With Special Emphasis on the Equatorial Oceanic Islands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Commensals Within Nests of Ants of the Genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil Erica S
Annales de la Société entomologique de France (N.S.), 2019 https://doi.org/10.1080/00379271.2019.1629837 Diversity of commensals within nests of ants of the genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil Erica S. Araujoa,b, Elmo B.A. Kochb,c, Jacques H.C. Delabie*b,d, Douglas Zeppelinie, Wesley D. DaRochab, Gabriela Castaño-Menesesf,g & Cléa S.F. Marianoa,b aLaboratório de Zoologia de Invertebrados, Universidade Estadual de Santa Cruz – UESC, Ilhéus, BA 45662-900, Brazil; bLaboratório de Mirmecologia, CEPEC/CEPLAC, Itabuna, BA 45-600-900, Brazil; cPrograma de Pós-Graduação em Ecologia e Biomonitoramento, Instituto de Biologia, Universidade Federal da Bahia - UFBA, Salvador, BA 40170-290, Brazil; dDepartamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, – UESC, Ilhéus, BA 45662-900, Brazil; eDepartamento de Biologia, Universidade Estadual da Paraíba, Campus V, João Pessoa, PB 58070-450, Brazil; fEcología de Artrópodos en Ambientes Extremos, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México - UNAM, Campus Juriquilla, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico; gEcología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México - UNAM, Distrito Federal, México 04510, Mexico (Accepté le 5 juin 2019) Summary. Nests of ants in the Ponerinae subfamily harbor a rich diversity of invertebrate commensals that maintain a range of interactions which are still poorly known in the Neotropical Region. This study aims to investigate the diversity of these invertebrates in nests of several species of the genus Neoponera and search for possible differences in their commensal fauna composition in two distinct habitats: the understory and the ground level of cocoa tree plantations. -
Unexpected Diversity in Neelipleona Revealed by Molecular Phylogeny Approach (Hexapoda, Collembola)
S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 383–398 ISSN: 1864-6417 Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola) Clément Schneider1, 3, Corinne Cruaud2 and Cyrille A. D’Haese1 1 UMR7205 CNRS, Département Systématique et Évolution, Muséum National d’Histoire Naturelle, CP50 Entomology, 45 rue Buffon, 75231 Paris cedex 05, France 2 Genoscope, Centre National de Sequençage, 2 rue G. Crémieux, CP5706, 91057 Evry cedex, France 3 Corresponding author: Clément Schneider (email: [email protected]) Abstract Neelipleona are the smallest of the four Collembola orders in term of species number with 35 species described worldwide (out of around 8000 known Collembola). Despite this apparent poor diversity, Neelipleona have a worldwide repartition. The fact that the most commonly observed species, Neelus murinus Folsom, 1896 and Megalothorax minimus Willem, 1900, display cosmopolitan repartition is striking. A cladistic analysis based on 16S rDNA, COX1 and 28S rDNA D1 and D2 regions, for a broad collembolan sampling was performed. This analysis included 24 representatives of the Neelipleona genera Neelus Folsom, 1896 and Megalothorax Willem, 1900 from various regions. The interpretation of the phylogenetic pattern and number of transformations (branch length) indicates that Neelipleona are more diverse than previously thought, with probably many species yet to be discovered. These results buttress the rank of Neelipleona as a whole order instead of a Symphypleona family. Keywords: Collembola, Neelidae, Megalothorax, Neelus, COX1, 16S, 28S 1. Introduction 1.1. Brief history of Neelipleona classification The Neelidae family was established by Folsom (1896), who described Neelus murinus from Cambridge (USA). -
Reviews of the Genera Schaefferia Absolon, 1900, Deuteraphorura
TAR Terrestrial Arthropod Reviews 5 (2012) 35–85 brill.nl/tar Reviews of the genera Schaefferia Absolon, 1900, Deuteraphorura Absolon, 1901, Plutomurus Yosii, 1956 and the Anurida Laboulbène, 1865 species group without eyes, with the description of four new species of cave springtails (Collembola) from Krubera-Voronya cave, Arabika Massif, Abkhazia Rafael Jordana1, Enrique Baquero1*, Sofía Reboleira2 and Alberto Sendra3 1Department of Zoology and Ecology, University of Navarra, 31080 Pamplona, Spain e-mails: [email protected]; [email protected] *Corresponding author. 2Department of Biology, Universidade de Aveiro and CESAM Campus Universitário de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] 3Museu Valencià d’Història Natural (Fundación Entomológica Torres Sala) Paseo de la Pechina 15. 