2017 ESA, ESA Certification Corporation, and Entomological Foundation Awards

Total Page:16

File Type:pdf, Size:1020Kb

2017 ESA, ESA Certification Corporation, and Entomological Foundation Awards 2017 ESA, ESA Certification Corporation, and Entomological Foundation Awards Each year the Entomological Society of America, the ESA Certification Corporation, and the Entomological Foundation provide annual honors and awards to recognize scientists, educators, early professionals, and students who have distinguished themselves through their contributions to entomology. For more information on the ESA, Certification Corporation, and Entomological Foundation Awards, visit www.entsoc.org/awards. ENTOMOLOGY 2017 | NOVEMBER 5–8 | DENVER, COLORADO 43 Awards: Sunday, November 5 2017 ESA, CERTIFICATION and ENTOMOLOGICAL FOUNDATION AWARDS Opening Plenary: ESA Fellows, ESA Honorary Members & Entomological Foundation Medal of Honor ESA’s 2017 Honorary Members and Fellows will be presented during the Opening Plenary Session on Sunday, November 5, 7:30 – 9:30 PM, and the Awards Breakfast on Tuesday, November 7, 7:30 – 9:00 AM. Both sessions will take place in the Four Seasons Ballroom of the Convention Center. Honorary Members Dr. Roger Moon became professor emeritus of entomology at the University of Honorary membership acknowledges those who have Minnesota in St. Paul after 36 years of served ESA for at least 20 years through significant service in research, teaching, and outreach. involvement in the affairs of the Society that has reached an He earned a Ph.D. in entomology from the extraordinary level. Candidates for this honor are selected University of California, Davis, in 1979. His research by the ESA Governing Board and then voted on by the ESA concerns the biology, ecology, and management of filth membership. flies, mosquitoes, bots, keds, lice, bugs, and mites that occur around livestock, wildlife, and people. Roger has Dr. Gene Kritsky, a 41-year member of the published more than 130 articles, reviews, and book Entomological Society of America, received chapters for scientists and the general public, including his B.A. in biology (1974) from Indiana papers on stable fly ecology, swine mange, and University and his M.S. (1976) and Ph.D. fly-borne spread of PRRS virus. He taught or co-taught (1977) in entomology from the University of courses in veterinary entomology, medical entomology, Illinois. He joined the Biology Department at Tri-State veterinary parasitology, insect population dynamics, and University (now Trine University) in 1977 and was applied experimental design, and he has advised 15 awarded a Fulbright Scholarship to Minya University in students to master’s and doctorate degrees. Roger Egypt from 1981 to 1982. In 1983, he joined the biology joined the Entomological Society of America as a faculty at Mount St. Joseph University, serving as chair student member in 1976 and has attended every annual (1985–1999 and 2011–2016), director of health meeting since then. He served as chair of ESA’s MUVE sciences (1999–2002), professor (1987–present), and Section, its Meeting Technology Committee, its dean of the School of Behavioral and Natural Sciences Publications Council, three of its editorial boards, and as (2017). He has served ESA as interim editor-in-chief subject editor for the Journal of Medical Entomology (2002–2003) and editor-in-chief (2003–2017) of (2002–2015). Roger was a founding member of the American Entomologist, making him the longest-serving all-entomologist band The Stridulators and has been editor-in-chief in the history of American Entomologist active since retirement as a bass guitarist in several and its predecessor, The Bulletin. Gene has also served geezer cover bands playing in the Twin Cities area. ESA on the Standing Committee on Public Information (1985–1986), the Membership Committee of the ESA Dr. Robert N. Wiedenmann is a professor North Central Branch (1985), and the Publications in the Department of Entomology at the Council (2003–2017). He was a co-convener of the University of Arkansas. He received a B.S. in International Congress of Entomology (2016), co-chair ecology and evolutionary biology (1985) and of the Local Arrangements Committee for the ESA Ph.D. in entomology (1990), both from National Meeting (2003), contributing editor to American Purdue University. After a postdoctoral position in the Entomologist (1998–2003), and chair of the Film biological control labs at Texas A&M University, he Advisory Committee (1986). He produced an ESA public worked for more than a decade at the Illinois Natural service radio series (1984) and presented the Founders’ History Survey. In 2005, he became head of the Memorial Award Lecture (2012). He is a Fellow of the Department of Entomology at Arkansas, serving until American Association for the Advancement of Science 2014, when he stepped down to return to the faculty. and a recipient of