Capítulo 15 Chapter 15

Total Page:16

File Type:pdf, Size:1020Kb

Capítulo 15 Chapter 15 CAPÍTULO 15 CHAPTER 15 LISTA DOS VERTEBRADOS MARINHOS (CHORDATA) LIST OF MARINE VERTEBRATES (CHORDATA) Coordenação (Coordinator) Ricardo Serrão Santos1 1 Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-962 Horta, Portugal; e-mail: [email protected]. 325 AUTORES DE LISTAS TAXONÓMICAS (AUTHORS OF TAXONOMIC LISTS) PEIXES MARINHOS (CHONDRICHTHYES, ACTINOPTERYGII) MARINE FISH (CHONDRICHTHYES, ACTINOPTERYGII) Filipe Mora Porteiro, Gui M. Menezes, Pedro Afonso, João Gama Monteiro & Ricardo Serrão Santos Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-962 Horta, Portugal;e-mail : [email protected]. TARTARUGAS MARINHAS (REPTILIA) MARINE TURTLES (REPTILIA) Marco Aurélio Santos, Helen Rost Martins & Ricardo Serrão Santos Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-962 Horta, Portugal;e-mail : [email protected]. MAMÍFEROS MARINHOS (MAMMALIA) MARINE MAMMALS (MAMMALIA) Rui Prieto & Mónica Silva Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-962 Horta, Portugal;e-mail : [email protected]. 326 Explanatory notes Notas explicativas The list of marine fishes is based on Santoset al. (1997) A lista dos peixes marinhos dos Açores está baseada and updated with new records of species that have em Santos et al. (1997), e Cabral et al. (2005) tendo been observed since, many of which have not been sido actualizada com novos registos de espécies entre- published yet. Most of the new occurrences (marked tanto observadas para os Açores, muitos dos quais não with * and meaning new or previously unpublished publicados ainda. A maioria inéditas dos novos regis- record), were recorded during scientific cruises tos faunísticos, assinalados por um asterisco (* signi- intended to monitor demersal species in the Azores. fica novo registo/registo não publicado), resulta dos Other additions to this updated checklist derive from cruzeiros científicos para monitorização de espécies new information published in the scientific literature demersais dos Açores. Outras espécies agora incluídas in the interim (e.g., Silva et al. 1998; Azevedo 1999; resultam de novas informações entretanto publicadas Porteiro et al. 1999; Bailly et al. 2001; Almada et al. na literatura científica (ex., Silva et al. 1998; Azevedo 2002; Azevedo et al. 2004; Biscoito & Almeida 2004; 1999; Porteiro et al. 1999; Bailly et al. 2001; Almada Almeida & Biscoito 2007; Stefanni et al. 2007). et al. 2002; Azevedo et al. 2004; Biscoito & Almeida Species in this checklist are grouped into Class, 2004; Almeida & Biscoito 2007; Stefanni et al. 2007). Order and Family following Nelson’s (2006) Os peixes nesta lista estão agrupados em Classes, nomenclature, which presents some differences in Ordens e Famílias seguindo a nomenclatura de Nelson relation to the previous edition (Nelson 1994) adopted (2006), que apresenta algumas diferenças em relação by Santos et al. (1997). Specific names used are those à nomenclatura de Nelson (1994) seguida em Santos of Froese & Pauly (2010) (see www.fishbase.org) et al. (1997). Os nomes específicos utilizados são os and are alphabetically ordered within each family. de Froese & Pauly (2010) (ver www.fishbase.org) e All meso- and bathypelagic fishes are assumed to be estão organizados alfabeticamente dentro de cada fa- native to this region. mília. Relativamente aos peixes meso e batipelágicos The list of marine turtles occurring in the Azores assumiu-se que são nativos desta área. is based on Santos et al. (1995) and Cabral et al. A lista de tartarugas marinhas dos Açores está (2005). The only species encountered frequently in the baseada em Santos et al. (1995). A única espécie Azores is Caretta caretta, the loggerhead sea turtle. verdadeiramente residente é a Caretta caretta, ou tar- Young hatchlings of this species migrate to the wider taruga-boba. As crias recém-eclodidas nas praias das Azores region, mainly from the nesting grounds in costas do sudeste dos Estados Unidos da América, na southeastern United Sates. They spend their oceanic sua maioria, migram para a região dos Açores. Pas- juvenile stage foraging in the region, where they have sam a sua fase juvenil alimentando-se nessa região been extensively studied (review by Bolten 2003). The onde têm