46008 Valencia, Spain e-mail: [email protected] Received on November 4, 2011. Accepted on November 21, 2011 Summary Krubera-Voronya cave and other deep systems in Arabika Massif are being explored during many speleological expeditions. A recent Ibero-Russian exploration expedition (summer of 2010) took place in this cave with the aim of providing a study of the biocenosis of the deepest known cave in the world. Four new species of Collembola were found at different depths: Schaefferia profundissima n. sp., Anurida stereoodorata n. sp., Deuteraphorura kruberaensis n. sp., and Plutomurus ortobalaganensis n. sp., the last one at -1980 m deep. The identification and description of the new species have required the careful study of all congeneric species, implying a revision of each genus. As a result of this work tables and keys to all significant characters for each species are presented. -
Collembola: Neanuridae) from Peru
Biodiversity Data Journal 8: e57743 doi: 10.3897/BDJ.8.e57743 Taxonomic Paper A new species of the genus Neotropiella Handschin, 1942 (Collembola: Neanuridae) from Peru José G. Palacios-Vargas‡, Yony T. Callohuari§,| ‡ Universidad Nacional Autónoma de México, México, D. F., Mexico § University of Illinois at Urbana-Champaign, Urbana, United States of America | Universidad Nacional Agraria La Molina, Lima, Peru Corresponding author: Yony T. Callohuari ([email protected]) Academic editor: Ľubomír Kováč Received: 18 Aug 2020 | Accepted: 15 Nov 2020 | Published: 25 Nov 2020 Citation: Palacios-Vargas JG, Callohuari YT (2020) A new species of the genus Neotropiella Handschin, 1942 (Collembola: Neanuridae) from Peru. Biodiversity Data Journal 8: e57743. https://doi.org/10.3897/BDJ.8.e57743 ZooBank: urn:lsid:zoobank.org:pub:570D8CC8-6869-464E-8358-08CDE5B3FD53 Abstract Background Neotropiella is a genus of springtails which can be of medium size (2 mm) or relatively long (5 mm). These springtails live in leaf litter, under the bark of dead trees or in decomposing wood, mainly in the Neotropical Region and are often collected by litter samples on Berlese funnels or by pitfall traps. Most species have been described, based on relatively few specimens and chaetotaxy of several species is incomplete. New information A new species within Neotropiella was discovered in recent pitfall trap collections from Peru. Neotropiella peruana sp. n. was taxonomically treated and studied under both phase contrast and scanning electron microscopy. It is similar to N. insularis from Brazil, but smaller with only 4 mandibular teeth (vs. 5) and with well-developed unguis lateral teeth. © Palacios-Vargas J, Callohuari Y. -
Why Are There So Many Exotic Springtails in Australia? a Review
90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007). -
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
Forest Disturbance and Arthropods: Small‐Scale Canopy Gaps Drive
Forest disturbance and arthropods: Small-scale canopy gaps drive invertebrate community structure and composition 1, 2,3 4 1,5 KAYLA I. PERRY , KIMBERLY F. WALLIN, JOHN W. WENZEL, AND DANIEL A. HERMS 1Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691 USA 2Rubenstein School of Environment and Natural Resources, University of Vermont, 312H Aiken Center, Burlington, Vermont 05405 USA 3USDA Forest Service, Northern Research Station, 312A, Aiken, Burlington, Vermont 05405 USA 4Powdermill Nature Reserve, Carnegie Museum of Natural History, 1847 PA-381, Rector, Pennsylvania 15677 USA 5The Davey Tree Expert Company, 1500 Mantua Street, Kent, Ohio 44240 USA Citation: Perry, K. I., K. F. Wallin, J. W. Wenzel, and D. A. Herms. 2018. Forest disturbance and arthropods: Small-scale canopy gaps drive invertebrate community structure and composition. Ecosphere 9(10):e02463. 10.1002/ecs2.2463 Abstract. In forest ecosystems, disturbances that cause tree mortality create canopy gaps, increase growth of understory vegetation, and alter the abiotic environment. These impacts may have interacting effects on populations of ground-dwelling invertebrates that regulate ecological processes such as decom- position and nutrient cycling. A manipulative experiment was designed to decouple effects of simultane- ous disturbances to the forest canopy and ground-level vegetation to understand their individual and combined impacts on ground-dwelling invertebrate communities. We quantified invertebrate abundance, richness, diversity, and community composition via pitfall traps in response to a factorial combination of two disturbance treatments: canopy gap formation via girdling and understory vegetation removal. For- mation of gaps was the primary driver of changes in invertebrate community structure, increasing activity- abundance and taxonomic richness, while understory removal had smaller effects. -
