Collembola (Entognatha) from East Africa

Total Page:16

File Type:pdf, Size:1020Kb

Collembola (Entognatha) from East Africa Eur. J. Entomol. 95: 217-237, 1998 ISSN 1210-5759 Collembola (Entognatha) from East Africa W anda M. WEINER1 and Judith NAJT2 1 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, PL-31016 Krakdw, Poland 2EP 90 du CNRS, Laboratoire d’Entomologie, Muséum National d’Histoire Naturelle, 45, rue Buffon, F-75005 Paris, France Collembola, Hypogastruridae, Odontellidae, Neanuridae, Onychiuridae, Isotomidae, East Africa, identification keys, new species, redescription Abstract. Materials of Hypogastruridae, Odontellidae, Neanuridae, Onychiuridae and Isotomidae from East Africa were studied. Several new species are described: Acherontiella kowalskiorum sp. n., Furcu- lanurida grandcolasorum sp. n., Stachorutes dallaii sp. n., and Paleonura cassagnaui sp. n. Friesea vtorovi Tshelnokov, 1977 and Tullbergia kilimanjarica (Delamare Deboutteville, 1953) are redescribed. Stachorutes arlei (Thibaud & Massoud, 1980) is a new combination. Identification keys for Friesea Dalla Torre, 1895 with 2 + 2 eyes and Stachorutes Dallai, 1973 are given. INTRODUCTION The last systematic account on the Collembola of East Africa was presented by Dehar- veng and Diaz in 1984 with a review of all references concerning this region. The present study is based on the material collected in Tanzania and Kenya. Abbreviations . ISEA - Institute of Systematics and Evolution of Animals, Polish Academy of Sci­ ences, Krakdw, Poland; MNHN - Laboratoire d ’Entomologie, Muséum national d’Histoire naturelle, Paris, France. SYSTEMATIC ACCOUNT Family Hypogastruridae Ceratophysella denticulata Bagnall, 1941 M aterial examined . Tanzania, Ngorongoro Conservation Area, 2,200 m a.s.l., brink of the crater, dry forest near Sopa Lodge, 28.viii.1996, lgt. B. & K. Kowalski, 2 specimens: $ and 6 juv. Geographical distribution . Probably cosmopolitan species. Xenylla gamae Cardoso, 1967 M aterial examined . Tanzania, Ngorongoro Conservation Area, 2,200 m a.s.l., brink of the crater, dry forest near Sopa Lodge, 28.viii.1996, lgt. B. & K. Kowalski, 1 specimen juv. Geographical distribution . The species was described from Mozambique. Acherontiella kowalskiorum sp. n. D iagnosis . Habitus and buccal cone typical of the genus Acherontiella Absolon, 1913. Labrum with 4/554 setae. Distal labral setae smooth, slightly thicker than other distal se­ tae. Antenna Ill-organ with two subcylindrical guard sensilla with a very characteristic 217 constitution. Antennal segment IV with 5 globular sensilla of which 2 are large, placed in cavities, and the remaining 3 are smaller. Male with secondary sexual characters on ab­ dominal sterna IV and V. Tibiotarsi I, II and III with 19, 19 and 18 setae, respectively. D escription . Holotype (male) length: 0.64 mm, paratype length (juvenile female): 0.57 mm. Colour in alcohol white. Tegumental granulation rather strong. Antennae shorter than head (about 3/4 of the length of head). Antennal segment I with 7 setae, antennal segment II with 11 setae. Segments III and IV fused dorsally, the ventral separation well marked. Sensory organ of antennal segment III consisting of two small internal sensilla, two sub- cylindrical guard sensilla of very characteristic constitution (Deharveng & Diaz, 1984: Fig. 4K) and ventral microsensillum. Antennal segment IV with 5 globular sensilla of which 2 lateroexternal ones are very large, placed in cavities, and the other 3 are smaller; dorsoextemal microsensillum; small subapical organite; and small non-retractile apical vesicle in ventrosubapical position (Fig. 2). Eyes absent. Buccal cone typical of the genus. Labrum with 4/554 setae. Distal labral setae smooth, slightly thicker than other distal setae. Dorsal chaetotaxy as in Fig. 1 with rather short, simple setae, with thin long sensory se­ tae s, their formula per half tergum: 