sido estudadas extensivamente (ver Bolten by-catch by fishing activities and its mitigation have 2003). A sua captura acidental na pescaria de palangre also been investigated in the region (e.g. Bolten et al. de superfície e a minimização dos impactos desta ac- 2000, 2004). All other species are occasional visitors tividade também têm sido investigadas (ex. Bolten et to the region. al. 2000, 2004). Todas as outras espécies de tartarugas The checklist of marine mammals that occur in marinhas são visitantes ocasionais nos Açores. the Azores is based on a critical review of available A lista dos mamíferos marinhos dos Açores é basea literature (e.g., Reiner et al. 1993; Santos et al. 1995; da numa revisão crítica de toda a literatura conheci- Steiner 1995; Gonçalves et al. 1996; Simas et al. da (ex., Reiner et al. 1993; Santos et al. 1995; Steiner 1999; Steiner et al. 1999; Barreiros et al. 2006; Prieto 1995; Gonçalves et al. 1996; Simas et al. 1999; Stei- & Fernandes 2007; Steiner et al. 2007; Silva et al. ner et al. 1999; Barreiros et al. 2006; Prieto & Fer- 2009), as well as unpublished data from the Cetacean nandes 2007; Steiner et al. 2007; Silva et al. 2009), e Stranding Network of the Azores, of the Department também em dados não publicados, incluindo dados da of Oceanography, University of the Azores, and Rede de Arrojamentos de Cetáceos dos Açores, do De- 327 partamento de Oceanografia e Pescas da Universidade from commercial whale-watching companies, after dos Açores e de empresas de observação comercial de confirmation of photographic records. The list of cetáceos, desde que confirmados por registos fotográ- Pinnipeds is based on Silva et al. (2009). ficos. A listagem dos carnívoros pinípedes é baseada Listings include resident species as well as species em Silva et al. (2009). that are known to occur in the Azores during part of Esta listagem inclui as espécies que se sabe resi- their life cycle, species whose records are outside their direm nos Açores, e também espécies que passam só normal distribution boundaries, and species whose parte do seu ciclo de vida na área, espécies cujos regis- residency patterns could not be determined due to lack tos se consideram extra-limítrofes por estarem fora da of information. área de distribuição normal da espécie e, finalmente, Occurrences were considered at the spatial scale of registos de espécies cujo tipo de ocorrência não pode the whole archipelago (and not at the island level) due ser caracterizado devido à falta de informação. to the high mobility of most of these species. A maioria das espécies têm grande mobilidade, por The first column (COL) refers to the type of isso, considerou-se a ocorrência a nível do arquipélago colonization/occurrence of each species: e não a nível de ilha. END - endemic to the Azores, i.e. species or A primeira coluna (COL) refere-se ao tipo de colo- subspecies that are restricted to the Azores, resulting nização (ocorrência) de cada espécie: from local speciation and evolution processes (neo- END – espécies endémicas dos Açores, i.e. espé- endemism) or from the extinction of continental cies (ou subespécies) que ocorrem apenas nos Açores populations (paleo-endemism); em resultado de fenómenos evolutivos de especiação MAC – endemic to Macaronesia, i.e. species local (neoendemismos) ou extinção das populações that are only known to occur in, at least, two of continentais (paleoendemismos); the Macaronesian archipelagos (Azores, Madeira, MAC – espécies endémicas da Macaronésia, i.e. e s - Canaries and Cape Verde); pécies apenas conhecidas em pelo menos dois arquipélagos n – native species, i.e. species known to occur in da Macaronésia (Açores, Madeira, Canárias, Cabo Verde); other regions, which have colonized the Azores by n – espécies nativas, i.e. espécies que chegaram aos their own means, through long distance dispersion Açores pelos seus próprios meios usando mecanismos mechanisms; de dispersão a longa distância, e que são conhecidas de i – introduced species, i.e. their colonization outras regiões; results from human activities, many of which have i – espécies introduzidas, são aquelas que chega- global widespread distributions; ram aos Açores como resultado das actividades huma- m – migrant species, i.e. species with periodic nas, muitas delas