the Indiana Academy of Science’s He currently teaches the large-enrollment class “Insects, Distinguished Scholar Award, and he has published Science, and Society” and a hybrid live-distance class, more than 160 papers and 10 books. “Advanced Applied Entomology,” taught collaboratively with the University of Kentucky and Kansas State University. He has been a member of the Entomological Society of America since 1985 and has served ESA in many capacities, including program chair (2003) and Opening Plenary 44 ENTOMOLOGY 2017 | NOVEMBER 5–8 | DENVER, COLORADO Awards: Sunday, November 5 2017 ESA, CERTIFICATION and ENTOMOLOGICAL FOUNDATION AWARDS Opening Plenary: ESA Fellows, ESA Honorary Members & Entomological Foundation Medal of Honor president (2004) of the North Central Branch; president complexes” whose closely related members are of the Plant-Insect Ecosystems Section (2008); local often morphologically identical, yet differ enough arrangements chair for the Southeastern Branch meeting physiologically and behaviorally to contain both (2012); and ESA president (2013). Highlights of his non-vector and vector species. Her research on the service include leading the efforts to develop a Science Anopheles gambiae complex led to a resolution of the Policy Initiative, placing ESA in the policy arena, and historical branching order of its species—a longstanding increasing the Society’s visibility. He also redirected and controversy—and a recognition of the genome-wide strengthened the Student Transition and Early extent of introgression between two of its principal Professional Committee (now Early Career Professionals malaria vectors. Recently her research group has Committee) and furthered the Society’s efforts at begun to explore similar issues in the less well-known globalization and diversity. He led the effort to hold the but medically important An. funestus complex. Other first joint branch meeting, uniting the Southeastern and projects include understanding the role of chromosomal Southwestern Branches (2012). He has conducted inversions in local adaptation, and the genetic basis of research and outreach on biological control of insects ongoing ecological speciation within malaria vectors. and weeds and has been a critic of the potential Supported by the NIH, the Bill & Melinda Gates invasiveness of bioenergy crops. Foundation, and the World Health Organization, her research has resulted in more than 130 scientific publications. Fellows Dr. Besansky led a large international consortium that sequenced and analyzed the genomes of The designation of ESA Fellow recognizes individuals who 16 Anopheles species, and she remains active in have made outstanding contributions to entomology. generating and improving genomic resources for the scientific community. She serves as associate editor for Dr. Nora J. Besansky, O’Hara Professor of PLoS Pathogens and sits on several editorial boards, Biology at the University of Notre Dame including Current Opinion in Insect Science. She served (UND), was elected as Fellow in 2017. She is as member (and chair) of the NIH Vector Biology internationally known for her research on the Study Section. Dr. Besansky teaches undergraduate genetics and evolution of anopheline and graduate courses at UND and has advised 29 mosquito vectors of malaria. graduate students and postdoctoral fellows as well as Dr. Besansky was born in 1960 in Washington, DC, 31 undergraduate researchers. Dr. Besansky has also and grew up in the Maryland suburbs (Silver Spring). been elected Fellow of the American Association for the Her first paid job was as an intern at the newly minted Advancement of Science (2005), the American Society Smithsonian Insect Zoo (1977), followed by summers for Tropical Medicine and Hygiene (2014), and the Royal working as a technician at the Beltsville Agricultural Entomological Society (2016). Research Center and the Malaria Section of the Married to fellow medical entomologist Frank Collins for Opening Plenary Laboratory of Parasitic Diseases at the National Institutes more than 30 years, they are the parents of two sons of Health (NIH), where her love of malaria vectors was and the devoted subjects of two cats. first cultivated. She earned a B.A. in biology from Oberlin College in 1982 and a Ph.D. in genetics from Yale University in 1990. After a short postdoctoral fellowship Dr. Lincoln P. Brower, research professor at the Centers for Disease Control and Prevention (CDC) of biology at Sweet Briar College and in retroviral diseases, she became a staff scientist with distinguished service professor of zoology the CDC Malaria Branch from 1991 until 1997, when emeritus at the University of Florida, was she joined the University of Notre Dame (UND) as an elected as Fellow in 2017. He is associate professor of biology, rising
Recommended publications
  • Diptera: Calyptratae)
    Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment.