022/11111. Abdominal tergum VI without anal spines. Thoracic sterna without setae. Ventral abdominal chaetotaxy as in Fig. 3. Ventral tube with 4 + 4 setae. Male without setae a2 on abdominal sternum IV, these are present in fe­ male. Male with secondary sexual characters on abdominal sterna IV and V: 1 + 1 trans­ formed setae on abdominal sternum IV (in row p’) and 3 + 3 on abdominal sternum V (in row a) (Fig. 4). Row p’ absent in female. Tibiotarsi I, II and III with 19, 19 and 18 setae respectively, with acuminate distal setae, with setae M in the row B. Femora I, II and III with 12, 11 and 10 setae respectively, tro­ chanters with 5 setae each, coxae I, II and III with 3, 8 and 7 setae, subcoxae “2” I, II and III with 0, 2 and 2 setae, subcoxae “1” I, II and III with 1, 2 and 3 setae respectively. T ype material . Holotype8 in ISEA, paratype juvenile 9 in MNHN. T ype locality . Kenya, near Massai Mara National Reserve, savanna, fissure in granite rock with moss and liverworts, 25.viii.1996, lgt. B. & K. Kowalski, 1 8 and 1 specimen juvenile. Etymology . This species is cordially dedicated to Polish paleontologists, Barbara Rzebik-Kowalska and Kazimierz Kowalski, who collected for us the material from Kenya and Tanzania. D iscussion . The new species shares two characters (constitution of guard sensilla in an­ tenna Ill-organ and the number and type of sensilla on the antennal segment IV) with two species: Acherontiella Candida (Delamare Deboutteville, 1952 sensu Deharveng & Diaz, 1984) and A. colotlipana Palacios-Vargas & Thibaud, 1985. The latter species possesses 18, 18 and 17 setae on the tibiotarsi I, II and III, and 1, 2 and 2 setae on the subcoxae “2”, while the other two species have 19, 19 and 18 setae on the tibiotarsi and 1, 2 and 3 setae on the subcoxae “2”. A. kowalskiorum sp. n. is very close to A. Candida. They differ by the presence of setae ml on the abdominal sternum IV in A. Candida, absent in the new spe­ cies; setae m’ 1 are present in both species. Males of both species differ by the type of the secondary sexual characters. In A. kowalskiorum sp. n. the transformed setae are arranged on the posterior part of the abdominal sternum IV (1 + 1 setae) and on the abdominal ster­ num V in front of genital plate (3 + 3 setae). In A. Candida, they are situated only on the genital plate (2 + 2 setae). R emarks . Acherontiella Candida was briefly described by Delamare Deboutteville (1952) in the genus Xenyllina Delamare Deboutteville, 1948 from Ivory Coast and 218 > ' l - ' i l ~ 'i 1 AK — ^ v C i \ A 'r I l ,ll< V( '/' A ^ ;f/ t s\« t. r« m" /. \ ; / f ' ' v r \ \ A / f f ^ ' \ <\ / ........ / r r r \ \ x \ \ VV. s '-■v ^ n r , \ " r r ^ Ss ', ' i 3 / ' ' 'V \ \ / ' ’ \ ./ ) ”7'' '"7'i£"T" ! '\ V />" // 'M' H " " t ' AA " / / r f ' " \\ j A AAA' i* "- , fifes ^ \M ' r t \ \ \ / / m r r 1 i < ' J / 7-........... - % v / 7 / t r r n \ ' \ V ! V f f f r M sI y \ t \ ffi ; / / r f 1 V \ (S ^ I—® \ /• , f ' ' r \N i /• t , f ^\ f f ^ f l r \ \ e f - ^ ^ ^ ^ ? \ \ \ / ^ '{ \ p H ^ /? /r ^ ^ y ' Figs 1-4. Acherontiella kowalskiorum sp. n. 1 - dorsal chaetotaxy (scale 0.1 mm); 2 - antennal seg­ ments III and IV dorsally (scale 0.01 mm); 3 - abdominal sterna II-V (scale 0.1 mm); 4 - male secondary sexual characters (scale 0.01 mm). 219 redescribed by Deharveng & Diaz (1984). The type [according to Fig. 4 on page 63 in De- lamare Deboutteville (1952), it was a juvenile specimen] was lost, and we therefore use the redescription based of material from Mt. Kenya (Deharveng & Diaz, 1984) for comparison. Family Odontellidae Afrodontella septemlobata (Salmon, 1954) M aterial examined . Tanzania, Ngorongoro Conservation Area, 2,200 m a.s.l., brink of the crater, dry forest near Sopa Lodge, 28.viii.1996, lgt. B. & K. Kowalski, 1 specimen juv.; Kenya, near Massai Mara National Reserve, savanna, fissure in granite rock with moss and liverworts, 25.viii.1996, lgt. B. & K. Kowalski, 1 9. Geographical distribution . Described from Ruwenzori in Uganda and found by Deharveng (1981) on Mt. Kenya and Aberdare in Kenya. This is the first record of this species from Tanzania. Family Neanuridae Subfamily Frieseinae Friesea vtorovi Tshelnokov, 1977 D iagnosis . Habitus and buccal cone typical for genus Friesea Dalla Torre, 1985. 