de larga distribuição mundial; occurrence as part of their migratory cycle, and for m – migrador, são aquelas espécies que ocorrem nos which the Azores can be en route to, or, their final Açores cada ano durante parte do seu ciclo migratório, destination; podendo os Açores constituir o destino final da migração v – vagrants, i.e. species with unique or rare ou estar no percurso migratório para outras regiões; records, which are considered to be outside of their v – vagrante, são aquelas espécies cujos registos são normal distribution limits; raros ou únicos e constituem registos para lá dos limi- ind – indeterminate, i.e. species for which there tes de distribuição considerados normais para a espécie; are records, within their known distribution boundaries, ind – indeterminado, são aquelas espécies para as quais but whose information is insufficient to establish their existem registos e que estão dentro dos limites de distribui- occurrence type or residency pattern; ção conhecidos, mas para as quais a informação
Recommended publications
  • Appendix 1. (Online Supplementary Material) Species, Gliding Strategies
    Appendix 1. (Online Supplementary Material) Species, gliding strategies, species distributions, geographic range sizes, habitat, and egg buoyancy characteristics used for concentrated changes tests. Species Gliding strategy Species distribution (reference #) Geographic range size Habitat (reference #) Egg buoyancy (reference #) Cheilopogon abei (Parin, 1996) 4 wings Indian, Indo-Pacific (1) 2 or more ocean basins meroepipelagic (1) Buoyant (2) Cheilopogon atrisignis (Jenkins, 1903) 4 wings Indian, Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon cyanopterus (Valenciennes, 1847) 4 wings Atlantic, Indo-Pacific (2) 2 or more ocean basins meroepipelgic (3) Non-Buoyant (5) Cheilopogon dorsomacula (Fowler, 1944) 4 wings Pacific (1) within 1 ocean basin holoepipelagic (1) Buoyant (2) Cheilopogon exsiliens (Linnaeus, 1771) 4 wings Atlantic (2) within 1 ocean basin holoepipelagic (3) Buoyant (2,5) Cheilopogon furcatus (Mitchill, 1815) 4 wings Atlantic, Indian, Pacific (6) 2 or more ocean basins holoepipelagic (3) Non-Buoyant (5) Cheilopogon melanurus (Valenciennes, 1847) 4 wings Atlantic (7) within 1 ocean basin meroepipelagic (7) Non-Buoyant (5,8) Cheilopogon pinnatibarbatus (californicus) (Cooper, 1863) 4 wings eastern tropical Pacific (9) within 1 ocean basin meroepipelgic (3) Non-Buoyant (10) Cheilopogon spilonotopterus (Bleeker, 1865) 4 wings Indian and Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon xenopterus (Gilbert, 1890) 4 wings eastern tropical Pacific (11) within 1 ocean basin
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Inferred from Mitochondrial 16S Rdna Sequence and Morphological Data
    J. Black Sea/Mediterranean Environment Vol. 17(1): 14-31 (2011) The systematic status of the Mediterranean Spicara species (Centracanthidae) inferred from mitochondrial 16S rDNA sequence and morphological data Cemal Turan* Fisheries Genetics Laboratory, Faculty of Fisheries, Mustafa Kemal University, Iskenderun, Hatay, Turkey. * Corresponding author: [email protected] Abstract The mitochondrial 16S ribosomal DNA together with morphological data were used to elucidate monophyly of the family Centracanthidae and interrelationships of Spicara and Centracanthus genera, including four species, Spicara maena, Spicara flexuosa, Spicara smaris and Centracanthus cirrus. Examination of the gene revealed a moderate amount of thymine and abundance of adenine. The 16S rDNA dataset contained 92 variable and 69 parsimony informative sites with a mean nucleotide diversity of 0.099. Haplotype diversity was found to be 0.71. No genetic differences were observed between S. maena and S. smaris, and the genetic divergence between S. flexuosa and both S. maena and S. smaris was found to be 0.005. The intergeneric divergence was found to be very high (0.237) between S. alta and C. cirrus. For the other Spicara species, intergeneric divergence ranged from 0.170 between C. cirrus and both S. maena and S. smaris to 0.176 between C. cirrus and S. flexuosa. Minumum evolution, neighbor joining and parsimony trees revealed same tree topologies, and the monophyly of the genus Spicara was not supported. S. maena and S. smaris clustered together and showed close relationship and S. flexuosa was nodded with this group. Therefore S. maena was found to be more closely related to S. smaris rather than S.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • CURRICULUM VITAE: William L
