Mediterranean Marine Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
A Dissertation Entitled Evolution, Systematics
A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could -
Marine Fishes of the Azores: an Annotated Checklist and Bibliography
MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores. -
(Teleostei: Gobiidae) from the Canary Islands
Zootaxa 3793 (4): 453–464 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3793.4.4 http://zoobank.org/urn:lsid:zoobank.org:pub:847946D4-6AB2-4B36-8BB1-0CA59E60511D A new species of Didogobius (Teleostei: Gobiidae) from the Canary Islands JAMES L. VAN TASSELL1 & ANNEMARIE KRAMER2 1Department of Ichthyology, American Museum of Natural History, New York, NY 10024. E-mail: [email protected] 2School for Field Studies, Bocas del Toro, Panama. E-mail: [email protected] Abstract Didogobius helenae is described from the Canary Islands. It has a sensory papillae pattern that is consistent with the cur- rent diagnosis for Didogobius, but lacks all head canals and pores that are present in other members of the genus. Pores, in general, are replaced by large papillae. The species is defined by first dorsal fin VI; second dorsal fin I,10; anal fin I,9; pectoral fin 16–17; pelvic fin I,5 and disk shaped; lateral scales 28–30, cycloid at anterior, becoming ctenoid posteriorly; cycloid scales present on belly and posterior breast; predorsal region, cheek, operculum and base of pectoral fin without scales; lower most scale on the caudal fin-base with elongate, thickened ctenii along the upper and lower posterior edges. Color in life consists of four mottled, wide brown-orange bars separated by narrower white bars on the trunk, the cheek whitish with 5 more or less circular blotches of orange, outlined in dark brown and a black spot on ventral operculum. -
Download This PDF File
Iran. J. Ichthyol. (June 2021), 8(2): 114-124 Received: February 9, 2021 © 2021 Iranian Society of Ichthyology Accepted: May 6, 2021 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v8i2.584 http://www.ijichthyol.org Research Article Morphology and DNA barcode confirm three new records of gobies (Gobiiformes: Gobiidae) from Bangladesh Md Jayedul ISLAM1, Tania SIDDIQUEKI1, Amit Kumer NEOGI1, Md. Yeamin HOSSAIN2, Michael HAMMER3, Kazi Ahsan HABIB1,4* 1Aquatic Bioresource Research Lab, Department of Fisheries Biology and Genetics, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh. 2Department of Fisheries, Faculty of Fisheries, University of Rajshahi, Rajshahi-6205, Bangladesh. 3Museum and Art Galllery of the Northern Territory, Darwin, NT, Australia. 4Department of Fisheries Biology and Genetics, Faculty of Fisheries, Aquaculture and Marine Science, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh. *Email: [email protected] Abstract: This paper deals with three new distributional records of gobies viz. Amblyeleotris downingi Randall, 1994, Psammogobius biocellatus (Valenciennes, 1837), and Valenciennea muralis (Valenciennes, 1837) from Bangladeshi waters in the northernmost part of the Bay of Bengal. The examined specimens are identified and described by morphomeristic characteristics in addition to DNA barcoding based on mitochondrial COI gene. The COI barcode sequence of Amblyeleotris downingi is submitted for the first time in the GenBank. In addition, an updated checklist of gobies of the country is also compiled in this paper. Keywords: First record, Gobiid fish, Saint Martin’s Island, Sonadia Island. Citation: Islam, M.J.; Siddiqueki, T.; Neogi, A.K.; Hossain, M.Y.; HammerM M. & Habib, K.A. 2021. Morphology and DNA barcode confirm three new records of gobies (Gobiiformes: Gobiidae) from Bangladesh. -
Two New Records of Fishes from the Coast of Senegal
©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 37 1 151-152 München, August 2014 ISSN 0341-8391 Two new records of fishes from the coast of Senegal (Pisces) Peter Wirtz Wirtz, P. 2014. Two new records of fishes from the coast of Senegal (Pisces). Spixiana 37 (1): 151-152. Didogobius cf. wirtzi and Liopropoma cf. emanueli are recorded from the coast of Senegal. A previous mistaken record of Cephalopholis adscensionis is corrected. Peter Wirtz, Centro de Ciências do Mar, Universidade do Algarve, 8000-117 Faro, Portugal; e-mail: [email protected] Introduction Results Cadenat (1950) summarized the state of knowledge Didogobius cf. wirtzi Schliewen & Kovacib, 2008 on the marine fishes of Senegal. Since then, numerous The species Didogobius wirtzi Schliewen & Kovacib, publications have noted the presence of additional 2008 was described from Santiago Island, Cape species, described new species and/or revised genera Verde Islands. There it lives in a depth range of at and families of the area (e. g. Cadenat 1953, Cadenat least 10 to 20 m, in burrows of the circum-tropical 1960, Wirtz 1980, Séret & Opic 1981, Edwards 1986, axiid shrimp Axiopsis serratifrons, on sandy-gravelly Bath 1990, Rocha et al. 2012, Wirtz 2012). The coasts bottoms (Schliewen & Kovacib 2008). On 8 May 2012, of Senegal, however, are still poorly explored and a Didogobius was encountered on sandy bottom close without doubt many cryptic species remain to be to the Isles Madelaine in 15 m depth. The animal detected, in particular by SCUBA diving. During was at the entrance of a burrow that presumably dives at the coast of Senegal, in the vicinity of was built by an Axiopsis serratifrons. -
Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1996 Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria, and Lanzarote, With a Behavioral Description of Mauligobius Maderensis (Osteichthyes: Gobiidae). Richard Patrick Cody Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Cody, Richard Patrick, "Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria, and Lanzarote, With a Behavioral Description of Mauligobius Maderensis (Osteichthyes: Gobiidae)." (1996). LSU Historical Dissertations and Theses. 6180. https://digitalcommons.lsu.edu/gradschool_disstheses/6180 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
Lagoon Shrimp Goby, Cryptocentrus Cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an Additional Fish Element for the Iranian Waters
Iran. J. Ichthyol. (June 2019), 6(2): 98-105 Received: February 30, 2019 © 2019 Iranian Society of Ichthyology Accepted: May 31, 2019 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v6i2.417 Archive of SID http://www.ijichthyol.org Research Article Lagoon shrimp goby, Cryptocentrus cyanotaenia (Bleeker, 1853) (Teleostei: Gobiidae), an additional fish element for the Iranian waters Reza SADEGHI1, Hamid Reza ESMAEILI*1, Mona RIAZI2, Mohamad Reza TAHERIZADEH2, Mohsen SAFAIE3,4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Marine Biology Department, Faculty of Science, University of Hormozgan, P.O.Box 3995, Bandar Abbas, Iran. 3Fisheries Department, University of Hormozgan, Bandar Abbas, P.O.Box. 3995, Iran. 4Mangrove Forest Research Center, University of Hormozgan, Bandar Abbas, P.O.Box. 3995, Iran. *Email: [email protected] Abstract: Shrimp-associated gobies are burrowing fish of small to medium size that are common inhabitants of sand and mud substrates throughout the tropical Indo-Pacific region. Due to specific habitat preference, cryptic behavior, the small size and sampling difficulties, many gobies were previously overlooked and thus the knowledge about their distribution is rather scarce. This study presents lagoon shrimp goby, Cryptocentrus cyanotaenia, as additional fish element for the Iranian waters in the coast of Hormuz Island (Strait of Hormuz). The distribution range of lagoon shrimp goby was in the Western Central Pacific and eastern Indian Ocean. This species is distinguished by the several traits such as body elongate and compressed, snout truncate, body brownish grey color with 11 vertical narrow whitish blue lines on the sides, largely greenish yellow on head and mandible, head and base of pectoral fin with numerous short blue oblique broken lines and spots with markings on the head and snout. -
The Coralligenous in the Mediterranean
Project for the preparation of a Strategic Action Plan for the Conservation of the Biodiversity in the Mediterranean Region (SAP BIO) The coralligenous in the Mediterranean Sea Definition of the coralligenous assemblage in the Mediterranean, its main builders, its richness and key role in benthic ecology as well as its threats Project for the preparation of a Strategic Action Plan for the Conservation of the Biodiversity in the Mediterranean Region (SAP BIO) The coralligenous in the Mediterranean Sea Definition of the coralligenous assemblage in the Mediterranean, its main builders, its richness and key role in benthic ecology as well as its threats RAC/SPA- Regional Activity Centre for Specially Protected Areas 2003 Note: The designation employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of RAC/SPA and UNEP concerning the legal status of any State, territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. The views expressed in the document are those of the author and not necessarily represented the views of RAC/SPA and UNEP. This document was written for the RAC/SPA by Dr Enric Ballesteros from the Centre d'Estudis Avançats de Blanes – CSIC, Accés Cala Sant Francesc, 14. E-17300 Blanes, (Girona, Spain). Few records, listing and references were added to the original text by Mr Ben Mustapha Karim from the Institut National des Sciences et Technologies de la Mer (INSTM, Salammbô, Tunisie), dealing with actual data on the coralligenous in Tunisia, in order to give a rough idea of its richness in the eastern Mediterranean. -
Dotsugobius, a New Genus for Lophogobius Bleekeri Popta, 1921 (Actinopterygii, Gobioidei, Gobiidae), with Re-Description of the Species