2 + 2 eyes present. Some stronger and feebly serrated setae on abdominal terga V and VI, for­ mula of sensory setae s per half tergum: 022/11111. Abdominal tergum VI without anal spines. Thoracic sternum without setae. Vestigial furca reduced to finely granulated small area with 4 small microchaetae. Tibiotarsi I, II and III with 18, 18 and 17 setae respec­ tively, with acuminate distal setae, without setae M. Redescription . Holotype (juvenile male) length 0.61 mm, length of other specimens: 0.53 (juv.) - 0.73 (adult male) and 0.89 (female) mm. Colour in alcohol very ligth gray, ocular plate blue-black. Tegumental granulation rather strong. Antennae shorter than head (about 2/3 of the length of head). Antennal segment I with 7 setae, II with 12 setae. Seg­ ments III and IV fused dorsally, ventral separation well marked. Sensory organ of antennal segment III consisting of two small internal sensilla bent in the same direction, two sub- cylindrical guard sensilla (ventral longer than dorsal), and ventral microsensillum. Anten­ nal segment IV with 6 distinct subcylindrical sensilla and dorsoextemal microsensillum; subapical organite present; apical vesicle simple (Figs 6 and 7). Eyes 2 + 2. Buccal cone typical for the genus. Mandible with 7 teeth. Dorsal chaetotaxy as in Fig. 5 with quite short simple setae, some stronger and feebly serrated setae on abdominal terga IV-VI, with thin long sensory setae s, their formula per half tergum: 022/11111. Abdominal tergum VI without anal spines. Thoracic sterna with­ out setae. Ventral abdominal chaetotaxy as in Fig. 10. Ventral tube with 4 + 4 setae. Ves­ tigial furca reduced to finely granulated small area with 4 small microchaetae.
Recommended publications
  • Diversity of Commensals Within Nests of Ants of the Genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil Erica S
    Annales de la Société entomologique de France (N.S.), 2019 https://doi.org/10.1080/00379271.2019.1629837 Diversity of commensals within nests of ants of the genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil Erica S. Araujoa,b, Elmo B.A. Kochb,c, Jacques H.C. Delabie*b,d, Douglas Zeppelinie, Wesley D. DaRochab, Gabriela Castaño-Menesesf,g & Cléa S.F. Marianoa,b aLaboratório de Zoologia de Invertebrados, Universidade Estadual de Santa Cruz – UESC, Ilhéus, BA 45662-900, Brazil; bLaboratório de Mirmecologia, CEPEC/CEPLAC, Itabuna, BA 45-600-900, Brazil; cPrograma de Pós-Graduação em Ecologia e Biomonitoramento, Instituto de Biologia, Universidade Federal da Bahia - UFBA, Salvador, BA 40170-290, Brazil; dDepartamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, – UESC, Ilhéus, BA 45662-900, Brazil; eDepartamento de Biologia, Universidade Estadual da Paraíba, Campus V, João Pessoa, PB 58070-450, Brazil; fEcología de Artrópodos en Ambientes Extremos, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México - UNAM, Campus Juriquilla, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico; gEcología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México - UNAM, Distrito Federal, México 04510, Mexico (Accepté le 5 juin 2019) Summary. Nests of ants in the Ponerinae subfamily harbor a rich diversity of invertebrate commensals that maintain a range of interactions which are still poorly known in the Neotropical Region. This study aims to investigate the diversity of these invertebrates in nests of several species of the genus Neoponera and search for possible differences in their commensal fauna composition in two distinct habitats: the understory and the ground level of cocoa tree plantations.