    CURRICULUM VITAE: William L. Fink William L. Fink Museum of Zoology University of Michigan Ann Arbor, MI 48109 (313) 764-9928 [email protected] FAX (313) 763-4080 Home page http://www-personal.umich.edu/~wfink 1215 Shady Oaks Dr. Ann Arbor, MI 48103 (313) 665-4556 Education: B.S. University of Miami, Florida, 1967 M.S. University of Southern Mississippi, 1969 Ph.D. George Washington University, 1976 Appointments: Director, Museum of Zoology, University of Michigan, 2005- Professor of Ecology and Evolutionary Biology, Associate Professor, Assistant Professor of Biology/Curator, Associate Curator, Assistant Curator of Fishes, Museum of Zoology, University of Michigan, 1982-; Associate Chair, Department of Ecology and Evolutionary Biology, 2001-5 Associate Professor and Assistant Professor of Biology/Associate Curator and Assistant Curator of Fishes, Museum of Comparative Zoology, Harvard University, 1976-82 Military Service: United States Navy, Naval Medical Research Institute, Bethesda, Maryland, 1969-71. (Reserve through 1975) Grants and Awards: Dissemination Information Packages (DIPS) for Information Reuse (DIPIR), Institute of Museum and Library Services, 2011-2014 Intel Education Program, Workstations and Software for Morphometrics Course, 2001 Office of the Vice President for Research and H.H. Rackham School of Graduate Studies Spring/Summer Research Grant, 2000 LS&A Excellence in Education Award, 1999 NSF Grant DEB-9525763, "NEODAT II, An Inter-Institutional Database of Fish Biodiversity in the Neotropics" 1995-1998 NSF Grant DEB-9509195, "Systematics of Piranha Shape and Ontogeny" (with M. Zelditch), 1995-98 (REU Supplement, 1997) 1 CURRICULUM VITAE: William L. Fink University of Michigan, Office of the Vice President for Research Grant, "The evolution of parental care, mating systems and associated characters in the geophagine subfamily of the cichlid fishes" (with Peter Wimberger), 1992 NSF Grant DEB-9024797, "An inter-institutional database for fish biodiversity in the Neotropics" (with S.
    [Show full text]
  • Marine Fishes of the Azores: an Annotated Checklist and Bibliography
    MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores.
    [Show full text]
  • Otolith Atlas for the Western Mediterranean, North and Central Eastern Atlantic
    SCIENTIA MARINA 72S1 July 2008, 7-198, Barcelona (Spain) ISSN: 0214-8358 Otolith atlas for the western Mediterranean, north and central eastern Atlantic VICTOR M. TUSET 1, ANTONI LOMBARTE 2 and CARLOS A. ASSIS 3 1 Instituto Canario de Ciencias Marinas, Departamento de Biología Pesquera, P.O. Box. 56, E-35200 Telde (Las Palmas), Canary Islands, Spain. E-mail: [email protected] 2 Institut de Ciències del Mar-CSIC, Departament de Recursos Marins Renovables, Passeig Marítim 37-49, Barcelona 08003, Catalonia, Spain. 3 Instituto de Oceanografia e Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal. SUMMARY: The sagittal otolith of 348 species, belonging to 99 families and 22 orders of marine Teleostean fishes from the north and central eastern Atlantic and western Mediterranean were described using morphological and morphometric characters. The morphological descriptions were based on the otolith shape, outline and sulcus acusticus features. The mor- phometric parameters determined were otolith length (OL, mm), height (OH, mm), perimeter (P; mm) and area (A; mm2) and were expressed in terms of shape indices as circularity (P2/A), rectangularity (A/(OL×OH)), aspect ratio (OH/OL; %) and OL/fish size. The present Atlas provides information that complements the characterization of some ichthyologic taxa. In addition, it constitutes an important instrument for species identification using sagittal otoliths collected in fossiliferous layers, in archaeological sites or in feeding remains of bony fish predators. Keywords: otolith, sagitta, morphology, morphometry, western Mediterranean, north eastern Atlantic, central eastern Atlantic. RESUMEN: Otolitos de peces del mediterráneo occidental y del atlántico central y nororiental.