Bull. Natl. Mus. Nat. Sci., Ser. A, 40(3), pp. 141–160, August 22, 2014 Dotsugobius, a New Genus for Lophogobius bleekeri Popta, 1921 (Actinopterygii, Gobioidei, Gobiidae), with Re-description of the Species Koichi Shibukawa1, Toshiyuki Suzuki2 and Hiroshi Senou3 1 Nagao Natural Environment Foundation, 3–3–7 Kotobashi, Sumida-ku, Tokyo 130–0022, Japan E-mail: [email protected] 2 Kawanishi-midoridai Senior High School, 1–18 Koyodai, Kawanishi, Hyogo 666–0125, Japan E-mail: [email protected] 3 Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara-shi, Kanagawa 250–0031, Japan E-mail: [email protected] (Received 6 June 2014; accepted 25 June 2014) Abstract A new gobiid genus Dotsugobius is described for Lophogobius bleekeri Popta, 1921. Dotsugobius belongs to the gobiid subfamily Gobiinae, and differs from the other gobiine genera in having the following combination of characters: head and body deep and compressed; no crest- like dermal ridge along predorsal midline; no free pectoral-fin rays; head and predorsal midline naked; single transverse sensory-papillae row p at interorbital area over sensory canal between pores C and D; seven distinct, long transverse rows of sensory papillae (rows 1–7) below eye; row b long, extending from transverse row 3 to posterior margin of cheek; row 5 divided into two parts (viz., rows 5s and 5i) by longitudinal row b, and not extending beyond row d ventrally; row n (divided into two parts by anterior part of longitudinal row x1) transverse and very long, extending ventrally beyond a horizontal line through pore F; row f comprising a pair of short longitudinal rows of papillae; well-developed sensory canals on head, with pores B′, C(S), D(S), E, F, G, H′, K′, L′, M′, N and O′; typical “Bathygobius Group” type of axial skeletal features, e.g., P-V 3/II II I I 0/9, 10+17=27 vertebrae, two anal pterygiophores anterior to first haemal arch, and single epural. -
PCAS V55x Sept FINAL.Qxd
Reprinted from PCAS vol. 55, no. 16, pp. 358-372 PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Volume 55, No. 16, pp. 358–372, 1 fig. September 30, 2004 The Pattern of the Lateral-line System on the Caudal Fin of Perccottus glenii Dybowski, 1877 (Teleostei: Odontobutidae), with Comments on the Arrangement of the Lateral-line System on the Caudal Fin of Gobioidei Harald Ahnelt and Josef Göschl Institute of Zoology, Department of Comparative Anatomy and Morphology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Email: [email protected] The pattern of the lateral-line system on the caudal fin is surveyed in 120 gen- era and 200 species of gobioid fishes. In the majority of Gobioidei this sensory sys- tem is arranged in two general patterns on the caudal fin: Pattern 1 with four later- al lines, one transversal and three longitudinal, and Pattern 2 with three lateral lines, one transversal and two longitudinal. These lateral lines are formed by rows of free (superficial) neuromasts, except in the Rhyacichthyidae. In these most-basal Gobioidei, the longitudinal lateral lines are a combination of canals and free neuro- masts. The transversal lateral line in Gobioidei (including Rhyacichthyidae) is always formed by free neuromasts. This transversal row is discontinuous, consisting of a few short parts (plesiomorphic), or it is continuous and relatively long (apomor- phic). In some species, it is indistinct and difficult to separate from the longitudinal rows. Pattern 1 of the lateral-line system on the caudal fin is plesiomorphic for Gobioidei. As relatively rare deviations from these two patterns, an increase or a decrease in the number of longitudinal neuromast rows occurs in some Gobiidae. -
Alpheid Shrimp Symbiosis Does Not Correlate with Larger Fish Eye Size Klaus M
bioRxiv preprint doi: https://doi.org/10.1101/329094; this version posted May 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The marine goby – alpheid shrimp symbiosis does not correlate with larger fish eye size Klaus M. Stiefel1,2* & Rodolfo B. Reyes Jr.3 1. Neurolinx Research Institute, La Jolla, CA, USA 2. Marine Science Institute, University of the Philippines, Dilliman, Quezon City, Philippines. 3. FishBase Information and Research Group, Inc., Kush Hall, IRRI, Los Baños, Laguna, Philippines. *Corresponding author: [email protected] Abstract The symbiosis between marine gobies and Alpheid shrimp is based on an exchange of sensory performance (look-out for predators) by the goby versus muscular performance (burrow digging) by the shrimp. Using a comparative approach, we estimate the excess investment by the goby into its visual system as a consequence of the symbiosis. When correlating eye size with fish length for both shrimp-associated and solitary gobies, we find that the shrimp- associated gobies do not have larger eyes than size-matched solitary gobies. We do find a trend, however, in that the shrimp-associated gobies live at shallower depths than the solitary gobies, indicative of the visual nature of the symbiosis. We discuss the implications of symbiosis based on large and small energy investments, and the evolutionary modifications likely necessary to include shrimp-goby communication into the behavior of the goby.