    [Show full text]
  • Reviews of the Genera Schaefferia Absolon, 1900, Deuteraphorura
    TAR Terrestrial Arthropod Reviews 5 (2012) 35–85 brill.nl/tar Reviews of the genera Schaefferia Absolon, 1900, Deuteraphorura Absolon, 1901, Plutomurus Yosii, 1956 and the Anurida Laboulbène, 1865 species group without eyes, with the description of four new species of cave springtails (Collembola) from Krubera-Voronya cave, Arabika Massif, Abkhazia Rafael Jordana1, Enrique Baquero1*, Sofía Reboleira2 and Alberto Sendra3 1Department of Zoology and Ecology, University of Navarra, 31080 Pamplona, Spain e-mails: [email protected]; [email protected] *Corresponding author. 2Department of Biology, Universidade de Aveiro and CESAM Campus Universitário de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] 3Museu Valencià d’Història Natural (Fundación Entomológica Torres Sala) Paseo de la Pechina 15. 46008 Valencia, Spain e-mail: [email protected] Received on November 4, 2011. Accepted on November 21, 2011 Summary Krubera-Voronya cave and other deep systems in Arabika Massif are being explored during many speleological expeditions. A recent Ibero-Russian exploration expedition (summer of 2010) took place in this cave with the aim of providing a study of the biocenosis of the deepest known cave in the world. Four new species of Collembola were found at different depths: Schaefferia profundissima n. sp., Anurida stereoodorata n. sp., Deuteraphorura kruberaensis n. sp., and Plutomurus ortobalaganensis n. sp., the last one at -1980 m deep. The identification and description of the new species have required the careful study of all congeneric species, implying a revision of each genus. As a result of this work tables and keys to all significant characters for each species are presented.
    [Show full text]
  • Collembola: Neanuridae) from Peru
    Biodiversity Data Journal 8: e57743 doi: 10.3897/BDJ.8.e57743 Taxonomic Paper A new species of the genus Neotropiella Handschin, 1942 (Collembola: Neanuridae) from Peru José G. Palacios-Vargas‡, Yony T. Callohuari§,| ‡ Universidad Nacional Autónoma de México, México, D. F., Mexico § University of Illinois at Urbana-Champaign, Urbana, United States of America | Universidad Nacional Agraria La Molina, Lima, Peru Corresponding author: Yony T. Callohuari ([email protected]) Academic editor: Ľubomír Kováč Received: 18 Aug 2020 | Accepted: 15 Nov 2020 | Published: 25 Nov 2020 Citation: Palacios-Vargas JG, Callohuari YT (2020) A new species of the genus Neotropiella Handschin, 1942 (Collembola: Neanuridae) from Peru. Biodiversity Data Journal 8: e57743. https://doi.org/10.3897/BDJ.8.e57743 ZooBank: urn:lsid:zoobank.org:pub:570D8CC8-6869-464E-8358-08CDE5B3FD53 Abstract Background Neotropiella is a genus of springtails which can be of medium size (2 mm) or relatively long (5 mm). These springtails live in leaf litter, under the bark of dead trees or in decomposing wood, mainly in the Neotropical Region and are often collected by litter samples on Berlese funnels or by pitfall traps. Most species have been described, based on relatively few specimens and chaetotaxy of several species is incomplete. New information A new species within Neotropiella was discovered in recent pitfall trap collections from Peru. Neotropiella peruana sp. n. was taxonomically treated and studied under both phase contrast and scanning electron microscopy. It is similar to N. insularis from Brazil, but smaller with only 4 mandibular teeth (vs. 5) and with well-developed unguis lateral teeth. © Palacios-Vargas J, Callohuari Y.