    [Show full text]
  • FAMILY Ophichthidae Gunther, 1870
    FAMILY Ophichthidae Gunther, 1870 - snake eels and worm eels SUBFAMILY Myrophinae Kaup, 1856 - worm eels [=Neenchelidae, Aoteaidae, Muraenichthyidae, Benthenchelyini] Notes: Myrophinae Kaup, 1856a:53 [ref. 2572] (subfamily) Myrophis [also Kaup 1856b:29 [ref. 2573]] Neenchelidae Bamber, 1915:478 [ref. 172] (family) Neenchelys [corrected to Neenchelyidae by Jordan 1923a:133 [ref. 2421], confirmed by Fowler 1934b:163 [ref. 32669], by Myers & Storey 1956:21 [ref. 32831] and by Greenwood, Rosen, Weitzman & Myers 1966:393 [ref. 26856]] Aoteaidae Phillipps, 1926:533 [ref. 6447] (family) Aotea [Gosline 1971:124 [ref. 26857] used Aotidae; family name sometimes seen as Aoteidae or Aoteridae] Muraenichthyidae Whitley, 1955b:110 [ref. 4722] (family) Muraenichthys [name only, used as valid before 2000?; not available] Benthenchelyini McCosker, 1977:13, 57 [ref. 6836] (tribe) Benthenchelys GENUS Ahlia Jordan & Davis, 1891 - worm eels [=Ahlia Jordan [D. S.] & Davis [B. M.], 1891:639] Notes: [ref. 2437]. Fem. Myrophis egmontis Jordan, 1884. Type by original designation (also monotypic). •Valid as Ahlia Jordan & Davis, 1891 -- (McCosker et al. 1989:272 [ref. 13288], McCosker 2003:732 [ref. 26993], McCosker et al. 2012:1191 [ref. 32371]). Current status: Valid as Ahlia Jordan & Davis, 1891. Ophichthidae: Myrophinae. Species Ahlia egmontis (Jordan, 1884) - key worm eel [=Myrophis egmontis Jordan [D. S.], 1884:44, Leptocephalus crenatus Strömman [P. H.], 1896:32, Pl. 3 (figs. 4-5), Leptocephalus hexastigma Regan [C. T.] 1916:141, Pl. 7 (fig. 6), Leptocephalus humilis Strömman [P. H.], 1896:29, Pl. 2 (figs. 7-9), Myrophis macrophthalmus Parr [A. E.], 1930:10, Fig. 1 (bottom), Myrophis microps Parr [A. E.], 1930:11, Fig. 1 (top)] Notes: [Proceedings of the Academy of Natural Sciences of Philadelphia v.
    [Show full text]
  • New Records of Fishes from the Hawaiian Islands!
    Pacific Science (1980), vol. 34, no. 3 © 1981 by The University Press of Hawaii. All rights reserved New Records of Fishes from the Hawaiian Islands! JOHN E. RANDALL 2 ABSTRACT: The following fishes represent new records for the Hawaiian Islands: the moray eel Lycodontis javanicus (Bleeker), the frogfish Antennarius nummifer (Cuvier), the jack Carangoides ferdau (Forssk::U), the grouper Cromileptes altivelis (Cuvier) (probably an aquarium release), the chubs Kyphosus cinerascens (Forsskal) and K. vaigiensis (Quoy and Gaimard), the armorhead Pentaceros richardsoni Smith, the goatfish Upeneus vittatus (Forsskal) (a probable unintentional introduction by the Division of Fish and Game, State of Hawaii), the wrasse Halichoeres marginatus Ruppell,' the gobies Nemateleotris magnifica Fowler and Discordipinna griessingeri Hoese and Fourmanoir, the angelfish Centropyge multicolor Randall and Wass, the surgeonfish Acanthurus lineatus (Linnaeus), the oceanic cutlassfish Assurger anzac (Alexander), and the driftfish Hyperoglyphe japonica (Doderlein). In addition, the snapper Pristipomoides auricilla (Jordan, Evermann, and Tanaka) and the wrasse Thalassoma quinquevittatum (Lay and Bennett), both overlooked in recent compilations, are shown to be valid species for the Hawaiian region. Following Parin (1967), the needlefish Tylosurus appendicu­ latus (Klunzinger), which has a ventral bladelike bony projection from the end of the lower jaw, is regarded as a morphological variant of T. acus (Lacepede). IN 1960, W. A. Gosline and V. E. Brock modified by Randall and Caldwell (1970). achieved the difficult task of bringing the fish Randall (1976) reviewed the additions to, fauna of the Hawaiian Islands into one com­ and alterations in, the nomenclature of the pact volume, their Handbook of Hawaiian Hawaiian fish fauna to 1975.
