtION OF STAT U Freshwater biodIversIty in MadagasCar s a N aNd the INdIaN OCeaN IslaNds hOtspOt d d I STR Edited by Laura Máiz-Tomé, Catherine Sayer and William Darwall IUCN Freshwater Biodiversity Unit, Global Species Programme IBU t ION OF F OF ION RESHWATER N ds a BIO I N d I ar ar VERS d C N I TY IN IN sla Madagas I N C ar a ar N ea d the I the d d the I the d C N N d Madagas a O I a N O C ea N I sla N IUCN h ds Rue Mauverney 28 CH-1196 Gland O Switzerland tsp Tel: + 41 22 999 0000 Fax: + 41 22 999 0015 O www.iucn.org/redlist t the IUCN red list of threatened speciestM www.iucnredlist.org THE STATUS AND DISTRIBUTION OF freshwater biodiversity in Madagascar and the Indian Ocean islands hotspot Edited by Laura Máiz-Tomé, Catherine Sayer and William Darwall IUCN Freshwater Biodiversity Unit, Global Species Programme The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, or other participating organisations. This publication has been made possible by funding from The Critical Ecosystem Partnership Fund. Published by: IUCN Cambridge, UK in collaboration with IUCN Gland, Switzerland Copyright: © 2018 IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. -
A New Genus and Species of Goby from the Swan-Avon Estuary, Western Australia, with a Redescription of the Genus Favonigobius Whitley, 1930
H c \! -lin! \fU\ 1990, 14l~) A new genus and species of goby from the Swan-Avon Estuary, Western Australia, with a redescription of the genus Favonigobius Whitley, 1930 *H. S. Gill and i1>..J Miller Abstract A new genus of gobiid. Papillogohius. is described from specimens collected In the Swan-Avon Estuary. south-western Australia. The genus Fal'Onigohius Whitley. 1930. is rcdescribcd. The type species of the two genera. Papillogohius pune/at!ls sp. novo and Fal'omgohius lateralis (Macleay. 1881), are described and redescnbed respectively. Fal'(migohius exquisi/us. Fa\'onigohius melanohranehus and Fa\'onigohius reiehel are placed in the new genus on the basis of several shared osteological and morphological characters. The characters used to distinguish the new genus from allied genera are also discussed. Introduction Gobies (Gobiidae) are a ubiquitous and abundant component of the teleost fauna of the Swan-Avon and Peel-Harvey Estuaries of south-western Australia (Chubb et al. 1979; Potter et al. 1983). During a study on the distribution, abundance and biology of the various species of gobies in the Swan-Avon Estuary initiated in 1983, by one of us (HSG), it became apparent that the taxonomy of the various species found in the system required attention. Although Chubb et al. (1979) recorded Favonigobius lateralis (Macleay, 1881) in moderately large numbers throughout the estuary, a subsequent more rigorous quantitative analysis by one of us (HSG) showed that individuals assigned to this species were represented by two morphologically distinct forms. One form was caught in very large numbers in the lower estuary and to a lesser extent in the middle estuary, whereas the other was found predominantly in the upper estuary. -
Marine and Estuarine Fish Fauna of Tamil Nadu, India
Proceedings of the International Academy of Ecology and Environmental Sciences, 2018, 8(4): 231-271 Article Marine and estuarine fish fauna of Tamil Nadu, India 1,2 3 1 1 H.S. Mogalekar , J. Canciyal , D.S. Patadia , C. Sudhan 1Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India 2College of Fisheries, Dholi, Muzaffarpur - 843 121, Bihar, India 3Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal, India E-mail: [email protected] Received 20 June 2018; Accepted 25 July 2018; Published 1 December 2018 Abstract Varied marine and estuarine ecosystems of Tamil Nadu endowed with diverse fish fauna. A total of 1656 fish species under two classes, 40 orders, 191 families and 683 geranra reported from marine and estuarine waters of Tamil Nadu. In the checklist, 1075 fish species were primary marine water and remaining 581 species were diadromus. In total, 128 species were reported under class Elasmobranchii (11 orders, 36 families and 70 genera) and 1528 species under class Actinopterygii (29 orders, 155 families and 613 genera). The top five order with diverse species composition were Perciformes (932 species; 56.29% of the total fauna), Tetraodontiformes (99 species), Pleuronectiforms (77 species), Clupeiformes (72 species) and Scorpaeniformes (69 species). At the family level, the Gobiidae has the greatest number of species (86 species), followed by the Carangidae (65 species), Labridae (64 species) and Serranidae (63 species). Fishery status assessment revealed existence of 1029 species worth for capture fishery, 425 species worth for aquarium fishery, 84 species worth for culture fishery, 242 species worth for sport fishery and 60 species worth for bait fishery. -
NBSREA Design Cvrs V2.Pub
February 2009 TNC Pacific Island Countries Report No 1/09 Rapid Ecological Assessment Northern Bismarck Sea Papua New Guinea Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Supported by: AP Anonymous February 2009 TNC Pacific Island Countries Report No 1/09 Rapid Ecological Assessment Northern Bismarck Sea Papua New Guinea Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Dr. Richard Hamilton, 51 Edmondstone Street, South Brisbane, QLD 4101 Australia Email: [email protected] Suggested Citation: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: Manus © Gerald Allen ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications ii Foreword Manus and New Ireland provinces lie north of the Papua New Guinea mainland in the Bismarck Archipelago. More than half of the local communities in our provinces are coastal inhabitants, who for thousands of years have depended on marine resources for their livelihood. For coastal communities survival and prosperity is integrally linked to healthy marine ecosystems. -
An Annotated Checklist of the Gobioid Fishes of Singapore
THE RAFFLES BULLETIN OF ZOOLOGY 2008 THE RAFFLES BULLETIN OF ZOOLOGY 2008 56(1): 135–155 Date of Publication: 29 Feb.2008 © National University of Singapore AN ANNOTATED CHECKLIST OF THE GOBIOID FISHES OF SINGAPORE Helen K. Larson Museum & Art Gallery of the Northern Territory, PO Box 4646, Darwin, NT 0801, Australia Email: [email protected] Zeehan Jaafar Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore Email: [email protected] Kelvin K. P. Lim Raffles Musem of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Science Drive 2, Singapore 117546, Republic of Singapore Email: [email protected] ABSTRACT. – Singapore records for all gobioid fish species are provided, in addition to relevant synonyms. The list includes some doubtful records from the literature and gives correct identifications of misidentified Singapore species wherever possible. A total of 149 gobioid species are now known from Singapore, including several of dubious identity. Of these, 37 have not been recently reported nor found in recent collections from the island, possibly due to habitat changes. Nine species of gobioid fishes are recorded from Singapore for the first time. KEY WORDS. – Singapore, Gobioidei, Gobiidae, Eleotridae, Microdesmidae, checklist. INTRODUCTION high wave energies, enabling mangroves to develop and flourish, especially along the northern coast. The southern Singapore is an island state situated at the southern tip of the shores and islands of Singapore generally receive higher Malay Peninsula, between the Straits of Malacca and the wave energy, resulting in a patchy distribution of mangroves. South China Sea, at a latitude of 1°21'N.