    [Show full text]
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • Checklist of Springtails (Collembola) from the Republic of Moldova
    Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 149–160 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0011-x CHECKLIST OF SPRINGTAILS (COLLEMBOLA) FROM THE REPUBLIC OF MOLDOVA GALINA BUªMACHIU Abstract. The checklist of Collembola from the Republic of Moldova including 223 species is presented. The list is based on literature sources and personal collecting. Résumé. Ce travail présente la liste des 223 espèces de collemboles de la République de Moldova. Cette liste fut réalisée en utilisant des références littéraires et des collections personnelles. Key words: Collembola, checklist, Republic of Moldova. INTRODUCTION The records on Collembola from the Republic of Moldova started about 50 years ago with the first two species included by Martynova in “The key to insects of the European part of the USSR. Collembola” (1964). Some more information on species diversity of Collembola from the soil of Moldavian vineyards was included in Stegãrescu’s work (1967). During the last twenty years, this group has been studied more systematically, with more than 200 species recorded (Buºmachiu 2001, 2004, 2006 a, b, 2008). Since 2002, eleven species new to science were described from the Republic of Moldova by da Gama & Buºmachiu (2002, 2004); Buºmachiu & Deharveng (2008) and Buºmachiu & Weiner (2008). Until now, the faunistic data on Collembola from the Republic of Moldova have not been summarised in the form of a checklist. The present paper includes the complete list of Collembola from the Republic of Moldova using the modern nomenclature. Totally, 223 species are listed. Some problematic and dubious species, such as Pseudanurida clysmae Jackson, 1927, Onychiurus fimetarius (Linnaeus, 1758) and Orchesella divergens Handschin, 1929 recorded by Stegãrescu (1967) and Pseudosinella wahlgrei Börner, 1907, are not included in the list.
    [Show full text]
  • Forest Disturbance and Arthropods: Small‐Scale Canopy Gaps Drive
    Forest disturbance and arthropods: Small-scale canopy gaps drive invertebrate community structure and composition 1, 2,3 4 1,5 KAYLA I. PERRY , KIMBERLY F. WALLIN, JOHN W. WENZEL, AND DANIEL A. HERMS 1Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691 USA 2Rubenstein School of Environment and Natural Resources, University of Vermont, 312H Aiken Center, Burlington, Vermont 05405 USA 3USDA Forest Service, Northern Research Station, 312A, Aiken, Burlington, Vermont 05405 USA 4Powdermill Nature Reserve, Carnegie Museum of Natural History, 1847 PA-381, Rector, Pennsylvania 15677 USA 5The Davey Tree Expert Company, 1500 Mantua Street, Kent, Ohio 44240 USA Citation: Perry, K. I., K. F. Wallin, J. W. Wenzel, and D. A. Herms. 2018. Forest disturbance and arthropods: Small-scale canopy gaps drive invertebrate community structure and composition. Ecosphere 9(10):e02463. 10.1002/ecs2.2463 Abstract. In forest ecosystems, disturbances that cause tree mortality create canopy gaps, increase growth of understory vegetation, and alter the abiotic environment. These impacts may have interacting effects on populations of ground-dwelling invertebrates that regulate ecological processes such as decom- position and nutrient cycling. A manipulative experiment was designed to decouple effects of simultane- ous disturbances to the forest canopy and ground-level vegetation to understand their individual and combined impacts on ground-dwelling invertebrate communities. We quantified invertebrate abundance, richness, diversity, and community composition via pitfall traps in response to a factorial combination of two disturbance treatments: canopy gap formation via girdling and understory vegetation removal. For- mation of gaps was the primary driver of changes in invertebrate community structure, increasing activity- abundance and taxonomic richness, while understory removal had smaller effects.
    [Show full text]
  • With Special Emphasis on the Equatorial Oceanic Islands
    insects Article Synthesis of the Brazilian Poduromorpha (Collembola: Hexapoda) with Special Emphasis on the Equatorial Oceanic Islands Estevam C. A. de Lima 1,2,* , Maria Cleide de Mendonça 1, Gabriel Costa Queiroz 1 , Tatiana Cristina da Silveira 1 and Douglas Zeppelini 2 1 Laboratório de Apterygotologia, Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil; [email protected] (M.C.d.M.); [email protected] (G.C.Q.); [email protected] (T.C.d.S.) 2 Laboratório de Sistemática de Collembola e Conservação—Coleção de Referência de Fauna de Solo—CCBSA—Universidade Estadual da Paraíba Campus V, João Pessoa 58070-450, Brazil; [email protected] * Correspondence: [email protected] Simple Summary: Endemic Collembola species are bioindicators of environmental quality since native species abundance is particularly sensitive to environmental disturbances. Oceanic island biota generally present high percentages of endemic species, and the vulnerability of these species is higher than those of the continents. The objective of this work was to carry out a survey of the Collembola species of the order Poduromorpha in the Brazilian oceanic islands and synthesize a distribution list of this order for Brazil. Our results reveal four new species of Collembola Poduromorpha for Brazilian oceanic islands that may be useful for the conservation strategies of these island regions and a contributor to the knowledge of the order in Brazil. Citation: de Lima, E.C.A.; de Mendonça, M.C.; Queiroz, G.C.; da Silveira, T.C.; Abstract: We present new species and records of Poduromorpha for the Brazilian oceanic islands and Zeppelini, D.