Ascidians from Rocas Atoll, Northeast Brazil
ORIGINAL RESEARCH published: 16 June 2015 doi: 10.3389/fmars.2015.00039 Ascidians from Rocas Atoll, northeast Brazil Sandra V. Paiva 1, Ronaldo R. de Oliveira Filho 1 and Tito M. da Cruz Lotufo 1, 2* 1 Graduate Program in Tropical Marine Sciences, Universidade Federal do Ceará, Fortaleza, Brazil, 2 Departament of Biological Oceanography, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil Rocas Atoll is the only one of its kind in the South Atlantic—and the first Brazilian marine biological reserve. This is the first report about the ascidians from Rocas. A total of 12 species were found, 5 of them not hitherto described: Ascidia viridina sp. nov., Didemnum rochai sp. nov., Leptoclinides crocotulus sp. nov., Polysyncraton maurizeliae sp. nov., and Trididemnum rocasensis sp. nov. One Caribbean species, Didemnum halimedae, was also discovered in the region for the first time. Further, this is the first record of Didemnum digestum in the Atlantic. The results indicate a high degree of endemism in the ascidian fauna from Rocas Atoll, where didemnids are presently the most important members. Keywords: Ascidiacea, Tunicata, biodiversity, coral reef, taxonomy Edited by: Wei-Jen Chen, National Taiwan University, Taiwan Introduction Reviewed by: Greg W. Rouse, Ascidians are benthic marine invertebrates that are present throughout the marine environments University of California San Diego, from the intertidal to the deep sea. Currently, over 3000 species have been formally described USA (Lambert, 2005), but only 461 have been found in the Atlantic Ocean (Rocha et al., 2012). Francoise Monniot, Muséum National d’Histoire Naturelle, Despite their importance as one of the major components of benthic communities, their France presence is still ignored in many regions due to the lack of collections or specialists. -
Annotated Checklist of Collembola of Nepal
ISSN: 2705-4403 (Print) & 2705-4411 (Online) www.cdztu.edu.np/njz Vol. 5 | Issue 1 | June 2021 https://doi.org/10.3126/njz.v5i1.38287 Checklist Annotated checklist of Collembola of Nepal Prem Bahadur Budha 1* | Pratistha Shrestha1 1Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal *Correspondence: [email protected] Suggested citation: Budha, P. B. Abstract and Shrestha, P. 2021. Annotated checklist of collembola of Nepal. Nepalese Journal of Zoology This is the first annotated checklist of Collembola species of Nepal. It includes 167 collembolan species belonging to 78 genera and 5(1):22–33. 17 families including 45 endemic species. Majority of the Nepalese collembolan species were reported from major trekking routes viz. https://doi.org/10.3126/njz.v5i1.38287 Mount Everest, Annapurna Conservation Area and Langtang area with very few other locations. The highest record of collembola in Article History: Nepal is about 5800 m asl. Southern Terai and Siwalik range remain unexplored. Received: 05 October 2020 Revised: 17 June 2021 Accepted: 25 June 2021 Keywords: Endemic species; Hexapods; Himalanura; Nepalanura; Springtails Publisher’s note: The editorial board (Natural History) Museum expedition to Nepal. The major and the publisher of the NJZ remain 1 | Introduction neutral to the opinions expressed and taxonomic contributions on Nepalese Collembola were done only are not responsible for the accuracy of the results and maps presented by Collembola, commonly known as in late 1960s. Yosii (1966a, b, 1971) reported more than 60 the authors. springtails are widely distributed species with the description of two new genera viz. -
Colonization and Growth of Crustose Coralline Algae (Corallinales, Rhodophyta) on the Rocas Atoll