    [Show full text]
  • They Walk Among Us: the Rise of Citizen Science
    August 2016 Journal of the Institution of Environmental Sciences The rise of citizen science THEY WALK AMONG US THE RISE OF CITIZEN SCIENCE EDITORIAL CONTENTS > CASE STUDY 12 Bat Detective: citizen science for eco-acoustic biodiversity monitoring Rory Gibb, Oisin Mac Aodha, and Kate E. Jones describe how improvements Citizen science – in technology are enabling the public to assist in monitoring global bat populations using sound. a research revolution? CASE STUDY 18 The impact of citizen science on research about artificial light at night nvironmental science lags way behind the traditional example, but citizen scientists do not have to work outdoors. Sibylle Schroer, Oscar Corcho and Franz Hölker highlight the negative impact sciences in prestige and resources. Whilst quasi- Non-specialists have been trained to scan satellite imagery of artificial light at night and how society can help to reduce it. professional physicists and chemists were securing for wildebeests in the Serengeti, penguins in the Antarctic, E and African migrant groups affected by environmental endowments for prestigious societies in the seventeenth FEATURE 42 century, environmental science remained principally catastrophes who require emergency aid. Building a new biodiversity data infrastructure the province of rural clergymen, and later, of Victorian to support citizen science ladies who collected flowers. There were exceptions – For research scientists wanting access to national scale Rachel Stroud and Ella Vogel introduce the new and emerging, Atlas of monitoring, these new enthusiasts are a bonus, and for the distinguished tradition of thousands of amateur Living Scotland, as the future template for UK wide data infrastructure for many participants the educational benefits are immediately biodiversity.
    [Show full text]
  • (IAS) Policy Options to Minimise the Negative Impacts of Invasive
    TECHNICAL SUPPORT TO EU STRATEGY ON INVASIVE ALIEN SPECIES (IAS) Policy options to minimise the negative impacts of invasive alien species on biodiversity in Europe and the EU Service Contract No 070307/2007/483544/MAR/B2 Clare Shine (IEEP) Marianne Kettunen (IEEP) Piero Genovesi (ISPRA) Stephan Gollasch (Go-Consult) Shyama Pagad (ISSG) Uwe Starfinger (Institut für Ökologie, Technical University of Berlin, Germany) December 2008 Citation and disclaimer This report should be quoted as follows: Shine, C., Kettunen, M., Genovesi, P., Gollasch, S., Pagad, S. & Starfinger, U. 2008. Technical support to EU strategy on invasive species (IAS) – Policy options to control the negative impacts of IAS on biodiversity in Europe and the EU (Final module report for the European Commission). Institute for European Environmental Policy (IEEP), Brussels, Belgium. 104 pp. + Annexes. Related studies include: Shine, C., Kettunen, M., ten Brink, P., Genovesi, P. & Gollasch, S. 2009. Technical support to EU strategy on invasive species (IAS) – Recommendations on policy options to control the negative impacts of IAS on biodiversity in Europe and the EU. Final report for the European Commission. Institute for European Environmental Policy (IEEP), Brussels, Belgium. 32 pp. Kettunen, M., Genovesi, P., Gollasch, S., Pagad, S., Starfinger, U., ten Brink, P. & Shine, C. 2009. Technical support to EU strategy on invasive species (IAS) - Assessment of the impacts of IAS in Europe and the EU. Final report for the European Commission. Institute for European Environmental Policy (IEEP), Brussels, Belgium. 44 pp + Annexes. Shine, C., Kettunen, M., Mapendembe, A., Herkenrath, P. Silvestri, S. & ten Brink, P. 2009. Technical support to EU strategy on invasive species (IAS) – Analysis of the impacts of policy options/measures to address IAS.
    [Show full text]
  • Effects of Removal Or Reduced Density of the Malaria Mosquito, Anopheles
    Medical and Veterinary Entomology (2018), doi: 10.1111/mve.12327 REVIEW ARTICLE Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems C. M. COLLINS1 , J. A. S. BONDS2, M. M. QUINLAN1 and J. D. MUMFORD1 1Centre for Environmental Policy, Imperial College London, London, U.K. and 2Bonds Consulting Group LLC, Panama City Beach, Florida, U.S.A. Abstract. New genetic control methods for mosquitoes may reduce vector species without direct effects on other species or the physical environment common with insecticides or drainage. Effects on predators and competitors could, however, be a concern as Anopheles gambiae s.l. is preyed upon in all life stages. We overview the literature and assess the strength of the ecological interactions identified. Most predators identified consume many other insect species and there is no evidence that anyspecies preys exclusively on any anopheline mosquito. There is one predatory species with a specialisation on blood-fed mosquitoes including An. gambiae s.l.. Evarcha culicivora is a jumping spider, known as the vampire spider, found around Lake Victoria. There is no evidence that these salticids require Anopheles mosquitoes and will readily consume blood-fed Culex. Interspecific competition studies focus on other mosquitoes of larval habitats. Many of these take place in artificial cosms and give contrasting results to semi-field studies. This may limit their extrapolation regarding the potential impact of reduced An. gambiae numbers. Previous mosquito control interventions are informative and identify competitive release and niche opportunism; so while the identity and relative abundance of the species present may change, the biomass available to predators may not.