    [Show full text]
  • A New Species of Deutonura (Collembola: Neanuridae: Neanurinae) from North-Eastern Algeria, and Characterisation of Two Intraspecific Lineages by Their Barcodes
    Zootaxa 3920 (2): 281–290 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3920.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC3DAB1-9D75-4833-9610-91FC5EC3C35C A new species of Deutonura (Collembola: Neanuridae: Neanurinae) from north-eastern Algeria, and characterisation of two intraspecific lineages by their barcodes LOUIS DEHARVENG1,4, ABDELMALEK ZOUGHAILECH2, SALAH HAMRA-KROUA2 & DAVID PORCO3 1Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Museum national d'Histoire naturelle, Sorbone Universités, 55 rue Cuvier, CP50, F-75005 Paris, France. E-mail: [email protected] 2Laboratoire de Biosystématique et Ecologie des Arthropodes, Faculté des Sciences de la Nature et de la Vie, Université Constantine 1, Route de Ain El-Bey, 25000 Constantine, Algeria. E-mail: [email protected] 3Laboratoire ECODIV, Université de Rouen, Bâtiment IRESE A, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France. E-mail: [email protected] 4Corresponding author Abstract A new species of Deutonura, D. zana sp. nov., is described from north-eastern Algeria. It is morphologically similar in most characters to D. deficiens meridionalis and to D. luberonensis, both members of the D. phlegraea group, differing from the former by the absence of chaeta O on head, and from the later by the separation of tubercles Di and De on Th. I. The muscular insertion pattern of the new species is figured, and suggested as a potential new character for the taxonomy of Neanurinae. Deutonura zana sp.
    [Show full text]
  • Annotated Checklist of Collembola of Nepal
    ISSN: 2705-4403 (Print) & 2705-4411 (Online) www.cdztu.edu.np/njz Vol. 5 | Issue 1 | June 2021 https://doi.org/10.3126/njz.v5i1.38287 Checklist Annotated checklist of Collembola of Nepal Prem Bahadur Budha 1* | Pratistha Shrestha1 1Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal *Correspondence: [email protected] Suggested citation: Budha, P. B. Abstract and Shrestha, P. 2021. Annotated checklist of collembola of Nepal. Nepalese Journal of Zoology This is the first annotated checklist of Collembola species of Nepal. It includes 167 collembolan species belonging to 78 genera and 5(1):22–33. 17 families including 45 endemic species. Majority of the Nepalese collembolan species were reported from major trekking routes viz. https://doi.org/10.3126/njz.v5i1.38287 Mount Everest, Annapurna Conservation Area and Langtang area with very few other locations. The highest record of collembola in Article History: Nepal is about 5800 m asl. Southern Terai and Siwalik range remain unexplored. Received: 05 October 2020 Revised: 17 June 2021 Accepted: 25 June 2021 Keywords: Endemic species; Hexapods; Himalanura; Nepalanura; Springtails Publisher’s note: The editorial board (Natural History) Museum expedition to Nepal. The major and the publisher of the NJZ remain 1 | Introduction neutral to the opinions expressed and taxonomic contributions on Nepalese Collembola were done only are not responsible for the accuracy of the results and maps presented by Collembola, commonly known as in late 1960s. Yosii (1966a, b, 1971) reported more than 60 the authors. springtails are widely distributed species with the description of two new genera viz.