    [Show full text]
  • Molecular Phylogeny and the Evolution of an Adaptive Visual System in Deep-Sea Dragonfishes (Stomiiformes: Stomiidae)
    ORIGINAL ARTICLE doi:10.1111/evo.12322 THE COMPLEX EVOLUTIONARY HISTORY OF SEEING RED: MOLECULAR PHYLOGENY AND THE EVOLUTION OF AN ADAPTIVE VISUAL SYSTEM IN DEEP-SEA DRAGONFISHES (STOMIIFORMES: STOMIIDAE) Christopher P. Kenaley,1,2 Shannon C. DeVaney,3 and Taylor T. Fjeran4 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 2E-mail: [email protected] 3Life Science Department, Los Angeles Pierce College, Woodland Hills, California 91371 4College of Forestry, Oregon State University, Corvallis, Oregon 97331 Received December 12, 2012 Accepted November 12, 2013 The vast majority of deep-sea fishes have retinas composed of only rod cells sensitive to only shortwave blue light, approximately 480–490 nm. A group of deep-sea dragonfishes, the loosejaws (family Stomiidae), possesses far-red emitting photophores and rhodopsins sensitive to long-wave emissions greater than 650 nm. In this study, the rhodopsin diversity within the Stomiidae is surveyed based on an analysis of rod opsin-coding sequences from representatives of 23 of the 28 genera. Using phylogenetic inference, fossil-calibrated estimates of divergence times, and a comparative approach scanning the stomiid phylogeny for shared genotypes and substitution histories, we explore the evolution and timing of spectral tuning in the family. Our results challenge both the monophyly of the family Stomiidae and the loosejaws. Despite paraphyly of the loosejaws, we infer for the first time that far-red visual systems have a single evolutionary origin within the family and that this shift in phenotype occurred at approximately 15.4 Ma. In addition, we found strong evidence that at approximately 11.2 Ma the most recent common ancestor of two dragonfish genera reverted to a primitive shortwave visual system during its evolution from a far-red sensitive dragonfish.
    [Show full text]
  • A Global Biogeographic Classification of the Mesopelagic Zone
    Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences 8-1-2017 A Global Biogeographic Classification of the Mesopelagic Zone Tracey Sutton Nova Southeastern University, <<span class="elink">[email protected] Malcolm R. Clark National Institute of Water & Atmospheric Research - Wellington, New Zealand Daniel C. Dunn Duke University Patrick N. Halpin Duke University Alex D. Rogers University of Oxford - United Kingdom See next page for additional authors Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons NSUWorks Citation Tracey Sutton, Malcolm R. Clark, Daniel C. Dunn, Patrick N. Halpin, Alex D. Rogers, John Guinotte, Steven J. Bograd, Martin V. Angel, Jose Angel A. Perez, Karen Wishner, Richard L. Haedrich, Dhugal Lindsay, Jeffrey C. Drazen, Alexander Vereshchaka, Uwe Piatkowski, Telmo Morato, Katarzyna Blachowiak-Samolyk, Bruce H. Robison, Kristina Gjerde, Annelies Pierrot-Bults, Patricio Bernal, Gabriel Reygondeau, and Mikko Heino. 2017. A Global Biogeographic Classification of the Mesopelagic Zone .Deep Sea Research Part I: Oceanographic Research Papers : 85 -102. https://nsuworks.nova.edu/occ_facarticles/813. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Authors John Guinotte Marine Conservation Institute Steven J. Bograd National Oceanic and Atmospheric Administration Martin V.
    [Show full text]