    [Show full text]
  • Insects for Human Consumption
    Chapter 18 Insects for Human Consumption Marianne Shockley1 and Aaron T. Dossey2 1Department of Entomology, University of Georgia, Athens, GA, USA, 2All Things Bugs, Gainesville, FL, USA 18.1. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (Ash et al., 2010; Crabbe, 2012; Dossey, 2013; Dzamba, 2010; FAO, 2008; Gahukar, 2011; Katayama et al., 2008; Nonaka, 2009; Premalatha et al., 2011; Ramos- Elorduy, 2009; Smith, 2012; Srivastava et al., 2009; van Huis, 2013; van Huis et al., 2013; Vantomme et al., 2012; Vogel, 2010; Yen, 2009a, b). Throughout the world, a large portion of the human population consumes insects as a regular part of their diet (Fig. 18.1). Thousands of edible species have been identified (Bukkens, 1997; Bukkens and Paoletti, 2005; DeFoliart, 1999; Ramos-Elorduy, 2009). However, in regions of the world where Western cultures dominate, such as North America and Europe, and in developing countries heavily influenced by Western culture, mass media have negatively influenced the public’s percep- tion of insects by creating or reinforcing fears and phobias (Kellert, 1993; Looy and Wood, 2006). Nonetheless, the potentially substantial benefits of farming and utilizing insects as a primary dietary component, particularly to supplement or replace foods and food ingredients made from vertebrate livestock, are gain- ing increased attention even in Europe and the United States. Thus, we present this chapter to
    [Show full text]
  • Implementation and Capacity Development Committee
    REPORT Implementation and Capacity Development Committee Rome, Italy 26-30 November 2018 IPPC Secretariat International Plant Protection Convention (IPPC). 2018. Implementation and Capacity Development Committee (IC). Rome, Italy. 97 pages. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, [2018] Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed under the same or equivalent Creative Commons licence.
    [Show full text]
  • For the Love of Insects
    For the Love of Insects “In terms of biomass and their interactions with other terrestrial organisms, insects are the most important group of terrestrial animals.” --Grimaldi and Engel, 2005 Outline • The Most Successful Animals on Earth: a Brief (Entomological) Journey through Time • Insect Physiology and Development • Common Insects and their Identification Whence and Whither: Insect Origins and Evolution Before diversity, there was evolution… A ~500 million year journey… Silurian • Insect Flight: 400 mya • Modern insect orders: 250 mya • Primitive mammals: 120 mya • Modern mammals: 60 mya The Jointed Animals Phylum: Arthropoda • 75% of all species on earth are arthropods • Internal/External specialization of body parts = tagmosis • Hardened exoskeleton • Articulated body plates • Paired, jointed appendages sciencenewsjournal.com Tagmosis: highly specialized body segments found in all arthropods; insects: head, thorax, abdomen; spiders: cephalothorax and opisthosoma Epiclass HEXAPODA: Late Silurian/Early Devonian Class Entognatha Order Diplura Ellipura Order Protura Order Collembola Class Insecta (= Ectognatha) Hexapoda • 6 legs; 11 abdominal segments (or fewer) taxondiversity.fieldofscience.com • Entognatha: Protura, Diplura, and Collembola • Ectognatha: Insects The First Insects: Apterygota Archaeognatha: The Jumping Bristletails • ~500 spp. worldwide; wide range of habitats; • 4 Families (2 extinct) which occur mostly in rocky habitats • Mostly detritovores, but scavenge dead arthropods or eat exuviae; • Indirect mating behavior;
    [Show full text]
  • Evolution of the Insects David Grimaldi and Michael S
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Frontmatter More information EVOLUTION OF THE INSECTS Insects are the most diverse group of organisms to appear in the 3-billion-year history of life on Earth, and the most ecologically dominant animals on land. This book chronicles, for the first time, the complete evolutionary history of insects: their living diversity, relationships, and 400 million years of fossils. Whereas other volumes have focused on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Current estimates of phylogeny are used to interpret the 400-million-year fossil record of insects, their extinctions, and radiations. Introductory sections include the living species, diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections cover the relationships and evolution of each order of hexapod. The book also chronicles major episodes in the evolutionary history of insects: their modest beginnings in the Devonian, the origin of wings hundreds of millions of years before pterosaurs and birds, the impact that mass extinctions and the explosive radiation of angiosperms had on insects, and how insects evolved the most complex societies in nature. Evolution of the Insects is beautifully illustrated with more than 900 photo- and electron micrographs, drawings, diagrams, and field photographs, many in full color and virtually all original. The book will appeal to anyone engaged with insect diversity: professional ento- mologists and students, insect and fossil collectors, and naturalists. David Grimaldi has traveled in 40 countries on 6 continents collecting and studying recent species of insects and conducting fossil excavations.