    [Show full text]
  • Les Collemboles (Hexapoda, Arthropoda )
    RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE Université Constantine 1 Faculté des Science de la Nature et de la Vie Département de Biologie Animale Mémoire présenté en vue de l’obtention du Diplôme de Master Domaine : Sciences de la Nature et de la Vie Filière : Biologie Animale Spécialité : Biologie, Evolution et contrôle des populations d’insectes Intitulé : Les Collemboles (Hexapoda, Arthropoda) Répertoire mondial et national des espèces connues Présentée et soutenu par : DERRADJ LOTFI le : 06/07/2014 Jury d’évaluation : Président du jury : M. HARRAT A. Professeur, Université de Constantine 1 Rapporteur :M. HAMRA-KROUA S. Professeur, Université de Constantine 1 Examinatrice :M . BENKENANA N. M.C, Université de Constantine 1 Année universitaire 2013/2014 1 Remerciements Je remercie avant touts le bon Dieu pour m’avoir donne la patience et le courage de surmonter toutes difficultés à accomplir mon travail. Je remercie aussi ma mére et mon pére, je vous dis « je vous aime beaucoup, vous êtes la lumiere de mes yeux », toutes mes fréres et sœurs : Riad , Chafik,Widad, Hanan, Soufiane, Walid. J’adresse mes remercîments les plus sincères à mon encadreur Mr le Professeur HAMRA-KROUA Salah pour sa modestie et sa constante disponibilité. Je remercie aussi, toutes mes amis de mon promos, mes amis de la residence : idriss, fantazi, naser, seminov, nadir, hasni, ibrahim, faycel, jacob, hayder, omar, joke,sohib, ahmed, majdi, hamid,walid,belota,haytem,haron,sif,mostapha, atef , manis pardon aux que j’ai oubliée……….merci pour votre amitié et je demande le pardon si j’ai touché quelqu ‘un.
    [Show full text]
  • A New Species of Ceratophysella (Collembola: Hypogastruridae) from Japan, with Notes on Its DNA Barcode and a Key to Japanese Species in the Genus
    Zootaxa 3641 (4): 371–378 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3641.4.3 http://zoobank.org/urn:lsid:zoobank.org:pub:3E59252A-6B94-491F-A8A3-D83005F2C4B5 A new species of Ceratophysella (Collembola: Hypogastruridae) from Japan, with notes on its DNA barcode and a key to Japanese species in the genus TAIZO NAKAMORI Laboratory of Soil Ecology, Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwa- dai, Hodogaya, Yokohama 240-8501, Japan Tel: +81-45-339-4357 Fax: +81-45-339-4379 E-mail: [email protected] Abstract Ceratophysella comosa sp. nov. was collected from ascomata of Ciborinia camelliae in Japan and the morphological and molecular characteristics of the species are described here. The species has 3 + 3 cephalic spines as in Ceratophysella loricata and Ceratophysella pilosa, but a plurichaetosis intermediate between C. loricata (absent) and C. pilosa (strong). The new species can be distinguished from these two species also by the number of setae on the first thorax segment and ventral tube. Partial DNA sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene were used as DNA barcodes to dis- tinguish species. Interspecific genetic distances of the gene were higher than the intraspecific distances between Ceratophy- sella species for which sequence data are available. An identification key of Japanese Ceratophysella is provided. Key words: Ceratophysella comosa sp. nov., chaetotaxy, fungus feeding, plurichaetosis Introduction The genus Ceratophysella Börner (Hypogastruridae) comprises about 142 species (Bellinger et al.
    [Show full text]
  • Evidence for Cryptic Diversity in the “Pan-Antarctic” Springtail Friesea Antarctica and the Description of Two New Species
    insects Article Evidence for Cryptic Diversity in the “Pan-Antarctic” Springtail Friesea antarctica and the Description of Two New Species Antonio Carapelli 1,* , Penelope Greenslade 2, Francesco Nardi 1 , Chiara Leo 1 , Peter Convey 3 , Francesco Frati 1 and Pietro Paolo Fanciulli 1 1 Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; [email protected] (F.N.); [email protected] (C.L.); [email protected] (F.F.); [email protected] (P.P.F.) 2 Environmental Management, School of Health and Life Sciences, Federation University, Ballarat, VIC 3350, Australia; [email protected] 3 British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK; [email protected] * Correspondence: [email protected]; Tel.: +39-0577-234-410 Received: 31 January 2020; Accepted: 20 February 2020; Published: 25 February 2020 Abstract: The invertebrate terrestrial fauna of Antarctica is being investigated with increasing interest to discover how life interacts with the extreme polar environment and how millions of years of evolution have shaped their biodiversity. Classical taxonomic approaches, complemented by molecular tools, are improving our understanding of the systematic relationships of some species, changing the nomenclature of taxa and challenging the taxonomic status of others. The springtail Friesea grisea has previously been described as the only species with a “pan-Antarctic” distribution. However, recent genetic comparisons have pointed to another scenario. The latest morphological study has confined F. grisea to the sub-Antarctic island of South Georgia, from which it was originally described, and resurrected F. antarctica as a congeneric species occurring on the continental mainland.
    [Show full text]