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 53(3/4):147-156, 2005 Colonization and growth of crustose coralline algae (Corallinales, Rhodophyta) on the Rocas Atoll Alexandre Bigio Villas Bôas1*; Marcia A. de O.Figueiredo 2 & Roberto Campos Villaça 1 1Universidade Federal Fluminense (Caixa Postal 100644, 24001-970Niterói, RJ, Brasil) 2Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (Rua Pacheco Leão 915, 22460-030 Rio de Janeiro, RJ, Brasil) *[email protected] A B S T R A C T Crustose coralline algae play a fundamental role in reef construction all over the world. The aims fo this study were to identify and estimate the abundance of the dominant crustose coralline algae in shallow reef habitats, measuring their colonization, growth rates and productivity. Crusts sampled from different habitats were collected on leeward and windward reefs. Discs made of epoxy putty were fixed on the reef surface to follow coralline colonization and discs containing the dominant coralline algae were fixed on different habitats to measure the crusts’ marginal growth. The primary production experiments followed the clear and dark bottle method for dissolved oxygen reading. Porolithon pachydermum was confirmed as the dominant crustose coralline alga on the Rocas Atoll. The non-cryptic flat form of P. pachydermum showed a faster growth rate on the leeward than on the windward reef. This form also had a faster growth rate on the reef crest (0.05 mm.day-1) than on the reef flat (0.01 mm.day-1). The cryptic protuberant form showed a trend, though not significant, towards a faster growth rate on the reef crest and in tidal pools than on the reef flat. -
Por Que Devemos Nos Importar Com Os Colêmbolos Edáficos?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná) REVISTA SCIENTIA AGRARIA Versão On-line ISSN 1983-2443 Versão Impressa ISSN 1519-1125 SA vol. 17 n°. 2 Curitiba abril/maio. 2016 p. 21-40 POR QUE DEVEMOS NOS IMPORTAR COM OS COLÊMBOLOS EDÁFICOS? Why should we care about edaphic springtails? Luís Carlos Iuñes Oliveira Filho¹*, Dilmar Baretta² 1. Professor do curso de Agronomia da Universidade do Oeste de Santa Catarina (Unoesc), Campus Xanxerê - SC, E-mail: [email protected] (*autor para correspondência). 2. Professor do curso de Zootecnia da Universidade do Estado de Santa Catarina (UDESC Oeste), Campus Chapecó - SC. Bolsista em Produtividade Científica CNPq. E-mail: [email protected] Artigo enviado em 26/08/2016, aceito em 03/10/2016 e publicado em 20/12/2016. RESUMO: Este trabalho de revisão tem como objetivo apresentar a importância dos colêmbolos edáficos, com destaque para aspectos agronômicos e ecológicos. São abordadas as características gerais, densidade e distribuição dos colêmbolos, bem como a relação dos colêmbolos com práticas agrícolas, com fungos, com ciclagem de nutrientes e fertilidade do solo. São também reportados trabalhos da literatura, demonstrando a importância desses organismos aos serviços do ecossistema, como ciclagem de nutrientes, melhoria na fertilidade, agregação do solo, controle de fungos e indicadores da qualidade do solo. Pretende-se com este trabalho demonstrar o importante papel desempenhado pelos colêmbolos e expandir o campo de pesquisa com esses organismos, aumentando o conhecimento dos importantes processos mediados por eles e a interface entre a Ecologia do Solo e Ciência do Solo. -
Biodiversity of Compost Mesofauna and Its Potential As an Indicator of the Composting Process Status
® Dynamic Soil, Dynamic Plant ©2011 Global Science Books Biodiversity of Compost Mesofauna and its Potential as an Indicator of the Composting Process Status Hanne Steel* • Wim Bert Nematology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium Corresponding author : * [email protected] ABSTRACT One of the key issues in compost research is to assess the quality and maturity of the compost. Biological parameters, especially based on mesofauna, have multiple advantages for monitoring a given system. The mesofauna of compost includes Isopoda, Myriapoda, Acari, Collembola, Oligochaeta, Tardigrada, Hexapoda, and Nematoda. This wide spectrum of organisms forms a complex and rapidly changing community. Up to the present, none of the dynamics, in relation to the composting process, of these taxa have been thoroughly investigated. However, from the mesofauna, only nematodes possess the necessary attributes to be potentially useful ecological indicators in compost. They occur in any compost pile that is investigated and in virtually all stages of the compost process. Compost nematodes can be placed into at least three functional or trophic groups. They occupy key positions in the compost food web and have a rapid respond to changes in the microbial activity that is translated in the proportion of functional (feeding) groups within a nematode community. Further- more, there is a clear relationship between structure and function: the feeding behavior is easily deduced from the structure of the mouth cavity and pharynx. Thus, evaluation and interpretation of the abundance and function of nematode faunal assemblages or community structures offers an in situ assessment of the compost process.