    [Show full text]
  • First Survey of Collembola (Hexapoda: Entognatha) Fauna in Soil of Archipelago Fernando De Noronha, Brazil Estevam C
    First survey of Collembola (Hexapoda: Entognatha) fauna in soil of Archipelago Fernando de Noronha, Brazil Estevam C. Araujo De Lima1, * and Douglas Zeppelini1,2, Collembola (Hexapoda: Entognatha) is one of the most abundant Table 1. Collembola recorded on the Fernando de Noronha archipelago, Brazil. and widely distributed taxa among terrestrial Hexapoda (Hopkin 1997). Collection localites were: a sandy beach (SB), soil on the slope of a cliff (SC) and the Soil in the forest at the hilltop (SF). World distribution was summarized for Collembola specimens are found in almost all habitats, excluding each species as follows: Boreal (Bor) include regions 1–8, Neotropical (Neo) re- aquatic environments below the surface firm where their occurrence is gions 24–30, South African (Saf) region 31, Paleotropical (Pal) regions 9–23, Aus- rare or accidental. The greatest diversity and abundance of these spe- tralian (Aus) regions 32–34, and Antarctic (Ant) regions 35–37. Species distributed cies occurs in soil and in adjacent microhabitats, especially where there in at least, in 4 of the major regions (Neo, Pal, etc.) are considered to be cosmo- is much organic matter (Zeppelini et al. 2008). The potential value of politan (Cos). Species distribution restricted to Northeast and Central Brazil (NCB), restricted to Fernando de Noronha (RFN) and doubtful distribution Record (?). Collembola as biological indicators of soil health and ecosystem quality is increasingly recognized and therefore knowledge of the diversity of Localities Collembola becomes useful in the development of conservation strate- World gies and environmental monitoring (Stork & Eggleton 1992; Zeppelini Taxa SB SC SF distribution et al.
    [Show full text]
  • The-Little-Things-That-Run-The-City-Final
    The Little Things that Run the City Insect ecology, biodiversity and conservation in the City of Melbourne Luis Mata, Christopher D. Ives, Alejandra Morán-Ordóñez, Georgia E. Garrard, Ascelin Gordon, Kate Cranney, Tessa R. Smith, Anna Backstrom, Daniel J. Bickel, Amy K. Hahs, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Ken Walker, Peter A. Vesk, Kirsten Parris and Sarah A. Bekessy The Little Things that Run the City – Insect ecology, biodiversity and conservation in the City of Melbourne Report prepared for the City of Melbourne, August 2016 Coordinating authors Luis Mata1 Christopher D. Ives2 Alejandra Morán-Ordóñez3 Georgia E. Garrard1 Ascelin Gordon1 Sarah Bekessy1 1Interdisciplinary Conservation Science Research Group, RMIT University 2Faculty of Sustainability, Leuphana University 3Forest Sciences Centre of Catalonia Contributing authors Kate Cranney, Tessa R. Smith, Anna Backstrom, Daniel J. Bickel, Amy K. Hahs, Mallik Malipatil, Melinda L. Moir, Michaela Plein, Nick Porch, Linda Semeraro, Ken Walker, Peter A. Vesk and Kirsten M. Parris. Cover artwork by Kate Cranney ‘Ant and lerps’ (Ink and paper on paper, 2016) Beetle stacked macro-photographs by Nick Porch. Dryinidid wasp stacked macro-photograph by Ken Walker. All other photographs by Luis Mata unless otherwise stated. The version of the report was finished in Melbourne (Victoria, Australia) the 15th of September 2016. Please cite as: The Little Things that Run the City – Insect ecology, biodiversity and conservation in the City of Melbourne (2016) Mata L, Ives CD, Morán-Ordóñez A, Garrard GE, Gordon A, Cranney K, Smith TR, Backstrom A, Bickel DJ, Hahs AK, Malipatil M, Moir ML, Plein M, Porch N, Semeraro L, Walker K, Vesk PA, Parris KM, Bekessy SA.
    [Show full text]
  • Collembola (Entognatha) from East Africa
    Eur. J. Entomol. 95: 217-237, 1998 ISSN 1210-5759 Collembola (Entognatha) from East Africa W anda M. WEINER1 and Judith NAJT2 1 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, PL-31016 Krakdw, Poland 2EP 90 du CNRS, Laboratoire d’Entomologie, Muséum National d’Histoire Naturelle, 45, rue Buffon, F-75005 Paris, France Collembola, Hypogastruridae, Odontellidae, Neanuridae, Onychiuridae, Isotomidae, East Africa, identification keys, new species, redescription Abstract. Materials of Hypogastruridae, Odontellidae, Neanuridae, Onychiuridae and Isotomidae from East Africa were studied. Several new species are described: Acherontiella kowalskiorum sp. n., Furcu- lanurida grandcolasorum sp. n., Stachorutes dallaii sp. n., and Paleonura cassagnaui sp. n. Friesea vtorovi Tshelnokov, 1977 and Tullbergia kilimanjarica (Delamare Deboutteville, 1953) are redescribed. Stachorutes arlei (Thibaud & Massoud, 1980) is a new combination. Identification keys for Friesea Dalla Torre, 1895 with 2 + 2 eyes and Stachorutes Dallai, 1973 are given. INTRODUCTION The last systematic account on the Collembola of East Africa was presented by Dehar- veng and Diaz in 1984 with a review of all references concerning this region. The present study is based on the material collected in Tanzania and Kenya. Abbreviations . ISEA - Institute of Systematics and Evolution of Animals, Polish Academy of Sci­ ences, Krakdw, Poland; MNHN - Laboratoire d ’Entomologie, Muséum national d’Histoire naturelle, Paris, France. SYSTEMATIC ACCOUNT Family Hypogastruridae Ceratophysella denticulata Bagnall, 1941 M aterial examined . Tanzania, Ngorongoro Conservation Area, 2,200 m a.s.l., brink of the crater, dry forest near Sopa Lodge, 28.viii.1996, lgt. B. & K. Kowalski, 2 specimens: $ and 6 juv. Geographical distribution .
    [Show full text]
  • GAYANA Assessing Climatic and Intrinsic Factors That Drive Arthropod
    GAYANA Gayana (2020) vol. 84, No. 1, 25-36 DOI: XXXXX/XXXXXXXXXXXXXXXXX ORIGINAL ARTICLE Assessing climatic and intrinsic factors that drive arthropod diversity in bird nests Evaluando los factores climáticos e intrínsecos que explican la diversidad de artrópodos dentro de nidos de aves Gastón O. Carvallo*, Manuel López-Aliste, Mercedes Lizama, Natali Zamora & Giselle Muschett Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Avenida Universidad 330, Valparaíso, Chile. *E-mail: [email protected] ABSTRACT Bird nests are specialized structures that act as microrefuge and a source of food for arthropods. Nest arthropod richness and composition may vary according to the nest builder, geographical location and nest size. Because information on nest arthropods is scarce, there are even fewer studies on the drivers of nest arthropod diversity. We characterized arthropod diversity in cup- and dome-shaped nests along a 130 km latitudinal gradient in the mediterranean-type region of Central Chile and, we assessed whether nest dimensions and climatic factors explain richness (alpha-diversity). Then, we evaluated whether climatic differences between sites explain arthropod nest composition (beta-diversity). All collected nests hosted at least one arthropod specimen. We identified 43 taxonomic entities (4.2 entities per nest ± 0.5, mean ± SE, n = 27 nests) belonging to 18 orders and five classes: Arachnida, Diplopoda, Entognatha, Insecta and Malacostraca. We observed differences in nest arthropod richness and composition related to sites but not bird species. Larger nests supported greater arthropod richness. Furthermore, we observed that climatic differences explain the variation in arthropod composition between sites. Nests in the northern region (drier and warmer) mainly hosted Hemipterans and Hymenopterans.
    [Show full text]